Physics 2

		, k is
constant, then the quantized energy of the electron in n th orbit :	2	

(1)
$$nh\left(\frac{k}{m}\right)$$

(1)
$$\operatorname{nh}\left(\frac{\mathbf{k}}{\mathbf{m}}\right)$$
 (2) $\operatorname{nh}\left(\frac{\mathbf{k}}{\mathbf{m}}\right)^{\frac{1}{2}}$ (3) $\operatorname{nh}\left(\frac{\mathbf{m}}{\mathbf{k}}\right)$ (4) $\operatorname{nh}\left(\frac{\mathbf{m}}{\mathbf{k}}\right)^{\frac{1}{2}}$

(3)
$$nh\left[\frac{m}{k}\right]$$

(4)
$$nh\left(\frac{m}{k}\right)^{2}$$

2. To reduce the de-Broglies wave length of an electron from 100 pm to 50 pm, the required increase in energy is:

3. The angular width of fringes in Young's bislit experiment is 0.20^{0} with the wavelength 5890 Å. If the whole apparatus is dipped in water, the angular width will be:

$$(1) 0.30^0$$

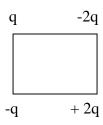
$$(2) 0.22^{0}$$

$$(3) 0.15^0$$
 $(4) 0.11^0$

$$(4) 0.11^{0}$$

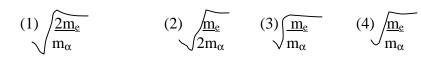
4. Resistance of a 10 m. long wire of potentio meter is 1 $\Omega\Omega$. A cell of 2.2 volt emf. and HRB is connected in series with the wire. How much resistance must be applied to get 2.2 mv gradient:

mt


$$(1)~1000~\Omega$$

(2) 990
$$\Omega$$

(3)
$$810 \Omega$$


(4)
$$790 \Omega$$

5. Four charges are placed on corners of a square, having side of 5 cm., if q is one coulomb then electric field intensity at the centre will be:

- (1) 1.02x10⁷ N/c upwards (2) 2.04x10⁷ N/c upwards
- $(3) 2.04 \times 10^7 \text{ N/c down}$
- (4) 1.02×10^7 N/c down
- 6. Capacitance of a capacitor made by a thin metal foil is 2 µ.F. If the foil is filded with paper of thickness 0.15 mm. and dielectric constant of paper is 2.5, width of paper is 40 mm. then length of foil will be:
 - (1) 33.9 mm.
- (2) 13.4 mm.
- (3) 1.33 mm (4) 0.34 mm.

7. An electron and an $\alpha\alpha$ particle are accelerated with v volt voltage. If the masses are m_{e} and $m_{\alpha\text{o}}$ then the ratio of momentum is :

8. Ultra sonic sound can be observed by :

(1) Telephone

- (2) Hebb method
- (3) Quincke tube (4) Kundit tube
- 9. Which two of the given transverse waves will give stationary wave when get super imposed:

10. For what value of R the net resistance of the circuit will be 18 ohms:

(1) 24 Ω $(2) 16 \Omega$ (3) 10Ω $(4) 8 \Omega$

11. For a medium refractive indices for violet, red and yellow are 1.62, 1.52 and 1.55 resp. then dispersive power of medium will be :

(1) 0.02

- (2) 0.18
- (3) 0.22
- (4) 0.65
- 12. The temperature at which the rms speed of hydrogen molecule is equal to escape velocity on earth surface will be:

(1) 10059 K (2) 8270 K

- (3) 5030 K
- (4) 1060 K
- 13. The temperature of a liquid drops from 365 K to 361 K in 2 minutes. Find the time during which temperature of the liquid drops from 344 K to 342 K. Room temp. is 294 K.

(1) 60 sec.

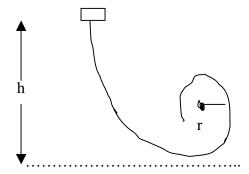
- (2) 66 sec.
- (3) 72 sec.
- (4) 84 sec.
- 14. Venturimeter is used to measure:
 - (1) surface teusion of liquid
 - (2) rate of flow of liquid
 - (3) density of liquid
 - (4) pressure of liquid

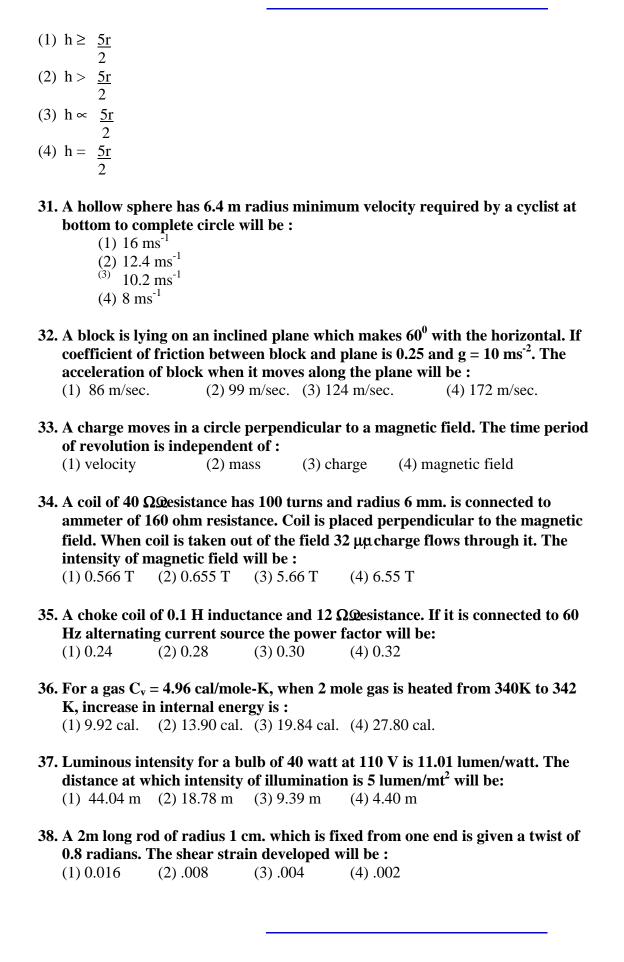
15. A rod is fixed between two points at 20^0 material of rod is 1.1×10^{-5} / 0 C and You the force developed in the rod it temp. (1) 1.1×16^6 N/m 2 (2) 1.1×10^{15} N/m 2 (3) 1.2×10^7 N/m 2 (4) 1.32×10^8 N/m 2	ng's modulus is 1.2 x 10 ¹¹ N/m. Find
16. If an air bubble of radius 1 mm. moves cm/s. in a liquid column of density 14.7 coefficient of viscosity will be: (1) 10.0 m=sec. ² (2) 9.78 m-sec. ² (3) 9.62 m-sec. ² (4) 9.86 m-sec. ²	
17. A rocket launched with 10 km/sec. veloc maximum height attained by it will be : (1) 5 R (2) 4 R (3) 3 R	· ·
18. A block of 2 kg. mass and body of 1 kg. of a string. The string is passing throughorizontal table and the body is hanging acceleration and force of tension are: (1) 4.38 ms ⁻² , 9.86 N (2) 4.38 ms ⁻² , 6.54 N (3) 3.27 ms ⁻² , 6.54 N (4) 3.27 ms ⁻² , 9.86 N	h a pulley. The block is put on a
19. A mass m performs oscillations of period constant k, If spring is cut in two parts mass is oscillated by them, new time per (1) $\frac{T}{2}$ (2) $2T$ (3) $\frac{T}{\sqrt{2}}$	and arranged in parallel, If same
20. In a triode amplifier μ ≠ 70, gm= 1600 μ (rms) is given then power gained in load (1) 4.87 mω (2) 23.7 mω (3) 2.37 mω	l will be:

21. Moment of inertia a rectangular thin plate having mass m, length u, width b, about an axis passing through its centre and perpendicular to the plane is :

$$(1) \ \underline{M\iota^2} \\ 12$$

$$(2) \frac{Mb^2}{12}$$


(3)
$$M(\iota^2 + b^2)$$


(4)
$$M(\iota^2 + b^2)$$

22. In a triode circuit for a given plate voltage, plate current will be maximum when:

- (1) V_g Positive and V_p negative
- (2) V_g and V_p both positive
- (3) $V_g = 0$ and V_p positive
- (4) V_g negative and V_p positive
- 23. In p-n function avalanche current flows in circuit when be maximum when:
 - (1) excess
- (2) zero
- (3) reverse
- (4) forward
- 24. Half life of a radioactive element is 10 days. The time during which quantity remains 1/10 of initial mass will be:
 - (1) 16 days
- (2) 33 days
- (3) 50 days
- (4) 100 days
- 25. Resistance of semiconductor at OK is:
 - (1) small
- (2) large
- (3) infinity
- (4) zero
- 26. acparticle of 400 KeV energy are bombarded on nucleus of 82 pb. In scattering of aparticles, its minimum distance from nucleus will be :
 - (1) 0.59 pm (2) 5.9 pm
- (3) 0.59 nm
- (4) 0.59 Å
- 27. If the uncertainty in the position of an electron is 2Å then the uncertainty in the energy is (about):
 - (1) 94 eV
- (2) 9.0 eV
- (3) 1.0 eV
- (4) 0.1 eV

- 28. Wrong statement is:
 - (1) Nuclear force is produced by the exchange of poins
 - (2) Nuclear force increases with increase in no. of nucleous
 - (3) Range of nuclear forces is very small
 - (4) Nuclear forces are strongest
- 29. The inductance required to connect bulb in series of 1:
 - (1) 1.62 mH
- (2) 16.2 mH (3) 2.42 mH (4) 1.27 mH
- 30. A block follows the path as shown in the figure from height h. If radius of circular path is r, then relation holds good to complete full circle is

the mirror,		between mirr	or and reflecte	a vertical ray strikes d ray :	
same mater end of large	ial. The free en	nd of small roc a twist of θθth	d is fixed to a r ne twist angle a	th 1/2 and radius r/2 of igid base and the free the joint will be:	
volume (r=	mole of diator 1.41). The wor (2) 1815 J	k done on gas	will be :	ntically to half of its	
	ower with a le			cal length and W of 2000The work done	
(1) - 2f	$(2) - \frac{f}{2}$	$(3) \ \underline{\frac{f}{2}}$	(4) 2f		
				f electrostatic force	
$(1) 10^{42}$	(2) 10^{39}	$(3)\ 10^{27}$	$(4) 10^{19}$		
44. Two wires A	A and B of sam	e material ha	ve radius 2r r.	If resistance of B will	
	$(2)~68~\Omega$	$(3) 272 \Omega$	$(4)~544~\Omega$		
 45. A charged plate has charge density of 2 x 10⁻⁶ c/m². The initial distance of an electron which is moving towards plate, can not strike the plate, if it is having energy of 100 eV: (1) 3.51 cm. (2) 1.77 cm. (3) 3.51 mm. (4) 1.77 mm. 					
its surface v	vill be :	_	f 8000 V then t 2 Jm ⁻³ (4) 6 ⁴	he energy density near $4 \times 105 \text{ Jm}^{-3}$	
field if from be :	south to north	n and motion	is upwards the	of 5 T. If direction of force acting on it will	
$(1) 1.6 \times 10^{-6}$	5 N (2) 1.	6 x 10 ⁻¹⁰ N	(3) 0	$(4) 3.2 \times 10^{-8} \text{ N}$	
48. If V_{AB} = uv in given figure then resistance X will be :					
(1) 20 (2) 15		10Ω	5 V		

(3) 10 (4) 5	Α	2 V	X	B

49. A charged water drop whose radius is 0.1 $\mu\mu$ m is equilibrium in an electric field. If charge on it is equal to charge of an electron will be ($g=10 \text{ ms}^{-2}$): (1) 1610 NC^{-1} (2) 262 NC^{-1} (3) 26.2 NC^{-1} (4) 1.61 NC^{-1}

50. The charge on 500 ml. water due to protons will be : (1) 1.67×10^{23} (2) 1.67×10^{26} (3) 6.0×10^{27} (4) 6×10^{23}

51. A piece of cloud having area 25×10^6 m² and electric potential of 10^5 volt. If the height of cloud is 0.75 km. then the energy density of electric field between earth and cloud will be:

(1) 1475 J (2) 1225 J (3) 750 J (4) 250 J

52. 1 Farad in esu is :(1) $\frac{1}{3}$ x 10⁻⁶ (2) 9 x 10¹¹ (3) 3 x 10¹⁰ (4) $\frac{1}{9}$ x 10⁻¹¹

53. Electric potential is given by : $V = 6x - 8xy^2 - 8y + 6yz - 4z^2$ then the electric force acting on 2 coulomb point charge placed on origin will be :

 $(1) 2 N \qquad (2) 6 N \qquad (3) 8 N \qquad (4) 20 N$

54. The wavelength of $K_{\alpha 0}$ lines given by Molybdenum (At No. 42) is 0.7078 Å then wavelength of $K_{\alpha 0}$ for zinc (At no. 30) will be :

(1) 0.3541 Å (2) 1.3873 Å (3) 0.9425 Å (4) 1.2547 Å

55. A plane wave front of 7000 Å fallson an aperture. The area of half period zone of the diffraction pattern on screen 1 meter away from the aperture will be:

(1) $28x10^{-7}$ m² (2) $44x10^{-7}$ m² (3) $22x10^{-7}$ m² (4) $14x10^{-7}$ m²

56. In Young's double slit experiment 62 fringes are seen in visible region for sodium light of wavelength 5893 Å. If violet light of wave length 4358 Å is used in place of sodium light then number of fringes seen will be :

(1) 84 (2) 74 (3) 64 (4) 54

57. Average wavelength of light emitted by a 100 watt bulb is 5000 Å. The no. of emitted photons per second :

(1) $5x10^{17}$ (2) $2.5x10^{22}$ (3) $3x10^{23}$ (4) $2.5x10^{19}$

58. To see first 20 lines of Balmer series distinctly minimum resolving power of instrument should be:

(1) 1040 (2) 983 (3) 920 (4) 878

pattern of X	_	ength 0.61 Å.	a a crystal is same as d The energy of electron (4) 50 ke V		
_	ween the pilla	•	m an observer. The m can be seen separately (4) 3.2 m		
cm. Final in	-	at least distantis:	e of a telescope are 10 ce of distinct vision. T		
62. A planet is the sum is 1 planet is:	revolving arou	nd the sun. Th n that of earth	e average distance of t from sun . The time p	_	
63. Time period	l of a brass per	ndulum is 1 sec temp. how mu	e. at 20 ⁰ C. Linear exp ch the clock will be ba (4) 8s		
	e to the infinity	y is :	. Wrok done to bring at $\sqrt{2GM}$	a 1 kg. mass	
2R	R	2R	R	·•	
65. In the following reaction what are the values of A,B,C,D and E: ${}_{92}U^{238} \rightarrow {}_{B}Th^{AB} \rightarrow {}_{D}Pa^{CE} \rightarrow {}_{92}U^{234}$ (1) A = 234, B = 90, C = 234, D = 93, E = α (2) A= 238, B = 93, C = 234, D = 91, E = β (3) A = 234, B = 90, C = 238, D = 94, E = α (4) A = 234, B = 90, C = 234, D = 91, E = β					
	_	_	tio of masses is 1:3. It tum of bigger part in I (4) Data is incomplet	kg-m/sec. is :	
67. Weight of 1 kg. becomes 1/6 on moon, if radius of moon is 1.768 x 10^6 . Mass of moon will be :					
(1) 7.65 x 10	0^{22} kg. (2) 7.56	$\times 10^{26} \text{ kg. } (3)$	$5.98 \times 10^{24} \text{ kg.}$ (4) 1.9	99x10 ³⁰ kg.	
		-	th period 4/5 sec. and rces act simultaneousl		

will be:

	(1) 0.36 sec.	(2) 0.48 sec.	(3) 0.72 sec.	(4) 0.64	sec.
59. A	wave is given	$\mathbf{by} \ \mathbf{y} = 3 \sin 20$	$0\left(\frac{1}{0.04}\right)$	$\frac{\mathbf{x}}{0.01}$	where y in cm.
		ve and maxim	um acceleratio	on will be	:
	25 Hz, 7.5 x 25 Hz, 4.7 x				
(2)	50 Hz, 7.5 x	10 cmsec.			
		10 cmsec. 10 ³ cmsec2			
	ŕ				
		f 5 and 10 dyn	es resp. are ac	ting on a	particle, the resultant force
ne	ver can be:	(2) 7 1	(2) 12 1		
	(1) 8 dyne	(2) 5 dyne	(3) 12 dyane		(4) 4 dyne
aft	vered by the t (1) no c (2) first (3) first	-	The distance cone time has released	overed by	tached from train and stops y the boggy and distance
72	.πmesons can	be:			
	(5) π^+ , 1				

73.In helium nucleus there are :

(6) π^{+} and π^{-} (7) π^{+} , π^{0} (8) π^{-} and π^{0}

- (9) 2 positron, 2 neutrons
- (10) 2 protons, 2 neutrons
- (11) 2 protons, 2 neutrons, 2 electrons
- (12) 2 protons, 2 electrons

74. Equivalent energy of 1 amu is:

- (13) 9.31 MeV
- (14) 931 KeV
- (15) 93.1 MeV
- (16) 931 Mev

75.Density of nucleus is related to mass no. by :

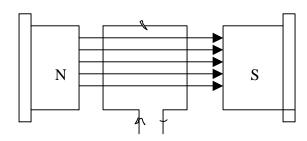
(1)
$$\rho \propto \frac{1}{A}$$
 (2) $\rho \propto \sqrt{A}$ (3) $\rho \propto A$ (4) $\rho = \text{constant}$

76. The particles emitted by radio active decay are deflected by magnetic field. The particles will be :

(17)	electron and	α-particle			
(18)	electron, proton and neutron				
(19)	electron, pro	ton and α			
(20)	proton and o				
. , ,	•				
77.At 0 ⁰ K Fermi					
(21)	depends on a				
(22)					
* *	lies between				
(24)	separate emp	oty and filled lev	vels		
78.If quantity of a ra		ement remains	<u>1</u> of initial o	one in 30 yrs. Half life	
(1) 24 yrs.	(2) 18 yrs	(3) 7.5 yrs	(4) 1.9 yrs.		
(26) (27) 8.88 (28) 6.28 80.A meter scale	_	8 mm-sec. ⁻¹ -sec. ⁻¹ -sec. ⁻¹ traight vertica	-	The velocity of upper	
end, when it stri	kes the table.	When lower e $(3) 8.7 \text{ ms}^{-1}$	nd is fixed will	be:	
(1) 1.7 1118	(2) 3.4 IIIS	(3) 6.7 1118	(4) 10.9 1118		
81.Fundamental (1) 15 Hz		an open pipe i (3) 30 Hz			
82.The cause of 1	Fraunhoffer'	s lines is :			
(1) diffraction			(3) emission	(40 obsorption	
00.11	0.11 111	e n .		00.5	
_			s for H lon is 1	08.5 mm. The binding	
energy of electro		(3) 13.6 eV	$(4) \ 3 \ 4 \ eV$		
(1) 122.7 CV	(2) 3 4.4 C V	(3) 13.0 € ¥	(1) 3.4 C V		
84.Wavelengths	of extreme li	nes of Paschen	series for hydr	ogen is :	
(29)	2.27 µm and	7.43 µm			
(30)	1.45 µm and	4.04 μm			
(31)	0.818 µm an	•			
(32)	0.365 μm an	•			
	·	•			
				length equal to ¼ of	
the wavelengths	of hydrogen	lines. The ion v	will be:		
$(1) \text{ He}^+$	(2) Li^{++}	$(3) \text{ Ne}^{++}$	(4) Na+10		

86.An observer standing at station observes frequency 219 when a train approaches and 184 when train goes away from him. If velocity of sound in air is 340 m/sec., then velocity of train and actual frequency of whistle will be :

- 32.5 ms-1, 205 Hz (33)
- 29.5 ms-1, 205 Hz (34)
- (35)25.5 ms-1, 200 Hz
- 29.5 ms-1, 200 Hz (36)


87. The kinetic energies of two bodies of 4 kg. and 16 kg. mass is same, the ratio of their momentum is:

- (1) 4 : 1
- (2) 1 : 2
- (3) 2 : 1
- (4) 1 : 4

88. Wave length of light emitted by a star is shifting towards the red end, then the star:

- (37)moving towards earth
- moving far from earth (38)
- (39)nothing can be said
- is stationery (40)

89.In the following diagram a rectangular coil is placed in 0.25 T uniform magnetic field, the area is $96 \times 10^{-4} \,\mathrm{M}^2$ and no. of turns is 50, 2 amp current is flowing then the torque is:

(1) 0.24 N-m (2) 0.96 N-m (3) 0.36 N-m (4) 0.48 N-m

90.Plate resistances of two triode values is 4 k Ω Qnd 8 k Ω Qnd amplification coeff. If 40. If used as amplifiers with these load resistances then the ratio of voltage gains is:

- (1) 10
- $(2)^{3/4}$
- (3) 16/9
- (4) 4/3

91. Two particles of same mass are moving in the circular paths r_1 and r_2 radius, the ratio of their centripetal forces is:

- (1) $\sqrt{r_2}$: $\sqrt{r_1}$ (2) $\sqrt{r_1}$: $\sqrt{r_2}$
- $(3) r_1 : r_2$
- $(4) r_2 : r_1$

92.In an AC circuit R = 100 $\Omega\Omega$ = 800 mH and E = 200 sin 300t then the peak value current is:

- (1) 1.17 A
- (2) 0.83 A
- (3) 0.59 A
- (4) 1.70 A

93.Length of wire of potentio meter is 100 cm. and resistance is 0.005 $\Omega \Omega$ m. A battery of 2.0 volt emf and 1.5 $\Omega \Omega$ mternal resistance is connected at the ends of the wire then the value of potential gradient is :							
$(1) 4 \times 10^{-4} \text{ v/}$	m (2) 0.	005 v/m	(3) 0.05 v/m	(4) 0.5 v/m			
velocity of a gas, the first gas, is:	of which mo	lecular weigh	t is double and t	mperature. RMS temp. is half of that of /sec. (4) 600 m/sec.			
95.Two cars are moving on two perpendicular roads towards a crossing with							
uniform speeds of 72 km/hr. and 36 km/hr. If first car blows horn of 280 Hz							
frequency, then the frequency heard by the driver of second car when line							
joining the cars 450 angle with the roads will be :							
(1) 280 Hz	(2) 289 Hz	(3) 298 Hz	(4) 321 Hz				

96.A disc of 1/3 m radius is hanged by a point on circumference by horizontal rail. Period of oscillation is 1.42 sec. value of g by this experiment will be:

(1) 10.0 m-sec⁻² (2) 9.78 m-sec.⁻² (3) 9.62 m-sec.⁻² (4) 9.86 m-sec⁻²

$$(1) 10.0 \text{ m-sec}^{-2}$$
 (2) 9.78 m-sec.

97. Two masses of 5 kg. each falling from height 10 m., by which 2 kg. water is **stirred. The rise is temp. of water will be :** $(1) \ 0.12^0$ $(2) \ 0.32^0$ $(3) \ 1.2^0$ $(4) \ 2.6^0$

$$(1) 0.12^0$$

$$(2) 0.32^0$$

$$(3) 1.2^{0} (4) 2.6^{0}$$

98.A circular road of 1000 m radius has banking angle 45°, the maximum safe speed of a car having 2000 kg. mass will be, if the coefficient of friction between tyre and road is 0.5.

(4) 172 m/sec.