NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2012

Question Booklet BIOLOGY

Roll No.

Series D 303392

Time Allowed: 1.30 Hours

Max. Marks: 75

INSTRUCTIONS:

1. Use only BLACK or BLUE Ball Pen.

(Enter your Roll Number in the above space)

- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT - MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.

1.83,68

BIO 2

-4	\sim	C		1	
1.	~11	rta	cta	nt	1
1.	νu	лта	vu	.110	

- (1) Is a protein produced by type II alveolar cells
- (2) Is excessive in many premature infants resulting in difficulties breathing
- (3) Decreases the surface tension of the fluid lining the alveoli
- (4) Is lacking in individuals suffering from acute respiratory distress syndrome
- 2. The problem of electrical discontinuity caused in the normal heart by the connective tissue separating the atria from the ventricles is solved by:
 - (1) Coordinating electrical activity in the atria with electrical activity in the ventricles by connecting them via the bundle of His
 - (2) Having the A-V node function as a secondary pacemaker
 - (3) Having an ectopic pacemaker.
 - (4) Coordinating electrical activity in the atria with electrical activity in the ventricles by connecting them via the vagus nerve
- 3. The protein whose removal enables myosin to bind actin in smooth muscle is:
 - (1) Tropomyosin

- (2) Caldesmon
- (3) Myosin light chain kinase
- (4) Calmodulin
- 4. An investigator places an isolated neuron in a calcium-free medium, gives the neuron a suprathreshold stimulus and then performs an assay to test whether neurotransmitter is released into the medium. Which of the following outcomes would you predict?
 - (1) No neurotransmitter is detected since influx of calcium into the synaptic knob is required for neurotransmitter release
 - (2) No neurotransmitter is detected since influx of calcium is required in order for the neuron to conduct an action potential
 - (3) Neurotransmitter is detected since calcium is not required for action potential conduction and the initial stimulus was suprathreshold
 - (4) We cannot predict the outcome without knowing whether the neuron was myelinated

5.	Spo	ropollenin, an	orga	nic material	is préser	nt in :			
	(1)	Stigma	(2)	Style	(3)	Exine	(4)	Intine	
6.	In g	eneral, pollen	tube	enters the o	vule thro	ough :	•		
		Micropyle	(2)	Chalaza	(3)	Hilum	(4)	Funicle	
7.		nsfer of poller ed as :	ı grai	n from antho	er to stig	ma of another	r flower	of the same pla	ant is
	(1)	Geitonogam	y		(2)	Xenogamy		,	
	(3)	Cleistogamy			(4)	Chasmogam	y ,		
8.	The	endosperm ce	ells in	angiosperm	s are :				
	(1)	Haploid	(2)		(3)	Triploid	(4)	Tetraploid	•
	\ , /	_	` '	•		•			
_	777 1	o 1 1:11	,	<i>c</i> 1 :					
9.		fleshy edible	part (of an apple is		NT 11			
	(1)	Thallamus			(2)	Nucellus			
	(3)	Ovary	·		(4)	Endosperm	•		
10.	The	portion of em	bryor	nal axis abov	e cotyled	lon is called as	S: .	,	
	(1)	Epicotyl			(2)	Hypocotyl			
	(3)	Coleoptile			(4)	Radicle			
	·	•							
11.	Phe	notypic and g	enoty	pic ratio is s	imilar in	case of:			
	(1)	Complete do		· · · · · · · · · · · · · · · · · · ·	(2)	Incomplete d	lominan	ce	
	(3)	Over domina	ance		(4)	Epistasis			
10	Of t	ho following	which	is the numb	or of allo	les for blood g	roun in	an individual :	
12.	(1)	ne following v	(2)	2	(3)	3	(4)	4	
	(1)	T	(4)	4	(0)	J	(1)		
BIO					4				D

13.	The	Darwinian fitness of an organism	is a r	neasure of:
	(1)	Its ability, relative to others in generation	the	population to pass its genes to the next
	(2)	The number of offspring it produc	es	
	(3)	Its lifespan	*,	
	(4)	Its physical vigor		
14.	A p	otential danger to a population tha	t has	been greatly reduced in number is the:
	(1)	Hardy-Weinberg Disequilibrium		
	(3)	Reduced gene flow	(4)	Loss of genetic variability
15.	and peo	brown-eyed individuals was decim	ated	oproximately equal numbers of blue-eyed by an earthquake. Only a few brown-eyed on. This kind of change in the gene pool is
	(1)	Hardy-Weinberg equilibrium	(2)	Blocked gene flow
	(3)	Bottleneck effect	(4)	Founder effect
	•			
16.		e syndrome in humans in which is omosomes XXY is called:	ndivi	dual's somatic cells contain the three sex
	(1)	Klinefelter's syndrome	(2)	Turner's syndrome
	(3)	Down's syndrome	(4)	Superfemale
	•			
17.	Ho	w does vaccination work?		
	(1)	The immune system produces an	tibod	ies which stay in the blood
	(2)		ced.	They remain in the body to fight off any
	(3)	•		y and constantly stimulates the immune
	(4)	All of the above		
			5	BIO

18.	WIL	ich of the following is not	a characte	rist	ics feature of arthropods?		
	(1)	Joined appendages		(2)	Unsegmented body		
	(3)	Molting		(4)	Articulated exoskeleton		
19.	The	stages between larval mo	olts in an i	nse	cts are called :		
	(1)	Pupae		(2)	Instars		
	(3)	Grubs		(4)	Caterpillars		
20.	Whi	ich of the following anima	l is a repti	le:			
	(1)	Salamander		(2)	Toad		
	(3)	Newt	•	(4)	Turtle	•	
21.	The	secretion of tears, milk, s	weat, and	oil	are functions of which tissue :		
	(1)	Epithelial		(2)	Nervous		
	(3)	Loose connective		(4)	Lymphoid		
			• • • • • • • • • • • • • • • • • • •				
22.	Coll	agen fibers are characteri	stic of whi	ich t	issue?		
-	(1)	Muscle		(2)	Epithelial		
	(3)	Connective		(4)	Nervous		
23.	The	two organisms which bre	athe only t	thro	augh their moist skin are :	e.	
	(1)	Fish and frog		(2)	Frog and earthworm		
	(3)	Leech and earthworm		(4)	Fish and earthworm		
		•					
24.		alpha helices and beta	a sheets a	are	the example of which level	of p	rotein
	(1)	Primary structure		(2)	Secondary structure		
	(3)	Tertiary structure		(4)	Quaternary structure		
BIO			6				D

 \mathbf{D}

25.	Tric	hoderma is an example of whi	ch of the f	ollowing:
	(1)	Phycomycetes	(2)	Zygomycetes
	(3)	Deuteromycetes	(4)	Basidiomycetes
26.	Lich	en is an association between	•	
20.	(1)	Fungi and Bryophyte	(2)	Fungi and Algae
	(3)	Algae and Pteridophyte	(4)	Algae and Bacteria
	(0)	ingue and a second		
27.		genetic material of viroid is a		DNIA
	(1)	DNA	(2)	RNA
	(3)	Protein	(4)	Carbohydrate
			•	
28.	Maı	nnitol is a stored food materia	l found in	members of which of the following:
	(1)	Chlorophyceae	(2)	Xanthophyceae
	(3)	Rhodophyceae	(4)	Phaeophyceae
	01.1	' 1 1 d or own and gwallo	n nlacenta	is associated with which of the following:
29.			(2)	Solanaceae
	(1)	Asteraceae		Malvaceae
	(3)	Brassicaceae	(4)	Marvaceae
30.	On	the basis of the position, of th	ne ovary m	ustard plants are:
	(1)	Hypogynous	(2)	Perigynous
	(3)	Epigynous	(4)	Zygomorphic
31.	Th	e flower of Calotropis has the	following	aestivation:
91.	(1)	Twisted	(2)	Imbricate
			(4)	Vexillary
	(3)	vaivaue	(1)	

 \mathbf{D}

32. The blood-brain barrie	ier	:
-----------------------------------	-----	---

- (1) Consists of both anatomical and physiological factors
- (2) Regulates to some extent the passage of substances from the blood to the interstitial fluid of the brain
- (3) Is anatomically related to the formation of tight junctions between adjacent capillary endothelial cells
- (4) All of the above are correct
- **33.** Cortisol is secreted by the adrenal cortex in response to stress. In addition to its function in a stress response, it functions in negative feedback by :
 - (1) Inhibiting the hypothalamus so that corticotropin releasing hormone (CRH) secretion is reduced.
 - (2) Inhibiting the anterior posterior's ability to respond to CRH by reducing the pituitary's sensitivity to CRH.
 - (3) Both (1) and (2) are correct.
 - (4) None of the above is correct
- 34. Why asexual reproduction is sometime disadvantageous?
 - (1) It allows animals that do not move around to produce offspring without finding mates
 - (2) It allows an animal to produce many offspring quickly
 - (3) It saves the time and energy of gamete production
 - (4) It produces genetically uniform populations
- 35. Which of the following is responsible for nourishing the developing sperm?
 - (1) Sertoli cells

(2) Leydig cells

(3) Granulosa cells

(4) Corpus luteum

- **36.** What is the site of fertilization in mammals?
 - (1) Cervix

(2) Uterus

(3) Vagina

(4) Fallopian tubes

37.	$Th\epsilon$	number of a	utoson	nes in a	a norma	al hum	an cel	lis:		.*		
	(1)	44	(2)	45		(3)	46		(4)	48		
38.	Dov	vn's syndrome	e is ass	sociate	d with	trisom	y of ch	iro m osoi	ne numb	er:		
	(1)	20	(2)	21		(3)	22		(4)	23		
39.	Whi	ich of the follo	owing	is the s	ite of t	ransla	tion of	the mR	NA?			
	(1)	Nucleus				(2)	Nuc	leolus				
	(3)	Golgi-body				(4)	Ribo	somes				
					•							
40.	Oka	ızaki fragmen	ts are	formed	l durin	g the f	ollowi	ng proce	ss:			
	(1)	Transcription	n			(2)	Tran	slation				
	(3)	Reverse trai	nscript	ion		(4)	DNA	Replica	tion			
								•				
41.	Whi	ch of the follo	wing i	s the u	ltimate	sour	e of er	nergy in	an ecosy	stem?		
	(1)	Sunlight				(2)	Prod	ucers				•
	(3)	Consumers				(4)	Deco	mposers				
							•					
42.		interaction v			ecies is	s bene	fitted	and the	other is	neither	bene	fitted
	(1)	Amensalism				(2)	Com	mensalis	sm			
	(3)	Mutualism				(4)	Pred	ation				
							•		•			
43.	The	detritus food	chain	begins	with:							
	(1)	Primary pro	ducers		•	(2)	Prim	ary cons	umers			
	(3)	Secondary co	nsum	ers		(4)		organic				
D					7.000 May 1	9						BIO

49.	Whi	ich of the following is used to Restriction enzymes Gene targets	select general (2)	es of interest from a genomic library? Cloning vectors DNA probes
49.				
49.	Whi	ich of the following is used to	select gen	es of interest from a genomic library?
	(3)	Any DNA fragment	(4)	Eukaryotic DNA only
	(1)	Bacterial DNA only	(2)	Viral DNA only
48.	In a	genetic engineering experim	ent restric	tion enzymes can be used for:
	(4)	false, animals are not used f	or protein	production
	(3)	false, proteins cannot be pro		· · · · · · · · · · · · · · · · · · ·
	(2)	false, proteins cannot be pro	,	
	(1)	true		
47.	Hun false		d in the	milk or semen of farm animals. True or
	•			
	(3)	Albumin	(4)	Histamine
	(1)	Adrenalin	(2)	Benadryl
46.	In a	naphylactic shock, a substa els and capillary leaking. Wh	nce is rel at is this s	eased which cause dilation of the blood substance called?
	(3)	IgM	(4)	IgD
	(1)	IgE	(2)	white blood count
45.	,	atient with symptoms of alwing?		ould have an elevation of which of the
•				
	(3)	Antibody	(4)	MHC I molecule
•	(1)	Antigen	(2)	Hemoglobin

10

BIO

(1) (3) Whi (1)	Steroids Waxes	(2) (4)	Neutral fats Phospholipids
Whi		(4)	Phospholipids
(1)	ich of the following occurs at the r	ribosor	mes?
	In most of a cell's DNA molecule	es are	stored there
(2)	Proteins are produced there		
(3)	mRNA are produced there		
(4)	DNA replication takes place the	ere	
The	plane of cell wall formation in a	dividir	ng cell is determined by :
(1)	Golgi apparatus	(2)	Micro filaments
(3)	Microtubules	(4)	Endoplasmic reticulum
Fron	n the following, select the statem	ent th	nat is TRUE:
(1)	All cells have a cell wall		
(2)	Animal cells contain microtubul	es but	t plant cells do not contain microtubules
(3)			
(4)			
Пhа			
		s in th	ie conducting airways and is not available
(1)	·		
(2)			
(1)	Timavomic dead space		
	The (1) (3) From (1) (2) (3) (4) The for general (1)	The plane of cell wall formation in a (1) Golgi apparatus (3) Microtubules From the following, select the statem (1) All cells have a cell wall (2) Animal cells contain microtubul (3) The Golgi apparatus is found on (4) Chloroplasts are found in plant (5) The volume of the air which remains for gas exchange is called: (1) Vital capacity (2) Functional residual capacity (3) Forced expiratory volume	The plane of cell wall formation in a dividi (1) Golgi apparatus (2) (3) Microtubules (4) From the following, select the statement the contain microtubules but

(1)	Tracheids ch of the follo Auxin				Fibres ssociated with	(4) stomat	Sclereids al movement	s?	
(1)					ssociated with	stomat	al movement	s?	
(1)									
Den				(3)	ABA	(4)	Cytokinin	·	
Den		٠,٠		•					
	itrification is	carrie	ed out by:					, •	
(1)	Pseudomona	as		(2)	Nitrobacter				
(3)	Nitrosomon	as	;	(4)	Nitrococcus				
				•					
Non	-cyclic photor	hospl	norylation res	sults in	the production	of:			
	ADP			(2)	ATP				
(3)	NADPH			(4)	ATP and NAI	OPH			
The	site of glycol	ysis is	:					•	
				(2)	Chloroplast			٠.	
(3) Mitochondrial matrix				(4)	Mitochondrial inner membrane				
			* '						
The	first stable p	roduc	t of C4 pathw	ay is:					
(1)	OAA	(2)	PGA	(3)	PGAL	(4)	DHAP	* *	
Ene	rgy equivaler	nt of a	NADH is the	e followi	ing number of A	ATP mo	olecules :		
(1)	2			(3)	38				
	•								
Inte	ernodal elong	ation i	s associated	with:					
(1)	Auxin	(2)	Cytokinin	•	Gibberellin	(4)	ABA		
	(1) (3) The (1) (3) The (1) Inte	Non-cyclic photor (1) ADP (3) NADPH The site of glycoly (1) Cytoplasm (3) Mitochondri The first stable p (1) OAA Energy equivaler (1) 2 Internodal elongs	(3) Nitrosomonas Non-cyclic photophosph (1) ADP (3) NADPH The site of glycolysis is (1) Cytoplasm (3) Mitochondrial ma The first stable produc (1) OAA (2) Energy equivalent of a (1) 2 (2)	Non-cyclic photophosphorylation res (1) ADP (3) NADPH The site of glycolysis is: (1) Cytoplasm (3) Mitochondrial matrix The first stable product of C4 pathw (1) OAA (2) PGA Energy equivalent of a NADH is the (1) 2 (2) 3 Internodal elongation is associated	(3) Nitrosomonas (4) Non-cyclic photophosphorylation results in (1) ADP (2) (3) NADPH (4) The site of glycolysis is: (1) Cytoplasm (2) (3) Mitochondrial matrix (4) The first stable product of C4 pathway is: (1) OAA (2) PGA (3) Energy equivalent of a NADH is the following (1) 2 (2) 3 (3) Internodal elongation is associated with:	(3) Nitrosomonas (4) Nitrococcus Non-cyclic photophosphorylation results in the production (1) ADP (2) ATP (3) NADPH (4) ATP and NAI The site of glycolysis is: (1) Cytoplasm (2) Chloroplast (3) Mitochondrial matrix (4) Mitochondria The first stable product of C4 pathway is: (1) OAA (2) PGA (3) PGAL Energy equivalent of a NADH is the following number of A (1) 2 (2) 3 (3) 38 Internodal elongation is associated with:	(3) Nitrosomonas (4) Nitrococcus Non-cyclic photophosphorylation results in the production of: (1) ADP (2) ATP (3) NADPH (4) ATP and NADPH The site of glycolysis is: (1) Cytoplasm (2) Chloroplast (3) Mitochondrial matrix (4) Mitochondrial inner The first stable product of C4 pathway is: (1) OAA (2) PGA (3) PGAL (4) Energy equivalent of a NADH is the following number of ATP models (1) 2 (2) 3 (3) 38 (4)	(3) Nitrosomonas (4) Nitrococcus Non-cyclic photophosphorylation results in the production of: (1) ADP (2) ATP (3) NADPH (4) ATP and NADPH The site of glycolysis is: (1) Cytoplasm (2) Chloroplast (3) Mitochondrial matrix (4) Mitochondrial inner membrane The first stable product of C4 pathway is: (1) OAA (2) PGA (3) PGAL (4) DHAP Energy equivalent of a NADH is the following number of ATP molecules: (1) 2 (2) 3 (3) 38 (4) 36	

63.	Cer	rvical cancer can be caused by :		
* :	(1)	Chlamydia spp	(2)	Human papillomavirus
	(3)	Herpes simplex virus	(4)	Neisseria gonorrhoeae
64.	In h	human females, the ovarian cycle beg	gins	when the:
	(1)	Levels of estrogen reach their max	imu	ım
	(2)	Hypothalamus stimulates the ant and LH	erio	or pituitary to increase its output of FSH
	(3)	Level of progesterone drops precipi	tou	sly
	(4)	Hypothalamus increases its release	e of	FSH and LH
65.	A v	vasectomy:	•	
	(1)	Prevents the production of sperm in	n th	ne testes
	(2)	Prevents the production of semen		
	(3)	Prevents the movement of sperm in	ito t	the urethra
	(4)	Prevents a man from having an ere	ctio	on
66.	Spe	erm of animal species A cannot fertili	ze o	ovum of species B because :
	(1)	Fertilizin of A and antifertilizin of	Ва	are not compatible
	(2)	Antifertilizin of A and fertilizin of	Ва	re not compatible
	(3)	Fertilizin of A and B are not comp	atib	ole
	(4)	Antifertilizin of A and B are not co	mpa	atible
67.	The	e unit of evolution is now known to be	e the	e:
•••	(1)		(2)	Family
	(3)		(4)	Species
\mathbf{D}		.	3	BIO

68.	The	population lin	mited	to a particula	r geogr	raphic area is o	called a	s:	
	(1)	Pandemic	(2)	Endemic	(3)	Alien	(4)	Natural	
							1 1 . 6		
69.			wing	has the larges		lation in a food		,	
	(1)	Producers			(2)	Primary cons			
	(3)	Secondary co	nsun	ners	(4)	Decomposers	· · · · · · · · · · · · · · · · · · ·		
70.	The	second trophi	c leve	el of longer foo	d chair	ns in a lake is :		•	
T.	(1)	Phytoplankt	on		(2)	Zooplankton			
	(3)	Benthos			(4)	Fishes			
71.	The	vertical distri	ibutio	on of different	species	occupying diff	ferent l	evels is calle	d as:
	(1)	Stratification	n		(2)	Fragmentatio	on		
	(3)	Mobilization			(4)	Mineralizatio	n '		
72.	Wid	, lal test is spec	ific fo	r the diagnosis	s of wh	ich of the follo	wing di	seases ·	
1 24.	(1)	Typhoid	1110 10	i wie diagnoon	(2)	Malaria	wing ui	.bousob.	
	(3)	Pneumonia			(4)	Common cold	[.		
	(0)				_				4
=0	, ,	., , ,	. 1	. 1 (41 (11	•	•	÷		
73.		ibodies reseml					(4)		
	(1)	X	(2)	Y	(3)	Z	(4)	0	
74.	AID	S is caused by	7a:						
	(1)	Retrovirus			(2)	DNA virus			•
	(3)	Viroid			(4)	Protein			•
75.	Whi	ich of the follo	wing	belongs to the	class (Gastropoda?			•
	(1)	Clam	(2)	Cuttlefish	(3)	Snail	(4)	Mussel	
DIO					1.4				
BIO					14				D

Space For Rough Work

Space For Rough Work