NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2011

Question Booklet MATHEMATICS

Roll No.

(Enter your Roll Number in the above space)

Series

A

405553

Booklet No.

.

Max. Marks: 75

INSTRUCTIONS:

Time Allowed: 1.30 Hours

- 1. Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT - MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.

- Let $A = \{1,2\}, B = \{\{1\}, \{2\}\}, C = \{\{1\}, \{1,2\}\}.$ Then which of the following relation is 1.
 - (1)A = B
- (2) $B \subseteq C$
- (3) $A \in C$
- (4) $A \subset C$
- The function $f:[0,\infty)\to[0,\infty)$ defined by $f(x)=\frac{2x}{1+2x}$ is : 2.
 - (1)one-one and onto

- (2) one-one but not onto
- not one-one but onto (3)
- neither one-one nor onto (4)
- If f(x) = 3 x, $-4 \le x \le 4$, then the domain of $\log_e(f(x))$ is: 3.
- (1) [-4,4] (2) $(-\infty,3]$ (3) $(-\infty,3)$ (4) [-4,3)
- If $z_r = \cos\left(\frac{\pi}{3^r}\right) + i\sin\left(\frac{\pi}{3^r}\right)$, then $z_1 \cdot z_2 \cdot z_3 \cdots$ to ∞ is equal to: 4.
 - (1) -1
- (2) 0
- (3) -i
- (4) i
- If w denotes the imaginary cube roots of unity. Then the roots of the equation **5.** $(x+1)^3 + 8 = 0$ are :
 - $(1) \quad -3, 1+2w, 1+2w^2$

- (2) $-3, 1-2w, 1-2w^2$ (4) $-3, -1-2w, -1-2w^2$
- $(3) \quad -3, \ -1+2w.-1+2w^2$
- If $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 + bx + c = 0$, $a \neq 0$, then the 6. relation between the coefficients of the equation is:
 - (1) $a^2 b^2 + 2ac = 0$

 $(2) \quad a^2 + b^2 + 2ac = 0$

(3) $a^2 - b^2 - 2ac = 0$

 $(4) \quad a^2 + b^2 - 2ac = 0$

If S_1, S_2, S_3 are the sum of n, 2n, 3n terms respectively of an arithmetic progression, 7. then:

(1)
$$S_3 = 2(S_1 + S_2)$$

$$(2) \cdot S_3 = S_1 + S_2$$

(3)
$$S_3 = 3(S_2 - S_1)$$

(4)
$$S_3 = 3(S_2 + S_1)$$

If $4^x = 16^y = 64^z$, then: 8.

(1)
$$x, y, z$$
 are in G.P.

(2)
$$x, y, z$$
 are in A.P

(3)
$$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$$
 are in G.P

(4)
$$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$$
 are in A.P

The coefficient of $p^n q^n$ in the expansion of $[(1+p)(1+q)(p+q)]^n$ is: 9.

$$(1) \quad \sum_{n=0}^{n} \left[C(n,k) \right]^{2}$$

(1)
$$\sum_{k=0}^{n} [C(n,k)]^2$$
 (2) $\sum_{k=0}^{n} [C(n,k+2)]^2$ (3) $\sum_{k=0}^{n} [C(n,k+3)]^2$ (4) $\sum_{k=0}^{n} [C(n,k)]^3$

$$\sum_{i=1}^{n} \left[C(n,k+3) \right]^2$$

$$(4) \qquad \sum_{k=0}^{n} \left[C(n,k) \right]$$

The constant terms is the expansion of $\left(\sqrt{x} - \frac{c}{x^2}\right)^{10}$ is 180, then the value of c equals 10.

to:

$$(1)$$
 ± 2

$$(2) \pm 3$$

$$(3) \pm 4$$

(4)None of these

11. The number of even numbers of three digits which can be formed with digits 0,1,2,3,4 and 5 (no digit being used more than once) is:

- (1) 60
- (2)92
- (3)52
- (4) 48

12. A student is allowed to select at most n-books from a collection of (2n+1) books. If the total number of ways in which he can select a book is 255, then the value of n equals to:

- (1)6
- (2)5
- (3)4

(4)3

The value of $\sum_{n=0}^{\infty} \frac{n^2 + 4}{n!}$ is equal to: 13.

(1)

(2)

(3)4e

None of these (4)

14. If the values observed are 1, 2, 3, ..., n each with frequency 1 and n is even, then the mean deviation from mean equals to:

(1)

(2)

(3) $\frac{n}{4}$

(4) None of these

The three distinct points $A(at_1^2, 2at_1)$, $B(at_2^2, 2at_2)$ and C(0,a) (where a is a real **15.** number) are collinear if:

 $t_1t_2=-1$

(2) $t_1 t_2 = 1$ (3) $2t_1 t_2 = t_1 + t_2$ (4) $t_1 + t_2 = a$

A line segment of 8 units in length moves so that its end points are always on the **16.** co-ordinate axes. Then, the equation of locus of its midpoint is:

 $x^{2} + y^{2} = 4$ (2) $x^{2} + y^{2} = 16$ (3) $x^{2} + y^{2} = 8$

(4) |x| + |y| = 8

The equation of the line passing through (0,0) and intersection of 3x - 4y = 2 and 17. x + 2y = -4 is :

 $(1) \quad 7x = 6y$

(2)

6x = 7y (3) 5x = 8y (4) x = 0

The number of straight lines which can be drawn through the point (-2,2) so that its 18. distance from (3,-1) will be equal 6 units is:

(1)One (2)Two (3)Infinite - (4) Zero

The value of k for which the equation $x^2 - 4xy - y^2 + 6x + 2y + k = 0$ represents a 19. pair of straight lines is:

k = 4(1)

(2) k = -1 (3) $k = \frac{-4}{5}$ (4) $k = \frac{-22}{5}$

- Suppose the straight line x + y = 5 touches the circle $x^2 + y^2 2x 4y + 3 = 0$. Then, 20. the co-ordinates of the point of contact are:
 - (1) (3,2)
- (2) (2,3)
- (4,1)(3)
- (4) (1,4)
- If the straight line y = 2x + c is a tangent to the ellipse $\frac{x^2}{3} + \frac{y^2}{4} = 1$, then c equals 21. to:
 - (1)± 4
- (2) ± 6
- (3) ± 8
- (4) ± 1
- $f(x) = |\sin 2x| + |\cos 2x|$ is a periodic function with period : 22.
 - (1)
- $(2) \quad \frac{\pi}{2} \qquad \qquad (3) \quad \cdot \frac{\pi}{4}$
- (4) $\frac{\pi}{8}$
- The value of $\cos \frac{\pi}{7} \cdot \cos \frac{2\pi}{7} \cdot \cos \frac{4\pi}{7}$ is equal to : 23.
- (2) $\frac{-1}{4}$
 - (3) $\frac{1}{8}$
- $(4) \quad \frac{-1}{Q}$
- Let C be right-angle of a triangle ABC, then $\frac{\sin^2 A}{\sin^2 B} \frac{\cos^2 A}{\cos^2 B}$ is equal to: 24.

- (1) $\frac{a^2 b^2}{ab}$ (2) $\frac{a^4 b^4}{a^2b^2}$ (3) $\frac{a^4 + b^4}{a^2b^2}$ (4) $\frac{a^2 + b^2}{ab}$
- The rational number among the following real numbers is: 25.
 - sin15°
- (2) $\cos 15^{\circ}$
- (3) $\sin 15^\circ \cdot \cos 15^\circ$
- (4) $\sin 15^{\circ} \cdot \cos 75^{\circ}$
- In a triangle ABC, $a=8\,\mathrm{cm}$, $b=10\,\mathrm{cm}$, $c=12\,\mathrm{cm}$. The relation between angles of the **26.** triangle is:
 - $(1) \quad C = A + B$
- (2) C = 2B
- C = 2A(3)
- C = 3A(4)

- The general solution of $\cos x \cdot \cos 6x = -1$ is: 27.
 - $(1) \quad x = (2n+1)\frac{\pi}{7}, n \in \mathbb{Z}$
- $(2) \quad x = (2n+1)\frac{\pi}{5}, n \in \mathbb{Z}$
- $(3) \quad x = (2n+1)\frac{\pi}{35}, n \in \mathbb{Z}$
- $(4) \quad x = (2n+1)\pi, n \in \mathbb{Z}$
- The number of solutions of the equation $\sin x + \sin 5x = \sin 3x$ lying in the interval 28. $|0,\pi|$ is:
 - (1) 4
- (2)
- (3) 5

(4)

- The value of $\tan \left[\cos^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right]$ is: 29.
 - (1) 6
- (2) $\frac{17}{6}$ (3) $\frac{6}{17}$
- None of these (4)
- The value of $\sin \left[\tan^{-1} \left(\frac{1 x^2}{2x} \right) + \cos^{-1} \left(\frac{1 x^2}{1 + x^2} \right) \right]$ is: 30.
 - (1) 1
- (2)

- (3) -1
- $(4) \quad \frac{\pi}{2}$
- If A is a square matrix of order 3 and α is a real number, then determinant $|\alpha A|$ is 31. equal to:
 - $\alpha^2 |A|$
- (2) $\alpha |A|$
- (3) $\alpha^3 |A|$
- (4) None of these
- The system of equations 2x y + z = 0, ax y + 2z = 0, x 2y + z = 0 has non-zero 32. solution if α is equal to :
 - 1 (1)
- (2) 2
- (3)4

(4) 5

- The area of the triangle whose vertices are the points (a(a+1), a+1), 33. ((a+1)(a+2), a+2) and ((a+2)(a+3), a+3) is equal to :

(3)

- (4) a(a+1)(a+2)(a+3)
- The matrix product satisfies $\begin{bmatrix} 5 & 6 & 2 \end{bmatrix} \cdot A^T = \begin{bmatrix} 4 & 8 & 1 & 7 & 8 \end{bmatrix}$, where A^T denotes the 34. transpose of the matrix A. Then, the order of the matrix A equals to :
 - (1) 1×2
- (2) 5×1
- (3) 3×5
- 5×3 (4)
- If A is a 2×2 matrix and |A|=2, then the matrix represented by A(adj A) is equal **35.**
- (1) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (2) $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ (3) $\begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$ (4) $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$
- Let A and B both be 3×3 matrices. Then, $(AB)^T = BA$ if **36.**
 - (1)A is skew-symmetric and B is symmetric
 - (2)B is skew-symmetric and A is symmetric
 - (3)A and B are skew-symmetric
 - None of these (4)
- Let \vec{a} and \vec{b} be the position vector of A and B respectively. The position vector of a 37. point C on \overrightarrow{AB} produced such that $\overrightarrow{AC} = 4 \overrightarrow{AB}$ is equal to:
 - (1) $\frac{4\vec{b} \vec{a}}{2}$ (2) $4\vec{b} 3\vec{a}$ (3) $4\vec{a} 3\vec{b}$ (4) $\frac{4\vec{a} \vec{b}}{2}$

- 38. The sum of two vectors \vec{a} and \vec{b} is a vector \vec{c} such that $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$. Then the magnitude of $\vec{a} \vec{b}$ is equal to:
 - (1) $\sqrt{3}$
- (2) 2
- (3) $2\sqrt{3}$
- (4) 0
- 39. The position vector of two given points A and B are $4\vec{i}-3\vec{j}-\vec{k}$ and $5\vec{i}-5\vec{j}+\vec{k}$ respectively. If γ is the angle between \overrightarrow{AB} and Z-axis, then $\cos \gamma$ is equal to:
 - (1) $\frac{1}{3}$
- (2) $\frac{2}{3}$
- (3) $\frac{-2}{3}$
- (4) 0
- **40.** The vectors $2\vec{i} \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} 3\vec{k}$ and $3\vec{i} + \lambda\vec{j} + 5\vec{k}$ are co-planar if λ equals to:
 - (1) 1
- (2) -1
- (3) -4
- (4) 4
- 41. Let \vec{a} , \vec{b} and \vec{c} be the unit vectors such that $\vec{b} \cdot \vec{c} = \vec{a} \cdot \vec{c} = 0$. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then \vec{c} equals to:
 - $(1) \quad \pm \frac{2}{\sqrt{3}} (\vec{a} \times \vec{b})$

 $(2) \quad \pm \frac{\sqrt{3}}{2} (\vec{a} \times \vec{b})$

 $(3) \quad \pm 2(\vec{a} \times \vec{b})$

- $(4) \quad \pm \frac{1}{2} (\vec{a} \times \vec{b})$
- **42.** For the non-zero vectors, \vec{a}, \vec{b} and \vec{c} , the relation $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$ is true if:
 - (1) $\vec{b} \perp \vec{c}$
- $(2) \quad \vec{a} \perp \vec{b}$
- $(3) \quad \stackrel{\rightarrow}{a} \parallel \stackrel{\rightarrow}{c}$
- $(4) \quad \stackrel{\rightarrow}{a} \perp \stackrel{\rightarrow}{c}$

The ratio in which ZX-plane divides the line segment AB joining the points A(4,2,3)43. and B(-2,4,5) is equal to:

(1) 1:2 internally (2) 1:2 externally

(3)-2:1

(4)None of these

The number of lines making equal angles with the co-ordinate axes in three 44. dimensional geometry is equal to:

(1) 3

(2)

(3) 2

None of these

The projection of a line segment OP through origin O, on the co-ordinate axes are **45.** 8, 5, 6. Then the length of the line segment OP is equal to:

(1)5 (2) $5\sqrt{5}$

(3) $10\sqrt{5}$

(4) None of these

Suppose P(2,y,z) lies on the line through A(3,-1,4) and B(-4,2,1). Then, the value **46.** of z is equal to:

(2) $\frac{19}{4}$ (3) $\frac{-19}{4}$ (4) $\frac{25}{7}$

47. The length of the perpendicular distance of the point (-1,4,0) from the line $\frac{x}{1} = \frac{y}{3} = \frac{z}{1}$ is equal to:

(1) $\sqrt{6}$

(2) $\sqrt{5}$

(3) 2

(4) 1

The equation of the plane perpendicular to the Z-axis and passing through (2,-3,5)48. is:

(1)x - 2 = 0 (2) v + 3 = 0

(3)z - 5 = 0 $(4) \quad 2x - 3y + 5z + 4 = 0$

- 2x 2y + z + 5 = 0 is tangent the sphere 49. $(x-2)^2 + (y-2)^2 + (z-1)^2 = r^2$ if r equals:
- (2) 2

- None of these
- The contrapositive statement of the proposition $p \rightarrow \sim q$ is: **50.**
 - (1) $\sim p \rightarrow q$
- $(2) \quad \sim q \to p \qquad (3) \quad q \to \sim p$
- None of these (4)
- A bag has four pair of balls of four distinct colours. If four balls are picked at random **51.** (without replacement), the probability that there is at least one pair among them have the same colour is:
- (2) $\frac{8}{35}$ (3) $\frac{19}{35}$ (4) $\frac{27}{35}$
- If A and B are mutually exclusive events such that P(A) = 0.25, P(B) = 0.4, then **52.** $P(A^c \cap B^c)$ is equal to :
 - $(1) \quad 0.45$
- (2)0.55
- (3)0.9
- (4)0.35
- Suppose $f(x) = \frac{k}{2^x}$ is a probability distribution of a random variable X that can take **53.** on the values x = 0, 1, 2, 3, 4. Then k is equal to:
- (2) $\frac{15}{16}$
- $(3) \frac{31}{16}$
- None of these
- Let $f(x) = \frac{3}{1 + 3^{\tan x}}$. Then which of the following is true? **54.**

- $\lim_{x \to \frac{\pi^{-}}{2}} f(x) = 3 \quad (2) \quad \lim_{x \to \frac{\pi^{+}}{2}} f(x) = 0 \quad (3) \quad \lim_{x \to \frac{\pi^{+}}{2}} f(x) = 3 \quad (4) \quad \lim_{x \to \frac{\pi}{2}} f(x) = \sin x$

- If $f(x) = \frac{1}{2-x}$, then f(f(x)) is discontinuous at :
- (1) x = 2,4 (2) $x = 4,\frac{3}{2}$ (3) $x = 2,\frac{3}{2}$
- (4) x = 4
- If $f(x) = |x-2| \log_{10}(x-1)$, then f is differentiable in: **56.**
 - (1) $\mathbb{R} \{1, 11\}$
- (2) $\mathbb{R} \{2, 11\}$
- $(3) \quad \mathbb{R} \{11\}$
- (4) $\mathbb{R} \{1, 2\}$
- If g(x) is the inverse of f(x) and $f'(x) = \cos x$, then g'(x) =**57.**
 - $\sec x$
- (2) $\sec(g(x))$ (3) $\cos(g(x))$
- $(4) \quad -\sin(g(x))$

- If $x \neq 0$ and $y = \log_e |2x|$, then $\frac{dy}{dx} =$ **58.**

 - (1) $\frac{1}{x}$ (2) $\frac{-1}{x}$
- $(3) \quad \pm \frac{1}{2r}$
- (4) None of these
- The derivative of $\csc^{-1}\left(\frac{1}{2r\sqrt{1-r^2}}\right)$ with respect to $\sqrt{1-x^2}$ is: **59.**
 - (1) $\frac{1}{\sqrt{1-r^2}}$ (2) $\frac{2}{r}$
- (3) $\frac{-2}{x}$ (4) $\frac{-1}{\sqrt{1-x^2}}$
- The curves $\frac{x^2}{a^2} + \frac{y^2}{2} = 1$ and $y^2 = 8x$ intersect at right angles if a^2 is equal to: **60.**
 - $(1) \frac{1}{2}$
- (2)

(3)2

None of these (4)

- If $f(x) = kx \cos x$ is monotonically increasing for all $x \in \mathbb{R}$, then 61.
- (2) k < 1
- (3) k > 1
- None of these (4)
- If $f(x) = 2x^2 |x| + 4$, $x \in [-1,2]$. Then, for some $c \in (-1,2)$, f'(c) =**62.**
 - (1) $\frac{f(2)-f(0)}{2-0}$

(2) $\frac{f(2)-f(-1)}{2-(-1)}$

(3) $\frac{f(1)-f(-1)}{1-(-1)}$

- None of these (4)
- The value of the integral $\int \frac{1}{e^{2x} + e^{-2x}} dx$ is equal to : 63.
 - (1) $2\tan^{-1}(e^{2x})+c$

(2) $\tan^{-1}(e^{2x}) + c$

(3) $\frac{1}{2} \tan^{-1} (e^{2x}) + c$

- (4) $\frac{-1}{(e^{2x} + e^{-2x})^2} + c$
- The value of the integral $\int \frac{-xe^x}{(x+1)^2} dx$ is equal to : 64.
 - (1) $\frac{-e^x}{(x+1)^2} + c$ (2) $\frac{e^x}{(x+1)^2} + c$ (3) $\frac{e^x}{(x+1)} + c$ (4) $\frac{-e^x}{x+1} + c$

- The value of $\int_{-\sqrt{x}+\sqrt{12-x}}^{8} dx$ is equal to: **65.**
 - (1) 4
- (2)2
- (3)1

 $(4) \frac{1}{2}$

66.
$$\int_{-3}^{3} [f(x) + f(-x)] \cdot [g(x) - g(-x)] dx$$
 is equal to:

$$(2) \quad 2\int_{3}^{3} f(x) \ dx$$

$$(3) \quad 2\int_{0}^{3} f(x)g(x)dx$$

(2)
$$2\int_{-3}^{3} f(x) dx$$
 (3) $2\int_{0}^{3} f(x)g(x)dx$ (4) $2\int_{0}^{3} [f(x)-g(x)]dx$

The area bounded by the curve $y = 1 + \log_e x$, the x-axis and the straight line x = e**67.** is equal to (in square units):

$$(1)$$
 $3e-2$

$$(2)$$
 e

(3)
$$e-\frac{1}{e}$$

(3)
$$e - \frac{1}{e}$$
 (4) $e + \frac{1}{e}$

- The degree of the differential equation $\frac{d^2y}{dx^2} = \frac{5y + \frac{dy}{dx}}{\sqrt{\frac{d^2y}{dx^2}}}$ is equal to: **68.**
 - (1)2
- (2)3
- (3) 4

- The general solution of the differential equation $\frac{d^2y}{dx^2} = e^{2x} + e^{-x}$ is: 69.

$$(1) \quad 4e^{2x} + e^{-x} + c_1 x + c_2$$

(2)
$$\frac{1}{4}e^{2x} - e^{-x} + c$$

$$(3) \quad \frac{1}{4}e^{2x} + e^{-x} + c_1x + c_2$$

$$(4) \quad \frac{1}{4}e^{2x} - e^{-x} + c_1x + c_2$$

- **70.** Three forces P,Q and R acting at a point O in the plane. The measure of angles $\angle POQ$ and $\angle QOR$ are 120° and 90° respectively. Then, the equilibrium forces P,Qand R are in the ratio:
 - (1)3:1:2
- 2:1:3(2)
- $\sqrt{3}:1:2$ (3)
- $2:1:\sqrt{3}$ **(4)**

The maximum and minimum magnitude of resultants of two forces are P_1 and P_2 71. respectively. The magnitude of the resultant when two forces are at right angles is equal to:

(1) $2\sqrt{P_1P_2}$

(2) $\sqrt{P_1^2 + P_2^2}$

(3) $\frac{\sqrt{P_1^2 + P_2^2}}{2}$

(4) $\sqrt{\frac{P_1^2 + P_2^2}{2}}$

A force 2 unit acts along the line x-4=y-5. The moment of the force about the **72.** point (1, 1) along Z-axis is equal to:

(1)

(2) $\frac{1}{\sqrt{2}}$ (3) $\sqrt{2}$

The distance travelled by a bus in t-seconds after the brakes are applied is **73.** $1+2t-2t^2$ meters. The distance travelled by the bus before it stops is equal to:

0.5 meters

(2)1 meter (3)1.5 meters **(4)** 2.5 meters

A particle is thrown vertically upwards with velocity 24.5 cm per minute. It will **74.** return to the original position after:

1 second (1)

(2)3 seconds

1.5 seconds (3)

None of these (4)

Two balls are projected from the same point in directions inclined at 45° and 60° to **75.** the horizontal respectively. If they attain the same height, the ratio of their velocities of projection is equal to:

(1) $\sqrt{3}:1$

(2)3:1 (3)3:2 (4) $\sqrt{3}:\sqrt{2}$

