NOTE: DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2011

Question Booklet PHYSICS

Roll No.

Series A 108497

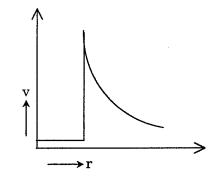
Time Allowed: 1.30 Hours

(Enter your Roll Number in the above space)

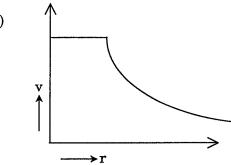
Max. Marks: 75

INSTRUCTIONS:

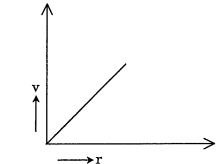
- 1. Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

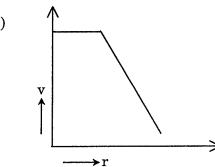

IN CASE OF ANY DEFECT – MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, <u>GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES</u>. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.



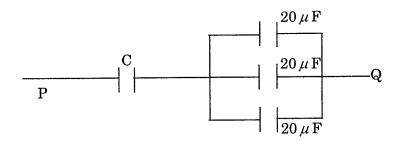
- 1. An electric charge of 8.85×10^{-13} C is placed at the centre of a sphere of radius 1 m. The electric flux through the sphere is:
 - (1) $0.2 \text{ NC}^{-1}\text{m}^2$
- (2) $0.1 \text{ NC}^{-1}\text{m}^2$
- (3) $0.3 \text{ NC}^{-1}\text{m}^2$
- (4) $0.01 \text{ NC}^{-1}\text{m}^2$
- 2. In the case of a hollow metallic sphere, without any change inside the sphere, electric potential (v) changes with respect to distance (r) from the centre as:


(1)


(2)

(3)

(4)


- 3. An electric dipole is placed in an uniform electric field with the dipole axis making an angle ' θ ' with the direction of the electric field. The orientation of the dipole for stable equilibrium is:
 - $(1) \quad \frac{\pi}{6}$
- $(2) \quad \frac{\pi}{3}$
- (3) 0

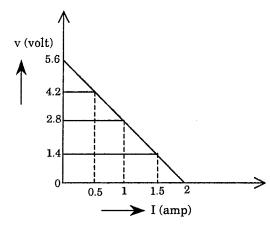
 $(4) \quad \frac{\pi}{2}$

Space For Rough Work

3

If the equivalent capacitance between P and Q of the combination of the capacitors 4. shown in figure below is 30μ F, the capacitor C is :

- $60 \mu F$ (1)
- (2) $30 \mu F$
- (3) $10 \mu F$
- (4) $5 \mu F$
- A charge Q is placed at the origin. The electric potential due to this charge at a given **5.** point in space is 'v'. The work done by an external force in bringing another charge q from infinity up to the point is:
 - (1)
- (3) v+q
- (4) v
- A parallel plate capacitor has two square plates with equal and opposite charges. The 6. surface charge densities on the plates are $+\sigma$ and $-\sigma$ respectively. In the region between the plates the magnitude of the electric field is:
 - $(1) \quad \frac{\sigma}{2\varepsilon_0} \qquad (2) \quad \frac{\sigma}{\varepsilon_0} \qquad (3) \quad 0$


- None of the above
- A capacitor of capacitance C_1 is charged to a potential V and then connected in 7. parallel to an uncharged capacitor of capacitance C_2 . The final potential difference across each capacitor will be:
 - $(1) \quad \frac{C_1 V}{C_1 + C_2} \qquad (2) \quad \frac{C_2 V}{C_1 + C_2} \qquad (3) \quad 1 + \frac{C_2}{C_1} \qquad (4) \quad 1 \frac{C_2}{C_1}$

- 8. Magnitude of drift velocity per unit electric field is:
 - (1) Current density

(2) Current

(3) Resistivity

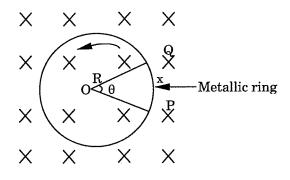
- (4) Mobility
- 9. Four cells of identical emf 'E' and internal resistance 'r' are connected is series to a variable resistor. The following graph shows the variation of terminal voltage of the combination with current. The emf of each cell used is:

- (1) 1.4 V
- (2) 5.6 V
- (3) 2 V
- (4) 1 V
- 10. Fractional increase in resistivity per unit increase in temperature is defined as :
 - (1) Resistivity

(2) Temperature Coefficient of resistivity

(3) Conductivity

- (4) Drift velocity
- 11. Kirchhoff's I^{st} law for analysis of current at a junction in a circuit is based on :
 - (1) Conservation of charge
- (2) Conservation of energy
- (3) Conservation of momentum
- (4) Newton's 3rd law of motion


12.	The material whose resistivity is insensitive to temperature is:										
	(1)	Silicon	(2)	Copper							
	(3)	Silver	(4)	Nichrome							
13.	The path of a charged particle in a uniform magnetic field, when the velocity and the magnetic field are perpendicular to each other is a:										
	(1)	Circle	(2)	Parabola							
	(3)	Helix	(4)	Straight line							
14.	The particle that cannot be accelerated by a cyclotron is:										
	(1)	Proton	(2)	lpha -Particle							
	(3)	Electron	(4)	Deuteron nucleus							
15.	A Galvanometer can be converted into a voltmeter by connecting:										
	(1)	Low resistance in series	(2)	High resistance in series							
	(3)	Low resistance in parallel	(4)	High resistance in parallel							
16.	A 100 turn closely wound circular coil of radius 10 cm carries a current of 3.2 A. The magnetic moment of the coil is, approximately,										
	(1)	5 Am^2 (2) 10 Am^2	(3)	20 Am^2 (4) 40 Am^2							
17.	The angle which the total magnetic field of earth makes with the surface of the earth is called:										
	(1)	Declination	(2)	Magnetic meridian							
	(3)	Geographic Meridian	(4)	Inclination							
18.	If th	If the magnetic susceptibility of a material is large and positive. The material is:									
	(1)	Diamagnetic	(2)	Ferromagnetic							
	(3)	Paramagnetic	(4)	Perfect diamagnetic							

- 19. The statement "Polarity of induced emf is such that it tends to produce a current which opposes the change in magnetic flux that produced it" is known as:
 - (1) Faraday's Law

(2) Gauss's Law

(3) Coulomb's Law

- (4) Lenz's Law
- 20. A metallic rod of length 'R' is rotated with an angular frequency 'W' with one end hinged at the centre and the other end at the circumference of a circular metallic ring of radius R, about an axis passing through the centre and perpendicular to the plane of the ring. There is a magnetic field B, perpendicular to the plane of the ring. The emf induced between the centre and the metallic ring is:

(1) $B\sin wt$

 $(2) \quad \frac{BR^2W}{2}$

(3) $2 BR^2W$

- $(4) BR^2W$
- 21. When the current changes form +2A to -2A in 0.05 seconds, an emf of 8 V is induced in a coil. The coefficient of self inductance of the coil is:
 - $(1) \quad 0.2 \text{ H}$
- $(2) \quad 0.4 \text{ H}$
- (3) 0.8 H
- $(4) \quad 0.1 \text{ H}$

Space For Rough Work

7

PHY

- An LCR series circuit is under resonance. If I_m is current amplitude, V_m is voltage 22. amplitude, R is the resistance, Z is the impedance, X_L is the inductive reactance and $X_{\mathcal{C}}$ is the Capacitive reactance then,
- (1) $I_m = \frac{V_m}{Z}$ (2) $I_m = \frac{V_m}{X_L}$ (3) $I_m = \frac{V_m}{X_C}$ (4) $I_m = \frac{V_m}{R}$

- In the case of an Inductor: 23.
 - - Voltage lags the current by $\frac{\pi}{2}$ (2) Voltage leads the current by $\frac{\pi}{2}$
 - Voltage leads the current by $\frac{\pi}{3}$
- (4) Voltage leads the current by $\frac{\pi}{4}$
- The part of the spectrum of the electromagnetic radiation used to cook food is: 24.
 - Ultraviolet rays (1)

(2)Cosmic rays

(3)X rays

- (4)Microwaves
- 25. A point source that emits waves uniformly in all directions, produces wavefronts that are:
 - Spherical (1)

(2)Elliptical

Cylindrical (3)

- Planar **(4)**
- 26. Sun is visible a little before the actual sunrise and until a little after the actual sunset. This is due to:
 - (1)Total internal reflection
- (2)Reflection

Refraction (3)

Polarization (4)

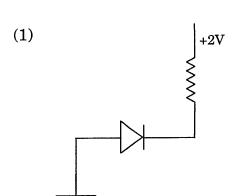
- 27. Rainbow is a phenomenon due to:
 - (1) Dispersion alone
 - (2) Refraction alone
 - (3) Reflection alone
 - (4) Combined effect of dispersion, refraction and reflection
- 28. In a double-slit experiment, the two slits are separated by one millimeter and the screen is placed one meter away. The fringe separation for blue green light of wavelength 500 nm is:
 - (1) 10 mm
- (2) 0.5 mm
- (3) 20 mm
- (4) 15 mm
- 29. In the case of light waves from two coherent sources S_1 and S_2 , there will be constructive interference at an arbitrary point 'P', if the path difference $S_1P S_2P$ is:
 - (1) $(n+\frac{1}{2})\lambda$
- (2) $n\lambda$
- (3) $(n-\frac{1}{2})\lambda$
- (4) $\lambda/2$
- 30. Which of the following statements is correct regarding the photoelectric experiment?
 - (1) The photocurrent increases with Intensity of light
 - (2) Stopping potential increases with increase in intensity of incident light
 - (3) The photo current increases with increase in frequency
 - (4) All of the above
- 31. The de Broglie Wavelength λ of an electron accelerated through a potential V (in volts) is :
 - (1) $\frac{1.227}{\sqrt{V}}$ nm

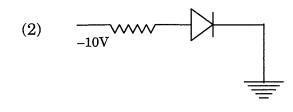
(2) $\frac{0.1227}{\sqrt{V}}$ nm

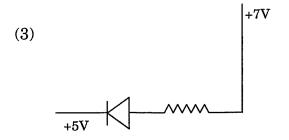
(3) $\frac{0.01227}{\sqrt{V}}$ nm

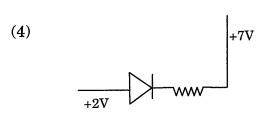
 $(4) \quad \frac{0.1227}{\sqrt{V}} \ A^{\circ}$

Space For Rough Work


9 PHY


32.	If th	ne particles	listed	below	all	have	the	same	kinetic	energy,	which	one	would
	possess the shortest de Broglie wavelength?												
	(1)	Deuteron					(2)	α - Pa	rticle				
	(3)	Proton					(4)	Electr	on				

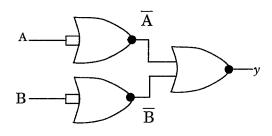

- 33. Which of the following quantities for a nucleus is independent of its mass number?


 (1) Density (2) Volume
 - (1) Density(2) Volume(3) Mass(4) Radius
- **34.** The element with maximum value of binding energy per nucleon is:
 - (1) Iron(2) Aluminium(3) Uranium(4) Hydrogen
- **35.** The S.I. unit of activity of a radioactive sample is:
 - (1) Curie(2) Rutherford(3) Becquerel(4) MilliCurie
- 36. In Beta minus decay a neutron transforms within the nucleus according to:
 - (1) $P \rightarrow n + e^+ + v$ (2) $n \rightarrow p + e^- + \overline{v}^-$
 - (3) $n \rightarrow p + e^+ + \overline{v}^-$ (4) $n \rightarrow p + e^+ + v$
- **37.** P type semiconductor is obtained by doping:
 - Germanium with Arsenic
 Germanium with Aluminium
 Germanium with Antimony
 Germanium with Phosphorus

38. In which of the following figures, the PN diode is forward biased:

- 39. The PN Junction which generates an emf when solar radiation falls on it, with no external bias applied, is a:
 - (1) Light emitting diode
- (2) Photodiode

(3) Solar Cell


- (4) Zener Diode
- 40. The transfer characteristics of a base biased transistor has the operation regions, namely, cutoff, active region and saturation region. For using the transistor as an amplifier it has to operate in the:
 - (1) Active region

(2) Cutoff region

(3) Saturation region

(4) Cutoff and saturation

41. The output y of the circuit shown is:

(1)
$$y = A \cdot B$$

(2)
$$y = \overline{A} \cdot \overline{B}$$

(3)
$$y = \overline{A + B}$$

$$(4) \quad y = A + B$$

- **42.** A radio wave that travels in a straight line from the transmitting antenna to the receiving antenna is known as:
 - (1) Sky wave

(2) Ground wave

(3) Space wave

- (4) Ionospheric wave
- 43. The ratio of Tensile stress to the longitudinal strain is defined as:
 - (1) Bulk modulus

(2) Young's modulus

(3) Shear modulus

- (4) Compressibility
- **44.** In the case of a sphere falling through a viscous medium, it attains terminal velocity when:
 - (1) Viscous force plus buoyant force becomes equal to force of gravity
 - (2) Viscous force is zero
 - (3) Viscous force plus force of gravity becomes equal to buoyant force
 - (4) Buoyant force becomes equal to force of gravity

45.	If R is the radius of a soap bubble and 'S' its surface tension then the excess pressure									
	inside is :									
	2S	(0)	3S	(2)	4S	(4)	S			
	$(1) \frac{2S}{R}$	(2)	$\frac{3S}{R}$	(3)	$\frac{4S}{R}$	(4)	\overline{R}			
46.	For a body immersed in a liquid, when the weight of the body is less than the upthrust then the body will:									
	(1) Float	partially im	mersed	(2)	Sink					
	(3) Float	fully immer	sed	(4)	Be of zero weight					
47.	some heigh	nt. The diffe	3×10^4 kg and the rence in presence of $g = 10 \text{ m/s}^2$				lower surfa			
48.			ıl conductivit W ⁻¹ M ⁻¹ K ⁻¹		$W M^{-1} K^{-1}$	(4)	${ m W}{ m M}^{-2}{ m K}^{-1}$			
49.	The rate of loss of heat of a body is directly proportional to the difference of temperature of the body and the surroundings. This statement is known as: (1) Stefan's Law (2) Newton's Law of cooling (3) Wien's Law (4) Kirchhoff's Law									

Space For Rough Work

(2)

(4)

Surface tension

Specific heat capacity

Water is used as a coolant in automobile radiators owing to its high:

50.

(1)

(3)

Viscosity

Latent heat

51. A Thermodynamic process in which the system is insulated from the surroundings and no heat flows between the system and the surroundings is an:

(1)**Isothermal Process** (2)Adiabatic Process

(3)**Isochoric Process** (4)**Isobaric Process**

52. The Temperature of the sink of a Carnot engine is 27°C and its efficiency is 25%. The temperature of the source is:

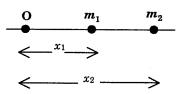
227°C (1)

(2)27°C $(3) 327^{\circ}C$

(4) 127°C

53. The moment of Inertia of a rod of mass 'M' length 'l' about an axis perpendicular to it through one end is:

(1) $\frac{Ml^2}{12}$ (2) $\frac{Ml^2}{2}$ (3) $\frac{Ml^2}{3}$ (4) $\frac{Ml^2}{4}$


A constant torque of 3.14 Nm is exerted on a pivoted wheel. If the angular **54.** acceleration of the wheel is 4π rad/s² then the moment of Inertia of the wheel is:

(1) 0.25 kg m^2 (2) 2.5 kg m^2

(3) 4.5 kg m^2

(4) 25 kg m^2

55. In the diagram shown below, m_1 and m_2 are the masses of two particles and x_1 and x_2 are the respective distances from the origin o. The centre of mass of the system is:

 $(1) \quad \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \quad (2) \quad \frac{m_1 + x_2}{2}$

(3) $\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$ (4) $\frac{m_1 m_2 + x_1 x_2}{m_1 + m_2}$

- 56. Consider earth to be a sphere of mass 'M' and radius 'R'. The acceleration due to gravity at a depth 'd' below the earth's surface (g_d) is:
 - $(1) g_d = g \left\{ 1 \frac{d}{R} \right\}$

 $(2) g_d = g \left\{ 1 - \frac{2d}{R} \right\}$

(3) $g_d = g$

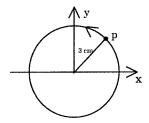
- $(4) g_d = g \left\{ 1 + \frac{d}{R} \right\}$
- **57.** An orbiting satellite has:
 - (1) Only kinetic energy
 - (2) Only potential energy
 - (3) Kinetic and potential energy
 - (4) Zero energy
- 58. The escape velocity of a body on the surface of earth is 11.2 km/sec. If the earth's mass increases to twice its present value and the radius of the earth becomes half, the escape velocity would become:
 - (1) 5.6 km/sec

(2) 11.2 km/sec

(3) 44.8 km/sec

- (4) 22.4 km/sec
- **59.** $x(t) = A\cos(wt + \Phi)$ is the equation of simple harmonic motion. In this equation ' Φ ' is called:
 - (1) Phase constant

(2) Frequency


(3) Amplitude

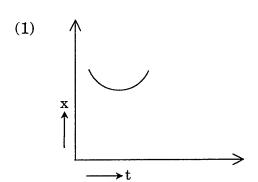
(4) Displacement

Space For Rough Work

15 PHY

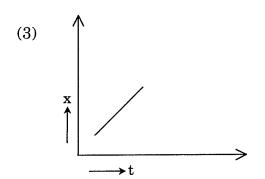
60. The figure shows circular motion of a reference particle to represent simple harmonic motion. The amplitude of simple harmonic motion is:

- (1) $2 \, \mathrm{cm}$
- (2)3 cm
- (3) $4~\mathrm{cm}$
- (4) $3 \, \mathrm{m}$
- 61. In the case of a traveling wave, the reflection at a rigid boundary will take place with a phase change of:
 - (1) $\frac{\pi}{2}$ radian


(2) $\frac{\pi}{4}$ radian

(3) π radian

- (4) $\frac{\pi}{6}$ radian
- 62. For a stretched string of length 'L', fixed at both ends, the frequency of the fundamental mode of vibration is (V is the velocity of travelling waves in the string):
 - $(1) \quad \frac{V}{2L} \qquad (2) \quad \frac{V}{L} \qquad (3) \quad \frac{V}{4L} \qquad (4) \quad \frac{V}{3L}$


- If v_1 and v_2 are the frequencies of two tuning forks then the beat frequency is : 63.
- (2) $v_1 + v_2$ (3) $\frac{v_2}{v_1}$
- (4) $v_1 v_2$

- **64.** The dimension of impulse is:
 - (1) MLT^{-1}
- (2) ML^2T^{-1}
- (3) $ML^{-1}T^{-1}$
- (4) MT^{-1}
- 65. Position time graph for motion with Zero acceleration is:

(2) x

→ t

- 66. A car moving with a speed of 50 km/hr can be stopped by brakes, over a distance of 6 m. If the same car is moving at a speed of 100 km/hr, the stopping distance is:
 - (1) 12 m
- (2) 18 m
- (3) 6 m
- (4) 24 m

- 67. If a projectile is launched with velocity V_o , making an angle θ with x axis, then its time of flight T is:
 - $(1) \quad T = \frac{{V_o}^2 \sin 2\theta}{g}$

 $(2) \quad T = \frac{V_o^2 \sin^2 \theta}{2g}$

 $(3) \quad T = \frac{V_o^2}{g}$

- $(4) \quad T = \frac{2V_o \sin \theta}{g}$
- **68.** The acceleration of an object moving in a circle of radius 'R' with uniform speed 'v' is:
 - $(1) \quad \frac{v^2}{R}$

 $(2) \quad \frac{v^2}{2R}$

 $(3) \quad \frac{2v^2}{R}$

- $(4) \quad \frac{3v^2}{2R}$
- 69. A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of 12m/s. If the mass of the ball is 0.15 kg the impulse imparted to the ball is:
 - (1) 36 NS

(2) 3.6 NS

(3) 0.36 NS

- (4) 0.036 NS
- **70.** A cubical block rests on an inclined plane of coefficient of friction $\mu = 1/\sqrt{3}$. What should be the angle of inclination so that the block just slides down the inclined plane?
 - (1) 30°
- (2) 60°
- (3) 45°
- (4) 90°

- If μ_s is coefficient of static friction, the maximum speed V_{\max} with which a vehicle can 71. negotiate an unbanked curved track having radius R and inclined at an angle θ with respect to horizontal plane is:
 - $V_{\rm max} = \sqrt{Rg \tan \theta}$

 $(2) V_{\text{max}} = \sqrt{\mu_s Rg}$

 \sqrt{Rg} (3)

- (4) $\sqrt{\tan\theta/Rg}$
- If two bodies stick together after collision and move as a single body, the collision is 72. said to be:
 - Perfectly inelastic (1)

(2)Elastic

(3)Inelastic

- Perfectly elastic **(4)**
- For a moving particle (mass m, velocity V) having a momentum P, which one of the **73.** following correctly describes the kinetic energy of the particle:

- (1) $\frac{P^2}{2m}$ (2) $\frac{P}{2m}$ (3) $\frac{V^2}{2m}$ (4) $\frac{V}{2m}$
- A gardener pushes a lawn roller through a distance 20 m. If he applies a force of 74. $20 \text{ kgwt in a direction inclined at } 60^{\circ} \text{ to the ground, the work done by him is :}$
 - 1960 J **(1)**
- (2)196 J
- (3)1.96 J
- 196 KJ (4)

- S.I. unit of power is: **75.**
 - (1)Joule

(2) erg

Newton (3)

(4) Watt

