SECTION 1

- This section contains **SIX (06)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If unanswered; Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

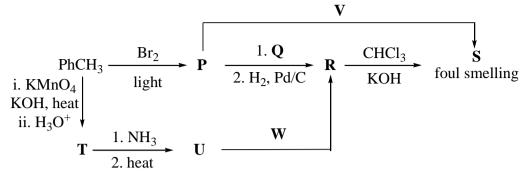
choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get $\boldsymbol{0}$ marks and


choosing any other option(s) will get -2 marks.

Q.1 The reaction sequence(s) that would lead to *o*-xylene as the major product is(are)

(A) (B)
$$\begin{array}{c} \text{Me} & \text{1. NaNO}_2/\text{HCI} \\ \text{273 K} \\ \text{2. CuCN} \\ \hline \\ \text{3. DIBAL-H} \\ \text{then H}_3\text{O}^+ \\ \text{4. N}_2\text{H}_4, \text{KOH} \\ \text{heat} \\ \end{array}$$

(C)
$$\begin{array}{c} \text{Me} & \text{1. i. BH}_3 \\ \hline \text{ii. H}_2\text{O}_2, \text{ NaOH} \\ \hline \text{2. PBr}_3 \\ \text{3. Zn, dil. HCl} \end{array}$$

Correct option(s) for the following sequence of reactions is(are) Q.2

- (A) $\mathbf{Q} = KNO_2$, $\mathbf{W} = LiAlH_4$
- (B) \mathbf{R} = benzenamine, \mathbf{V} = KCN
- (C) $\mathbf{Q} = \text{AgNO}_2$, $\mathbf{R} = \text{phenylmethanamine}$ (D) $\mathbf{W} = \text{LiAlH}_4$, $\mathbf{V} = \text{AgCN}$

For the following reaction Q.3

$$2\mathbf{X} + \mathbf{Y} \xrightarrow{k} \mathbf{P}$$

the rate of reaction is $\frac{d[P]}{dt} = k[X]$. Two moles of X are mixed with one mole of Y to make 1.0 L of solution. At 50 s, 0.5 mole of Y is left in the reaction mixture. The correct statement(s) about the reaction is(are)

(Use:
$$ln 2 = 0.693$$
)

- (A) The rate constant, k, of the reaction is 13.86×10^{-4} s⁻¹.
- (B) Half-life of **X** is 50 s.
- (C) At 50 s, $-\frac{d[X]}{dt} = 13.86 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$.
- (D) At 100 s, $-\frac{d[Y]}{dt} = 3.46 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$.

Q.4 Some standard electrode potentials at 298 K are given below:

$$\begin{array}{lll} Pb^{2+}/Pb & -0.13 \ V \\ Ni^{2+}/Ni & -0.24 \ V \\ Cd^{2+}/Cd & -0.40 \ V \\ Fe^{2+}/Fe & -0.44 \ V \end{array}$$

To a solution containing 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+} , the metal rods \mathbf{X} and \mathbf{Y} are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of \mathbf{X} . The correct combination(s) of \mathbf{X} and \mathbf{Y} , respectively, is(are)

(Given: Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, Faraday constant, $F = 96500 \text{ C mol}^{-1}$)

- (A) Cd and Ni
- (B) Cd and Fe
- (C) Ni and Pb
- (D) Ni and Fe
- Q.5 The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)

(Note: py = pyridine

Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)

- (A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$
- (B) [Co(CO)₄]⁻ and [CoCl₄]²⁻
- (C) [Ni(CO)₄] and [Ni(CN)₄]²⁻
- (D) $[Cu(py)_4]^+$ and $[Cu(CN)_4]^{3-}$

Q.6 The correct statement(s) related to oxoacids of phosphorous is(are)

(A) Upon heating, H_3PO_3 undergoes disproportionation reaction to produce H_3PO_4 and PH_3 .

- (B) While H₃PO₃ can act as reducing agent, H₃PO₄ cannot.
- (C) H₃PO₃ is a monobasic acid.
- (D) The H atom of P–H bond in H₃PO₃ is not ionizable in water.

SECTION 2

- This section contains **THREE (03)** question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $\mathbf{y} \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3\mathbf{y} \times 10^2$ S cm² mol⁻¹.

- Q.7 The value of α is .
- Q.8 The value of \mathbf{y} is ____.

Question Stem for Question Nos. 9 and 10

Question Stem

Reaction of \mathbf{x} g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

JEE (Advanced) 2021	aper	2
---------------------	------	---

- Q.9 The value of \mathbf{x} is ____.
- Q.10 The value of \mathbf{y} is ____.

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of 0.03 M KMnO₄ solution to reach the end point. Number of moles of Fe²⁺ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl₂). The amount of iron present in the sample is \mathbf{y} % by weight.

(Assume: KMnO₄ reacts only with Fe²⁺ in the solution

Use: Molar mass of iron as 56 g mol⁻¹)

- Q.11 The value of \mathbf{x} is ____.
- Q.12 The value of \mathbf{y} is ____.

SECTION 3

This section contains TWO (02) paragraphs. Based on each paragraph, there are TWO (02) questions.

- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.

Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Paragraph

The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for *homolytic cleavage* of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by *s*-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

$$H_3C^{\bullet}(g)$$
 \longrightarrow $H_3C^{\bullet}(g)$ + $H^{\bullet}(g)$ $\Delta H^{\circ} = 105 \text{ kcal mol}^{-1}$
 $CI-CI(g)$ \longrightarrow $CI^{\bullet}(g)$ + $CI^{\bullet}(g)$ $\Delta H^{\circ} = 58 \text{ kcal mol}^{-1}$
 $H_3C^{\bullet}(g)$ + $CI^{\bullet}(g)$ $\Delta H^{\circ} = 85 \text{ kcal mol}^{-1}$
 $H^{\bullet}(g)$ + $CI^{\bullet}(g)$ $\Delta H^{\circ} = 103 \text{ kcal mol}^{-1}$

Q.13 Correct match of the **C**–**H** bonds (shown in bold) in Column **J** with their BDE in Column **K** is

Column J	Column K
Molecule	BDE (kcal mol ⁻¹)
(P) H – C H(CH ₃) ₂	(i) 132
(Q) H–C H ₂ Ph	(ii) 110
(R) H–C H=CH ₂	(iii) 95
(S) H – C ≡CH	(iv) 88

(A)
$$P - iii$$
, $Q - iv$, $R - ii$, $S - i$

(B)
$$P - i$$
, $Q - ii$, $R - iii$, $S - iv$

(C)
$$P - iii$$
, $Q - ii$, $R - i$, $S - iv$

(D)
$$P - ii$$
, $Q - i$, $R - iv$, $S - iii$

Q.14 For the following reaction

$$CH_4(g) + CI_2(g) \xrightarrow{light} CH_3CI(g) + HCI(g)$$

the correct statement is

- (A) Initiation step is exothermic with $\Delta H^{o} = -58 \text{ kcal mol}^{-1}$.
- (B) Propagation step involving ${}^{\bullet}$ CH₃ formation is exothermic with $\Delta H^{\circ} = -2 \text{ kcal mol}^{-1}$.
- (C) Propagation step involving CH₃Cl formation is endothermic with $\Delta H^{o} = +27 \text{ kcal mol}^{-1}$.
- (D) The reaction is exothermic with $\Delta H^{o} = -25 \text{ kcal mol}^{-1}$.

Paragraph

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ solution in complete absence of air produces a white precipitate \mathbf{X} , which turns blue in air. Mixing the $FeSO_4$ solution with $NaNO_3$, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring.

Q.15 Precipitate X is

(A) $Fe_4[Fe(CN)_6]_3$

(B) $Fe[Fe(CN)_6]$

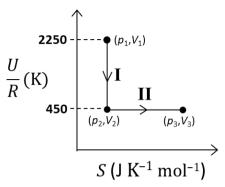
(C) $K_2Fe[Fe(CN)_6]$

- (D) $KFe[Fe(CN)_6]$
- Q.16 Among the following, the brown ring is due to the formation of
 - (A) $[Fe(NO)_2(SO_4)_2]^{2-}$

(B) $[Fe(NO)_2(H_2O)_4]^{3+}$

(C) $[Fe(NO)_4(SO_4)_2]$

(D) $[Fe(NO)(H_2O)_5]^{2+}$


SECTION 4

- This section contains **THREE (03)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER.**
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

Q.17 One mole of an ideal gas at 900 K, undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_3}{V_2}$ is ____.

(*U*: internal energy, *S*: entropy, *p*: pressure, *V*: volume, *R*: gas constant)

(Given: molar heat capacity at constant volume, $C_{V,m}$ of the gas is $\frac{5}{2}R$)

Q.18 Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s⁻¹) of He atom after the photon absorption is ____.

(Assume: Momentum is conserved when photon is absorbed. Use: Planck constant = 6.6×10^{-34} J s, Avogadro number = 6×10^{23} mol⁻¹, Molar mass of He = 4 g mol⁻¹)

Q.19 Ozonolysis of ClO₂ produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is ____.

END OF THE QUESTION PAPER