1012003419

(Booklet Number)

Duration: 2 Hours

Full Marks: 100

INSTRUCTIONS

- 1. This question paper contains all objective questions divided into three categories. Each question has four answer options given.
- 2. Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
- 3. Category-II: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
- 4. Category-III: Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- 6. Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- 7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 9. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 10. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.

PC-2021

PC-2021

PHYSICS

Unless otherwise specified in the question, the following values should be used:

Mechanical equivalent of heat, $J = 4.2 \text{ J cal}^{-1}$

Acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$

Absolute zero temperature = -273 °C

Speed of light in vacuum = $3 \times 10^8 \text{ ms}^{-1}$

The following symbols usually carry meaning as given below:

 ε_0 : electric permittivity of free space

 $\boldsymbol{\mu}_0$: magnetic permeability of free space

R: universal gas constant

প্রশ্নে অন্যরকম বলা না থাকলে, নীচের মানগুলি ব্যবহার করতে হবে।

তাপের যান্ত্রিক তুল্যান্ধ, $J = 4.2 \text{ J cal}^{-1}$

অভিকর্মজ ত্বণ, g = 9.8 m s⁻²

পরমশূন্য উষ্ণতা = -273 °C

শূন্য হানে আলোর বেগ = $3 \times 10^8 \text{ ms}^{-1}$

নীচের চিহণ্ডলি সাধারণভাবে নীচে প্রদন্ত অর্থে ব্যবহাত :

 $arepsilon_0$: শূন্যস্থানের তড়িৎ-ভেদ্যতা

μ₀ : শূন্যস্থানের চৌম্বক ভেদ্যতা

R : সর্বজনীন গ্যাস-ধ্রুবক

1.

2.

3.

একটি	egory-I : Carry 1 swer or any com ট উত্তর সঠিক। সঠিব	উন্তর	मिला 1 नम्नत्र भारत मिला ¼ नम्नत्र र	ne opt one ai । ভুল উ ফাটা যা	tion is correct.] nswer, ¼ mark উত্তর দিলে অথবা (বে।	will be য কোন	e deducted. একাধিক উত্তর
As	spherical convex	surfac	e of power 5 di	ioptre	senarates object	t and	imaga space of
refr	active indices 1.0	and $\frac{4}{3}$	respectively. The	e radiu	s of curvature of	f the su	rface is
(A)	20 cm	(B)	1 cm	(C)	4 cm	(D)	5 cm
5 di	ioptre ক্ষমতাসম্পন্ন	একটি	গোলীয় উত্তল তল	যথাক্র	মে 1.0 ও $\frac{4}{3}$ প্রা	ভসরা ক য়	তুক ক্ছু মাধ্যম ও
প্রতি	বিম্ব মাধ্যমকে পৃথক	করে। ত	চাহলে গোলীয় তলে	র বক্রত	গ ব্যাসার্ধ হবে		
	20 cm	,				(D)	5 cm
In Y	oung's double sl	it expe	eriment, light of	wavele	ength λ passes th	rough	the double alia
and i	forms interference	e fring	es on a screen 1.2	2 m aw	av If the differe	nough	ane double-sill
maxi	imum and 3 rd ord	er min	imum is 0.18 cm	and th	e slits are 0.02 o	m anam	ween 3 rd order
(A)	1200 nm		450 nm				
<u>डे श</u> ः_							300 nm
× × × ×	এর দ্বি-রেখাছিদ্র পর্ব	।। व्यक्षाः ∤	ে ৩রঙ্গদেঘ্যের আন্তে	না, ছিদ্ৰ	থেকে 1.2 m দূরে	র পর্দায়	ব্যতিচার ঝালর
(তার	করে। যদি ছিদ্র দু	টর মধে	্যকার দূরত্ব 0.02 c	m হয়	এবং তৃতীয় উচ্ছ্ব	ৰ পটি ও	তৃতীয় অন্ধকার
পটির	মধ্যেকার দূরত্ব 0.1	8 cm 3	হয়ে তবে λ এর মান	হল			
(A)	1200 nm	(B)	450 nm	(C)	600 nm	(D)	300 nm
A 12.5 ev electron beam is used to bombard gaseous hydrogen at ground state. The energy level upto which the hydrogen atoms would be excited is							
(A)		(B)	3	(C)		(D)	1
	ev শক্তিবিশিষ্ট ই তে	. ,		. ,			
	র্ষর ফলে হাইড্রোজে						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(A)						(D)	• • • • • • • • • • • • • • • • • • • •
-		(B)	3	(C)	4	(D)	1

- Let r, v, E be the radius of orbit, speed of electron and total energy of electron 4. respectively in a H-atom. Which of the following quantities according to Bohr theory, is proportional to the quantum number n?
 - (A) vr
- (B) rE (C) $\frac{r}{E}$
- (D) $\frac{\mathbf{r}}{\mathbf{v}}$

হাইড্রোজেন পরমাণুর ক্ষেত্রে r, v, E যথাক্রমে কক্ষপথের ব্যাসার্ধ, ইলেকট্রনের বেগ এবং ইলেকট্রনের মোট শক্তি সূচিত করে । নীচের কোন্ রাশিটি বোরের তত্ত্বানুযায়ী, কোয়ান্টাম সংখ্যা n এর সঙ্গে সমানুপাতিক ?

- (A) vr
- (B) rE
- (C) $\frac{\mathbf{r}}{\mathbf{E}}$
- (D) $\frac{r}{v}$

What is the value of current through the diode in the circuit given?

- (A) 0 mA
- (B) 1 mA
- (C) 19 mA
- (D) 9 mA

চিত্রে প্রদর্শিত বর্তনীতে, ভায়োডের মধ্য দিয়ে প্রবাহমাত্রার মান হবে

- (A) 0 mA
- (B) 1 mA
- 19 mA (C)
- (D) 9 mA

For the given logic circuit, the output Y for inputs (A = 0, B = 1) and (A = 0, B = 0)respectively are

- (A) 0, 0
- (B) 0, 1
- (C) 1, 0
- (D) 1, 1

চিত্রে প্রদর্শিত লক্ষিক বর্তনীতে ইনপুট $(A=0,\,B=1)$ ও $(A=0,\,B=0)$ এর ক্ষেত্রে আউটপুট Y হল যথাক্র-মে

5

- (A) 0, 0
- **(B)** 0, 1
- (C) 1, 0
- (D) 1, 1

7.	From dimensional analysis, the Rydberg constant can be expressed in terms of electric
	charge (e), mass (m) and Planck constant (h) as [consider $\frac{1}{4\pi \in 0} \equiv 1$ unit]

(A) $\frac{h^2}{me^2}$

(B) $\frac{\text{me}^4}{\text{h}^2}$

(C) $\frac{m^2e^4}{h^2}$

মাত্রার নীতি অনুযায়ী, রিডবার্গ ধ্রুবককে ইলেকট্রনের আধান (e), ভর (m) ও প্লাঙ্কের ধ্রুবকের (h) সমনুয়ে প্রকাশ করলে তার রাশিমালা হবে ($\frac{1}{4\pi \in 0} \equiv 1$ একক ধরে নাও)

(A) $\frac{h^2}{me^2}$

(B) $\frac{me^4}{h^2}$ (C) $\frac{m^2e^4}{h^2}$

(D) $\frac{\text{me}^2}{\text{h}}$

3m 8.

Three blocks are pushed with a force F across a frictionless table as shown in figure. Let N_1 be the contact force between the left two blocks and N_2 be the contact force between the right two blocks. Then

(A) $F > N_1 > N_2$

(B) $F > N_2 > N_1$ (C) $F > N_1 = N_2$ (D) $F = N_1 = N_2$

ঘর্ষণহীন একটি টেবিলের উপর রাখা চিত্রে দেখানো তিনটি ব্লকের উপর F বল প্রয়োগ করা হল। যদি বামদিকের ব্লকদৃটির মধ্যে স্পর্শজনিত বল $m N_1$ ও ডানদিকের দুটি ব্লকের মধ্যে স্পর্শজনিত বল $m N_2$ হয় ত্ব

(A) $F > N_1 > N_2$ (B) $F > N_2 > N_1$ (C) $F > N_1 = N_2$ (D) $F = N_1 = N_2$

9.

A block of mass m slides with speed v on a frictionless table towards another stationary block of mass m. A massless spring with spring constant k is attached to the second block as shown in figure. The maximum distance the spring gets compressed through is

(A) $\sqrt{\frac{m}{1}}v$

(B) $\sqrt{\frac{m}{2k}}v$ (C) $\sqrt{\frac{k}{m}}v$ (D) $\sqrt{\frac{k}{2m}}v$

একটি মসৃণ টেবিলের উপর ${f m}$ ভরের একটি ব্লক ${f v}$ বেগে অপর একটি ${f m}$ ভরের স্থির ব্লকের দিকে ধাবমান। স্থির ব্লকটির সাথে ${f k}$ স্প্রিং ধ্রুবক বিশিষ্ট একটি স্প্রিং আটকানো আছে (চিত্রে প্রদর্শিত)। স্প্রিংটির সঙ্কোচনের স্বোচর্চ পরিমাণ হবে

(A) $\sqrt{\frac{m}{1}}v$

(B) $\sqrt{\frac{m}{2k}}v$ (C) $\sqrt{\frac{k}{m}}v$

10.

The acceleration vs distance graph for a particle moving with initial velocity 5 m/s is shown in the figure. The velocity of the particle at x = 35 m will be

(A) 20.62 m/s

(B) 20 m/s

(C) 25 m/s

(D) 50 m/s

চিত্রে একটি গতিশীল কণার ত্বরণ-সরন লেখচিত্র দেখানো হয়েছে। কণাটির প্রাথমিক বেগ $5~{
m m/s}$ । যখন $x=35~{
m m}$, তখন কণাটির গতিবেগ হবে

(A) 20.62 m/s

(B) 20 m/s

(C) 25 m/s

(D) 50 m/s

11. A simple pendulum, consisting of a small ball of mass m attached to a massless string hanging vertically from the ceiling, is oscillating with an amplitude such that $T_{\text{max}} = 2T_{\text{min}}$ where T_{max} and T_{min} are the maximum and minimum tension in the string respectively. The value of maximum tension T_{max} in the string is

(A) $\frac{3mg}{2}$

(B) mg

(C) $\frac{3 \text{ mg}}{4}$

(D) 3 mg

m ভরের একটি ক্ষুদ্র গোলকের সরল দোলক একটি ভরহীন সুতোর সাহায্যে সিলিং থেকে ঝোলানো আছে। দোলকটির দোলনকালে $T_{max}=2T_{min}$ হয়, যেখানে T_{max} ও T_{min} হল যথাক্রমে সুতোটির সর্বোচ্চ ও সর্বনিমু টান। সেক্ষেত্রে সর্বোচ্চ টান T_{max} -এর মান হবে

(A) $\frac{3 \text{mg}}{2}$

(B) mg

(C) $\frac{3\text{mg}}{4}$

(D) 3 mg

12. In case of projectile motion, which one of the following figures represent variation of horizontal component of velocity (u_x) with time t? (assume that air resistance is negligible)

প্রাসের ক্ষেত্রে, গতিবেগের অনুভূমিক উপাংশ (u_x) সময়ের (t) সাথে যেভাবে পরিবর্তিত হয় তা নিচের কোন্ চিত্রের অনুরূপ ?

13.	A uniform thin rod of length L, mass m is lying on a smooth horizontal table.	A
10.	horizontal impulse P is suddenly applied perpendicular to the rod at one end. The total	tal
	energy of the rod after the impulse is	
	(A) $\frac{P^2}{M}$ (B) $\frac{7P^2}{8M}$ (C) $\frac{13P^2}{2M}$ (D) $\frac{2P^2}{M}$	
	M 61vi 21vi 1vi	<u>a</u>
	একটি m ভর ও L দৈর্ঘ্যের সুষম দশু একটি মসৃণ সমতল টেবিলের উপর রাখা আছে। দশুটির এক	
	প্রান্তে উহার লম্ব বরাবর অনুভূমিক তলে অকস্মাৎ P ঘাতবল প্রয়োগ করা হল। ঘাতবল প্রয়োগের প	র
	দশুটির মোট শক্তি হবে	
	(A) $\frac{P^2}{M}$ (B) $\frac{7P^2}{8M}$ (C) $\frac{13P^2}{2M}$ (D) $\frac{2P^2}{M}$	
14.	Centre of mass (C.M.) of three particles of masses 1 kg, 2 kg and 3 kg lies at the point (1, 2, 3) and C.M. of another system of particles of 3 kg and 2 kg lies at the point	ţ
	(-1, 3, -2). Where should we put a particle of mass 5 kg so that the C.M. of entire system lies at the C.M. of the first system?	
	(A) (3, 1, 8) (B) (0, 0, 0) (C) (1, 3, 2) (D) (-1, 2, 3)	
	$1~{ m kg}, 2~{ m kg}$ ও $3~{ m kg}$ ভরের একটি কণাসংস্থার ভরকেন্দ্র $(1,2,3)$ বিন্দুতে আছে $1~3~{ m kg}$ ও $2~{ m kg}$ ভরের অপর একটি কণাসংস্থার ভরকেন্দ্র $(-1,3,-2)$ বিন্দুতে অবস্থিত $1~5~{ m kg}$ ভরের অন্য একটি বস্তুকে কোথায়	
	স্থাপন করলে সমগ্র সংস্থার ভরকেন্দ্র ও প্রথম কণাসংস্থার ভরকেন্দ্র একই হবে ?	
	(A) $(3, 1, 8)$ (B) $(0, 0, 0)$ (C) $(1, 3, 2)$ (D) $(-1, 2, 3)$	

A body of density 1.2×10^3 kg/m³ is dropped from rest from a height 1 m into a liquid of density 2.4×10^3 kg/m³. Neglecting all dissipative effects, the maximum depth to which the body sinks before returning to float on the surface is

(A) 0.1 m

(B) 1 m

(C) 0.01 m

(D) 2 m

 $1.2 \times 10^3 \ {
m kg/m^3}$ ঘনত্বের একটি বকুকে স্থিরাবস্থায় $1 \ {
m m}$ উচ্চতা থেকে $2.4 \times 10^3 \ {
m kg/m^3}$ ঘনত্বের একটি তরলের মধ্যে ফেলা হল। সমস্ত ঘর্ষণজনিত বাধা উপেক্ষা করলে, তরলের পৃষ্ঠতলে পুনরায় ভেসে উঠবার আগে বকুটি যে সর্বোচ্চ গভীরতা পর্যন্ত গমন করে তার মান

(A) 0.1 m

(B) 1 m

(C) 0.01 m

(D) 2 m

Two solid spheres S₁ and S₂ of same uniform density fall from rest under gravity in a viscous medium and after some time, reach terminal velocities v₁ and v₂ respectively. If ratio of masses $\frac{m_1}{m_2} = 8$, then $\frac{v_1}{v_2}$ will be equal to

(A) 2

- (B) 4
- (C) $\frac{1}{2}$

সমান ঘনত্বের দুটি ধাতব গোলক S_1 ও S_2 একটি সান্দ্র মাধ্যমের মধ্যে স্থিরাবস্থা থেকে অভিকর্ষজ বলের প্রভাবে পতনশীল। কিছুক্ষণ পর তাদের প্রান্তীয় বেগের মান হয় ${f v}_1$ ও ${f v}_2$ । তাদের ভরের অনুপাত ${m_1\over m_2}=8$

হলে $\frac{V_1}{V_2}$ -এর মান হবে

- (A) 2
- (B)

17.

In the given figure, 1 represents isobaric, 2 represents isothermal and 3 represents adiabatic processes of an ideal gas. If ΔU_1 , ΔU_2 , ΔU_3 be the changes in internal energy in these processes respectively, then

(A) $\Delta U_1 < \Delta U_2 < \Delta U_3$

(B) $\Delta U_1 > \Delta U_3 < \Delta U_2$

(C) $\Delta U_1 = \Delta U_2 > \Delta U_3$

(D) $\Delta U_1 > \Delta U_2 > \Delta U_3$

প্রদত্ত চিত্রে আদর্শ গ্যাসের সমচাপ (1), সমোষ্ণ (2) ও রুদ্ধতাপ (3) প্রক্রিয়াগুলি দেখানো হয়েছে। যদি এই প্রক্রিয়াগুলিতে আন্তরশক্তির পরিবর্তন যথাক্রমে ΔU_1 , ΔU_2 ও ΔU_3 হয়, তবে

(A) $\Delta U_1 < \Delta U_2 < \Delta U_3$

(B) $\Delta U_1 > \Delta U_3 < \Delta U_2$

(C) $\Delta U_1 = \Delta U_2 > \Delta U_3$

- (D) $\Delta U_1 > \Delta U_2 > \Delta U_3$
- If pressure of real gas O_2 in a container is given by $P = \frac{RT}{2V b} \frac{a}{4b^2}$, then the mass of 18.

the gas in the container is

- (A) 32 gm
- (B) 16 gm
- (C) 4 gm

একটি পাত্রে রাখা কিছু পরিমান বাস্তব গ্যাস O_2 -এর চাপ $P=\frac{RT}{2V-h}-\frac{a}{4h^2}$, সমীকরণটি মেনে চলে।

সেক্ষেত্রে পাত্রে রাখা গ্যাসের ভর হল

- (A) 32 gm
- (B) 16 gm (C) 4 gm

- 19. 300 gm of water at 25 °C is added to 100 gm of ice at 0 °C. The final temperature of the mixture is
 - (A) 12.5 °C
- (B) 0 °C
- (C) 25 °C
- (D) 50 °C

0 °C উষ্ণতায় 100 gm বরফকে 25 °C উষ্ণতায় 300 gm জলে ফেলা হ'ল। মিশ্রণের অন্তিম উষ্ণতা হবে

- (A) 12.5 °C
- (B) 0 °C
- (C) 25 °C
- (D) 50 °C

20.

The variation of electric field along the Z-axis due to a uniformly charged circular ring of radius 'a' in XY plane is shown in the figure. The value of coordinate M will be

- (A) $\frac{1}{2}$
- (B) $\sqrt{2}$
- (C) 1

সূষমভাবে আহিত একটি 'a' ব্যাসার্ধের বৃত্তাকার রিং XY সমতলে আছে। রিং-এর অক্ষের উপর কেন্দ্র থেকে Z দূরত্বে তড়িৎপ্রাবল্যের পরিবর্তন চিত্রে দেখানো হয়েছে। M বিন্দুর স্থানাঙ্ক হল

- (A) $\frac{1}{2}$
- (B) $\sqrt{2}$
- (D) $\frac{1}{\sqrt{2}}$
- A metal sphere of radius R carrying charge q is surrounded by a thick concentric metal 21. shell of inner and outer radii a and b respectively. The net charge on the shell is zero. The potential at the centre of the sphere, when the outer surface of the shell is grounded will be

 - (A) $\frac{q}{4\pi \epsilon_0} \left(\frac{1}{a} \frac{1}{b} \right)$ (B) $\frac{q}{4\pi \epsilon_0} \frac{1}{a}$ (C) $\frac{q}{4\pi \epsilon_0} \left(\frac{1}{R} \frac{1}{a} \right)$ (D) $\frac{q}{4\pi \epsilon_0} \frac{1}{R}$

একটি q আধান সম্পন্ন R ব্যাসার্ধের ধাতব গোলক অপর একটি সমকেন্দ্রিক নিস্তড়িৎ ধাতব খোলক দ্বারা পরিবৃত আছে। খোলকের ভিত্রের পৃষ্ঠের ব্যাসার্ধ a ও বাইরের পৃষ্ঠের ব্যাসার্ধ b. খোলকটির মোট আধান শূণ্য। খোলকের বাইরের পৃষ্ঠ ভূ-সংলগ্ন করা হলে গোলকের কেন্দ্রে তড়িৎ-বিভবের মান হবে

- (A) $\frac{q}{4\pi \epsilon_0} \left(\frac{1}{a} \frac{1}{b}\right)$ (B) $\frac{q}{4\pi \epsilon_0} \frac{1}{a}$ (C) $\frac{q}{4\pi \epsilon_0} \left(\frac{1}{R} \frac{1}{a}\right)$ (D) $\frac{q}{4\pi \epsilon_0} \frac{1}{R}$

- Three infinite plane sheets carrying uniform charge densities -\sigma, 2\sigma, 4\sigma are placed 22. parallel to XZ plane at Y = a, 3a, 4a respectively. The electric field at the point (0, 2a, 0) is
- (B) $-\frac{7\sigma}{2\varepsilon_0}\hat{j}$ (C) $\frac{\sigma}{2\varepsilon_0}\hat{j}$ (D) $\frac{3\sigma}{-2\varepsilon_0}\hat{j}$

তিনটি অসীম বিস্কৃতির সমতল পাতের তলমাত্রিক ঘনত্ব $-\sigma$, 2σ ও 4σ এবং তিনটি পাত XZ সমতলে সমান্তরাল ভাবে যথাক্রমে $Y=a,\ 3a$ ও 4a তে অবস্থিত। পাতগুলির জন্য $(0,\ 2a,\ 0)$ বিন্দুতে তড়িৎপ্রাবল্য হবে

- (A) $\frac{5\sigma}{2\varepsilon_0}\hat{j}$

- (B) $-\frac{7\sigma}{2\epsilon_0}\hat{j}$ (C) $\frac{\sigma}{2\epsilon_0}\hat{j}$ (D) $\frac{5\sigma}{-2\epsilon_0}\hat{j}$.
- Two point charges $+q_1$ and $+q_2$ are placed a finite distance 'd' apart. It is desired to put a 23. third charge q3 in between these two charges so that q3 is in equilibrium. This is
 - (A) possible only if q_3 is negative.
- (B) possible only if q_3 is positive.
- (C) possible irrespective of the sign of q_3 . (D) not possible at all.

দৃটি বিন্দু আধান $+q_1$ ও $+q_2$ পরস্পর থেকে d দূরত্বে অবস্থিত। একটি তৃতীয় আধান q_3 অপর দৃটি বিন্দু **আধানের অন্তর্বতী স্থানে রাখলে q3 সাম্যবস্থায় থাকে। এটি সম্ভব**

(A) যদি q₃ ঋণাত্মক হয়।

- (D) সাম্যবস্থা সম্ভবপর নয়।

24.

Consider two infinitely long wires parallel to Z-axis carrying same current I in the positive Z direction. One wire passes through the point L at coordinates (-1, +1) and the other wire passes through the point M at coordinates (-1, -1). The resultant magnetic field at the origin O will be

- (A) $\frac{\mu_0 l}{2\sqrt{2}\pi}\hat{j}$
- (B) $\frac{\mu_0 I}{2\pi} \hat{j}$ (C) $\frac{\mu_0 I}{2\sqrt{2}\pi} \hat{i}$ (D) $\frac{\mu_0 I}{4\pi} \hat{i}$

Z অক্ষের সমান্তরাল দৃটি অসীম দৈর্ঘ্যের ঋজু তারের মধ্য দিয়ে ধনাত্মক Z অক্ষ্ বরাবর I প্রবাহমাত্রা যায়। একটি তার (-1,+1) স্থানাঙ্কে L বিন্দুর মধ্য দিয়ে ও অপর তারটি (-1,-1) স্থানাঙ্কে M বিন্দুর মধ্য দিয়ে গমন করে। মূলবিন্দু O তে এই দুই তারের জন্য লব্ধ চৌম্বক প্রাবল্যের মান হবে

- (A) $\frac{\mu_0 \mathbf{1}}{2\sqrt{2\pi}}\hat{\mathbf{j}}$
- (B) $\frac{\mu_0 I}{2\pi} \hat{j}$ (C) $\frac{\mu_0 I}{2\sqrt{2}\pi} \hat{i}$ (D) $\frac{\mu_0 I}{4\pi} \hat{i}$

25. A thin charged rod is bent into the shape of a small circle of radius R the charge per unit length of the rod being λ . The circle is rotated about its axis with a time period T and it is found that the magnetic field at a distance 'd' away (d>>R) from the center and on the

axis, varies as $\frac{R^m}{d^n}$ The values of m and n respectively are

- (B) m = 2, n = 3 (C) m = 3, n = 2 (D) m = 3, n = 3

একটি আহিত সরু দন্ডকে R ব্যাসার্ধের একটি ক্ষুদ্র বৃত্তে পরিণত করা হল এবং প্রতি একক দৈর্ঘ্যে দন্তের আধানের পরিমাণ λ । বৃত্তটিকে তার অক্ষ বরাবর T পর্যায়কাল নিয়ে ঘোরানো হলে দেখা যায়, কেন্দ্র থেকে

অক্ষ বরাবর দূরত্ব d-তে (d>>R) চৌম্বকপ্রাবল্য হয় $rac{R^m}{d^n}$ । সেক্ষেত্রে m এবং n এর মান যথাক্রেমে (A) m = 2, n = 2 (B) m = 2, n = 3 (C) m = 3, n = 2 (D) m = 3, n = 3

26.

For two types of magnetic materials A and B, variation of $\frac{1}{\gamma}(\chi : \text{susceptibility})$ vs. temperature T is shown in the figure. Then

- (A) A is diamagnetic and B is paramagnetic.
- A is feromagnetic and B is diamagnetic. (B)
- A is paramagnetic and B is feromagnetic. (C)
- (D) A is paramagnetic and B is diamagnetic.

দৃটি চৌম্বকীয় পদার্থ A এবং B এর ক্ষেত্রে তাপমাত্রা T এর সাথে $rac{1}{\gamma}$ $(\chi:$ চৌম্বক প্রবণতা)-এর পরিবর্তন

চিত্রে দেখানো হয়েছে। সেক্ষেত্রে

- (A) A তিরশ্চৌম্বক এবং B পরাচৌম্বক
- (B) A অয়ন্টোম্বক এবং B তিরন্টোম্বক
- A পরাচৌম্বক এবং B অয়শ্চৌম্বক
- (D) A পরাচৌম্বক এবং B তিরন্টৌম্বক

27.

The rms value of potential difference v shown in the figure is

- (A) $\frac{\mathbf{v_0}}{2}$
- (C) $\frac{V_0}{\sqrt{3}}$

চিত্রে প্রদর্শিত তড়িচ্চালকবল-সময় লেখচিত্রে তড়িচ্চালক বলের ${
m rms}$ মান হবে

A carbon resistor with colour code is shown in the figure. There is no fourth band in the resistor. The value of the resistance is

- (D) $34 k\Omega + 10\%$ (C) $24 \text{ k}\Omega \pm 20\%$ (B) $14 k\Omega \pm 5\%$ $24 M\Omega \pm 20\%$ একটি কার্বন রোধকের রঙিন বন্ধনীগুলি চিত্রে দেখানো হয়েছে। রোধকে কোন চতুর্থ রঙিন বন্ধনী নেই। রোধকটির রোধ হল
- (A) $24 \text{ M}\Omega \pm 20\%$ (B) $14 \text{ k}\Omega \pm 5\%$
- (C) $24 k\Omega \pm 20\%$
- (D) $34 \text{ k}\Omega \pm 10\%$

29.

Consider a pure inductive A.C. circuit as shown in the figure. If the average power consumed is P, then

- (A) P > 0
- (B) P < 0
- (C) P=0
- (D) P is infinite

কেবল আবেশক সহ চিত্রে প্রদর্শিত A.C. বর্তনীটি বিবেচনা কর। গড় ক্ষমতা P হলে,

- (A) P > 0
- (B) P < 0
- (C) P=0
- (D) P-এর মান অসীম

30.

The cross-section of a reflecting surface is represented by the equation $x^2 + y^2 = R^2$ as shown in the figure. A ray travelling in the positive x direction is directed toward positive y direction after reflection from the surface at point M. The coordinate of the point M on the reflecting surface is

(A)
$$\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$

(B)
$$\left(-\frac{R}{2}, -\frac{R}{2}\right)$$

(A)
$$\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$
 (B) $\left(-\frac{R}{2}, -\frac{R}{2}\right)$ (C) $\left(-\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$ (D) $\left(\frac{R}{\sqrt{2}}, -\frac{R}{\sqrt{2}}\right)$

(D)
$$\left(\frac{R}{\sqrt{2}}, -\frac{R}{\sqrt{2}}\right)$$

একটি প্রতিফলক তলের প্রস্থাছেদের সমীকরণ হল $x^2+y^2=\mathbb{R}^2$ । ধনাত্মক x-অক্ষ বরাবর একটি আলোকরশ্মি প্রতিফলক তলের M বিন্দুতে আপতিত হয়ে ধনাত্মক y অক্ষ বরাবর প্রতিফলিত হয়। তাহলে M বিন্দুর স্থানাঙ্ক হল

(A)
$$\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$

(B)
$$\left(-\frac{R}{2}, -\frac{R}{2}\right)$$

(C)
$$\left(-\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$

(A)
$$\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$
 (B) $\left(-\frac{R}{2}, -\frac{R}{2}\right)$ (C) $\left(-\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$ (D) $\left(\frac{R}{\sqrt{2}}, -\frac{R}{\sqrt{2}}\right)$

Category-II (Q 31 to 35)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted. **একটি উত্তর সঠিক**। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর

দিলে 1/2 নম্বর কাটা যাবে।

31. For a plane electromagnetic wave, the electric field is given by $\vec{E} = 90 \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{k} v / m$. The corresponding magnetic field \vec{B} will be একটি সমতল তড়িংচুম্বকীয় তরঙ্গের ক্ষেত্রে, তড়িংক্ষেত্র E এর ব্যঞ্জক হল

 $\vec{E} = 90 \sin(0.5 \times 10^3 \, x + 1.5 \times 10^{11} \, t) \, \hat{k} \, v \, / \, m$. চৌম্বকক্ষেত্র \vec{B} এর ব্যঞ্জকটি হবে

- $\vec{B} = 3 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{i} T$
- $\vec{B} = 3 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{j} T$ **(B)**
- (C) $\vec{B} = 27 \times 10^9 \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{j} T$
- (D) $\vec{B} = 3 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) \hat{k} T$
- 32. Two metal wires of identical dimensions are connected in series. If σ_1 and σ_2 are the electrical conductivities of the metal wires respectively, the effective conductivity of the combination is

(A) $\sigma_1 + \sigma_2$

(B) $\frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$ (C) $\frac{2\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$ (D) $\frac{\sigma_1 + \sigma_2}{2\sigma_1 \sigma_2}$

এ**কই আকারের দূটি ধা**তব তারকে শ্রেনী সমবায়ে যুক্ত করা হল। যদি দূটি তারের তড়িৎ পরিবাহিতাঙ্ক ত₁এবং σ₂ হয়, তবে এই সমবায়ের তুল্য পরিবাহিতাঙ্ক হবে

(A) $\sigma_1 + \sigma_2$ (B) $\frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$ (C) $\frac{2\sigma_1 \sigma_2}{\sigma_1 + \sigma_2}$ (D) $\frac{\sigma_1 + \sigma_2}{2\sigma_1 \sigma_2}$

A uniform rod of length L pivoted at one end P is freely rotated in a horizontal plane with 33. an angular velocity ω about a vertical axis passing through P. If the temperature of the system is increased by ΔT , angular velocity becomes $\frac{\omega}{2}$. If coefficient of linear expansion of the rod is α (α <<1), then Δ T will be

(A) $\frac{1}{x}$

(B) $\frac{1}{2\alpha}$ (C) $\frac{1}{4\alpha}$

(D) α

একটি প্রান্ত P বিন্দৃতে আটকানো অবস্থায় L দৈর্ঘ্যের একটি সুষম দন্তকে 🛭 কৌণিক বেগে অনুভূমিক তলে P বিন্দুর মধ্য দিয়ে উল্লম্ব অক্ষের সাপেক্ষে ঘোরানো হচেছ। দঙটির তাপমাত্রা ∆T পরিমান বাড়ানো হলে কৌণিক বেগের মান হয় $\frac{\omega}{2}$ । যদি দভের দৈর্ঘ্য প্রসারণ গুনাঙ্ক α $(\alpha <<1)$ হয় তবে ΔT এর মান হল

(A) $\frac{1}{\alpha}$ (B) $\frac{1}{2\alpha}$ (C) $\frac{1}{4\alpha}$

34. An ideal gas of molar mass M is contained in a very tall vertical cylindrical column in the uniform gravitational field. Assuming the gas temperature to be T, the height at which the centre of gravity of the gas is located is (R: universal gas constant)

(A)
$$\frac{RT}{g}$$

(B)
$$\frac{RT}{Mg}$$

(C) MgR

একটি সৃষম অভিকর্ষ ক্ষেত্রে খুব লম্বা, খাড়া চোঙের মধ্যে M আণবিক ভরসম্পন্ন আদর্শ গ্যাস আবদ্ধ আছে। গ্যাসের তাপমাত্রা T ধরে নিলে, সমগ্র গ্যাসের ভারকেন্দ্র যে উচ্চতায় থাকবে তার মান (R: সার্বজনীন গ্যাস ধ্রবক)

$$(A) \quad \frac{RT}{g}$$

(B)
$$\frac{RT}{Mg}$$

(C) MgR

35. Under isothermal conditions, two soap bubbles of radii a and b coalesce to form a single bubble of radius c. If the external pressure is P, then surface tension of the bubbles is

(A)
$$\frac{P(c^3-a^3+b^3)}{4(a^2+b^2-c^2)}$$

(B)
$$\frac{P(c^3-a^3-b^3)}{4(a^2+b^2-c^2)}$$

(C)
$$\frac{P(c^2 + a^2 - b^2)}{4(a^3 + b^3 - c^3)}$$

(D)
$$\frac{P(a^3 + b^3 - c^3)}{4(a^2 + b^2 - c^2)}$$

a এবং b ব্যাসার্ধের দৃটি সাবানের বুদবুদ সমোষ্ণ প্রক্রিয়ায় একান্নিত হয়ে c ব্যাসার্ধের একটি বুদবুদ তৈরি করল। যদি বাহ্যিক চাপ P হয়, তবে বুদবুদের পৃষ্ঠটান হবে

$$(A) \quad \frac{P(c^3-a^3+b^3)}{4(a^2+b^2-c^2)}$$

(B)
$$\frac{P(c^3-a^3-b^3)}{4(a^2+b^2-c^2)}$$

(C)
$$\frac{P(c^2 + a^2 - b^2)}{4(a^3 + b^3 - c^3)}$$

(D)
$$\frac{P(a^3+b^3-c^3)}{4(a^2+b^2-c^2)}$$

PC-2021

Category - III (Q 36 to 40)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score = $2 \times$ number of correct answers marked \div actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong

but there is no negative marking for the same and zero mark will be awarded. এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভূল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে $2 \times যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে ত$ কটি উন্তর সঠিক তার সংখ্যা। যদি কোনো ভূল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভূল থাকে তাহলে উত্তরটি ভূল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।

36.

A small bar magnet of dipole moment M is moving with speed v along x direction towards a small closed circular conducting loop of radius 'a' with its centre O at x = 0(see figure). Assume $x \gg a$ and the coil has a resistance R. Then which of the following statement(s) is/are true?

- Magnetic field at the centre O of the circular coil due to the bar magnet is $\frac{M}{r^3}$
- Induced EMF is proportional to $\frac{1}{4}$ (B)
- The magnetic moment μ due to induced current in the coil is proportional to a^4 (C)
- The heat produced is proportional to $\frac{1}{1.6}$ (D)

 ${f M}$ চৌম্বকভামক সম্পন্ন একটি ক্ষুদ্র দভচুম্বক x অক্ষ বরাবর v বেগে 'a' ব্যাসার্ধের একটি বৃত্তাকার পরিবাহী লুপের দিকে গতিশীল। লুপের কেন্দ্র $O,\,x=0$ বিন্দুতে আছে। ধরে নাও $x\gg a$ এবং লুপের রোধ R। তবে নীচের কোন্ উক্তি/উক্তিগুলি সত্য ?

- (A) দন্ড চুম্বকের জন্য বৃত্তাকার লুপের কেন্দ্রে উৎপন্ন চুম্বকক্ষেত্র হল $\frac{M}{3}$
- আবিষ্ট তড়িচ্চালক বল $\frac{1}{\sqrt{4}}$ -এর সমানুপাতিক।
- (C) লুপের মধ্যে আবিষ্ট তড়িৎপ্রবাহের জন্য উদ্ভূত চৌম্বক ভ্রামক a^4 -এর সমানুপাতিক।
- (D) উৎপন্ন তাপশক্তি $\frac{1}{r^6}$ -এর সমানুপাতিক।

- 37. Electric field component of an EM radiation varies with time as $E = a(\cos\omega_0 t + \sin\omega t \cos\omega_0 t)$, where 'a' is a constant and $\omega = 10^{15} \ sec^{-1}$, $\omega_0 = 5 \times 10^{15} \ sec^{-1}$. This radiation falls on a metal whose stopping potential is -2 ev. Then which of the following Statement (s) is/are true? (h = $6.62 \times 10^{-34} \ J S$)
 - (A) For light of frequency ω, photoelectric effect is not possible
 - (B) Stopping potential vs. frequency graph will be a straight line
 - (C) The work function of the metal is -2 ev.
 - (D) The maximum kinetic energy of the photo electrons is 1.95 ev. একটি তড়িংচুম্বকীয় বিকিরণের তড়িংক্ষেত্র $E=a(\cos\omega_0 t+\sin\omega t\,\cos\omega_0 t)$ রূপে পরিবর্তির্ত হয়। এখানে 'a' একটি ধ্রবক, $\omega=10^{15}\,\sec^{-1}$ ও $\omega_0=5\times 10^{15}\,\sec^{-1}$ । এই বিকিরণ একটি -2 ev নিরোধী বিভব সম্পন্ন ধাতব পাতের উপর আপতিত হয়। তবে নীচের কোন্ উক্তি/উক্তগুলি সত্য ?

$$(h = 6.62 \times 10^{-34} \text{ J} - \text{S})$$

- (A) ω কম্পাঙ্কের বিকিরণের জন্য আলোক তড়িৎ ক্রিয়া সম্ভবপর নয়।
- (B) নিরোধী বিভব ও কম্পাঙ্কের লেখচিত্র একটি সরলরেখা।
- (C) ধাতুর কার্য অপেক্ষক –2 ev।
- (D) উৎপন্ন ইলেকট্রনের সর্বোচ্চ গতিশক্তি 1.95 ev।
- 38. P $2P_0$ P_0 P_0

Consider the P-V diagram for 1 mole of an ideal monatomic gas shown in the figure. Which of the following statements is/are true?

- (A) The change in internal energy for the whole process is zero.
- (B) Heat is rejected during the process
- (C) Change in internal energy for process A $\xrightarrow{*}$ B is $-\frac{3}{2}P_0V_0$
- (D) Work done by the gas during the entire process is $2P_0V_0$ এক মোল একটি আদর্শ এক পরমানুক গ্যাসের P-V লেখচিত্র দেখানো হয়েছে। কোন্ উক্তি-উক্তিভিল সত্য ?
- (A) সমগ্র প্রক্রিয়ায় আন্তরশক্তির পরিবর্তন শূন্য।
- (B) প্ৰক্ৰিয়াটিতে তাপশক্তি বৰ্জিত হয়।
- (C) A o B প্রক্রিয়ায় অন্তরশক্তির পরিবর্তন $-\frac{3}{2} P_0 V_0$
- (D) সমগ্র প্রক্রিয়ায় গ্যাস কর্তৃক কৃতাকার্য $2P_0V_0$

- **39**. The potential energy of a particle of mass 0.02 kg moving along x-axis is given by V = Ax (x - 4)J where x is in metres and A is a constant. Which of the following is/are correct statement(s)?
 - (A) The particle is acted upon by a constant force.
 - (B) The particle executes simple harmonic motion.
 - (C) The speed of the particle is maximum at x = 2 m.
 - The period of oscillation of the particle is $\frac{\pi}{5}$ sec. (D)

x-অক্ষ বরাবর গতিশীল $0.02~{
m kg}$ ভরের একটি কণার স্থিতিশক্তি V=Ax~(x-4)J, যেখানে A একটি ধ্রবক এবং 🗴 মিটার এককে প্রকাশিত। নিচের কোন্ উক্তি/উক্তিগুলি সত্য ?

- (A) কণাটির উপর প্রযুক্ত বলের মান ধ্রবক। (B) কণাটি সরল দোলগতি সম্পন্ন করে।
- (C) $x=2~\mathrm{m}$ বিন্দুতে কণাটির বেগ সর্বাধিক। (D) কণাটির দোলগতির দোলনকাল $\frac{\pi}{5} \sec$

A particle of mass m and charge q moving with velocity v enters region-b from region-a along the normal to the boundary as shown is the figure. Region-b has a uniform magnetic field B perpendicular to the plane of the paper. Also, region-b has length L. Choose the correct statements:

- The particle enters region-c only if $v > \frac{qLB}{m}$ (A)
- The particle enters region-c only if $v < \frac{qLB}{}$ (B)
- Path of the particle is a circle in region-b (C)
- Time spent in region-b is independent of velocity v (D)

প্রদর্শিত চিত্রের মতো, m ভর ও q আধানের একটি কণা v বেগে a-অঞ্চল থেকে বিভেদ তলের লম্ব বরাবর b-অঞ্চলে প্রবেশ করে। b-অঞ্চলটির মধ্যে পৃষ্ঠার তলের সাথে লম্বভাবে একটি সুষম চৌম্বকক্ষেত্র B আছে। যদি b-অঞ্চলের দৈর্ঘ্য L হয় তবে নীচের কোন্ উক্তি/উক্তগুলি সত্য ?

- কণাটি c-অঞ্চলে প্রবেশ করবে যদি $v>rac{qLB}{m}$ হয়
- কণাটি c-অঞ্চলে প্রবেশ করবে যদি $v < \frac{qLB}{m}$ হয় (B)
- (C) b-অঞ্চলে কণাটির সঞ্চারপথ বৃত্তাকার।
- (D) b-অঞ্চলে কণাটির দ্বারা ব্যয়িত সময় গতিবেগ v-এর উপর নির্ভর করে না।

CHEMISTRY

Category-I (Q 41 to 70)

Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।

	দিলে ¼ নম্বর কাটা যাবে।
41.	The exact order of boiling points of the compounds \underline{n} -pentane, isopentane, butanone and 1-butanol is
	(A) <u>n</u> -pentane < isopentane < butanone < 1-butanol
	(B) isopentane < <u>n</u> -pentane < butanone < 1-butanol
	(C) butanone < <u>n</u> -pentane < isopentane < 1-butanol
	(D) 1-butanol < butanone < n-pentane < isopentane
	n-পেন্টেন, আইসোপেন্টেন , বিউটানোন ও 1-বিউটানল যৌগগুলির স্ফুটনাঙ্কের সঠিক ক্রমটি হলো
	(A) <u>n</u> -পেন্টেন < আইসোপেন্টে ন < বিউটানোন < 1-বিউটানল
	(B) আইসোপেন্টেন < <u>n</u> -পেন্টেন < বিউটানোন < 1-বিউটানল
	(C) বিউটানোন < <u>n</u> -পেন্টেন < আইসোপেন্টেন < 1-বিউটানল
	(D) 1-ৰিউটানল < বিউটানোন < <u>n</u> -পেন্টেন < আইসোপেন্টেন
42.	The maximum number of atoms that can be in one plane in the molecule
	p-nitrobenzonitrile are (A) 6 (B) 12 (C) 13 (D) 15
	(A) 6 (B) 12 (C) 13 (D) 15 pু-নাইট্রোবেশ্বোনাইট্রাইল অনুটির একটি তলে থাকতে পারে এরূপ সর্বাধিক পরমানুর সংখ্যা হলো
	(A) 6 (B) 12 (C) 13 (D) 15
43.	Cyclo [18]carbon is an allotrope of carbon with molecular formula C ₁₈ . It is a ring of 18
	carbon atoms, connected by single and triple bonds. The total number of triple bonds
	present in this cyclocarbon are
	(A) 9 (B) 10 (C) 12 (D) 6
	C_{18} আনবিক সংকেত বিশিষ্ট সাইক্লো $[18]$ কার্বন হলো কার্বনের একটি রূপভেদ। 18 টি কার্বন এই
	শৃঙ্খলটিতে একবন্ধন ও ত্রিবন্ধন দ্বারা যুক্ত। এই কার্বন শৃঙ্খলে মোট ত্রিবন্ধনের সংখ্যা হলো
	(A) 9 (B) 10 (C) 12 (D) 6
	െ വിവാനം
44.	p-nitro – N, N – dimethylaniline cannot be represented by the resonating structures
	p-নাইট্রো – N, N -ভাইমিথাইলুঅ্যানিলিন যেসব সংস্পন্দন গঠন দ্বারা প্রকাশ করা যায় না সেগুলি হল
	Me_2N Ne_2N Ne_2N
	$(I) \qquad \qquad (II)$
	θ 🖷 🗸 🗸
	$Me_2N = $
	14.0
	(III) (IV)
	(A) I and II (B) II and IV (C) I and III (D) III and IV

45. 1. H
$$CO_2H$$
 CH_3 CO_2H CH_3 $COOH$ OOH O

The relationship between the pair of compounds shown above are respectively

- (A) Homomer (identical), enantiomer and constitutional isomer
- (B) Enantiomer, enantiomer and diastereomer
- (C) Homomer (identical), homomer (identical) and constitutional isomer
- (D) Enantiomer, homomer (identical) and geometrical isomer উপরে প্রদর্শিত যৌগ জোড়া গুলির মধ্যে পারস্পরিক সম্পর্ক হল যথাক্রমে
- (A) হোমোমার (সমরূপ), প্রতিবিম্ব সমাবয়ব এবং গঠন সমাবয়ব
- (B) প্রতিবিম্ব সমাবয়ব, প্রতিবিম্ব সমাবয়ব, ডাইস্টেরিয়োমার
- (C) হোমোমার (সমরূপ), হোমোমার (সমরূপ), গঠন সমাবয়ব
- (D) প্রতিবিম্ব সমাবয়ব, হোমোমার (সমরূপ) এবং জ্যামিতিক সমাবয়ব
- 46. The exact order of acidity of the compounds <u>p</u>-nitrophenol, acetic acid, acetylene and ethanol is
 - (A) p-nitrophenol < acetic acid < acetylene < ethanol
 - (B) acetic acid < p-nitrophenol < acetylene < ethanol
 - (C) acetylene < p-nitrophenol < ethanol < acetic acid
 - (D) acetylene < ethanol < p-nitrophenol < acetic acid

p-নাইট্রোফেনল, অ্যাসেটিক অ্যাসিড, অ্যাসেটিলিন ও ইথানল যৌগগুলির মধ্যে অম্লতার যথার্থ ক্রম হল

- (A) pু-নাইট্রোফেনল < অ্যাসেটিক অ্যাসিড < অ্যাসেটিলিন < ইথানল
- (B) স্যাসেটিক স্থ্যাসিড < pু-নাইট্রোফেনল < স্থ্যাসেটিলিন < ইথানল
- (C) অ্যাসেটিলিন < pু-নাইট্রোফেনল < ইথানল < অ্যাসেটিক অ্যাসিড
- (D) আসেটিলিন < ইথানল < p্-নাইট্রোফেনল < অ্যাসেটিক অ্যাসিড

47.
$$NH_2$$
 H CO_2H 2. Me NH_2 H CO_2I NH_2 $NH_$

The dipeptides which may be obtained from the amino acids glycine and alanine are

- (A) only 1
- (B) only 2
- (C) both 1 and 2
- (D) all of them

অ্যামিনো অ্যাসিড গ্লাইসিন ও অ্যালানিন থেকে যে ডাইপেপ্টাইডগুলি উৎপন্ন হতে পারে সেগুলি হলো

- (A) কেবলমাত্র 1
- (B) কেবলমাত্র 2
- (C) উভয় 1 এবং 2
- (D) সবগুলি

48. Benzaldehyde + methanol
$$\xrightarrow{\text{dry}} A \xrightarrow{\text{1. dil HC}l} B$$

$$CH_3COONa$$

বেস্কালিডিহাইড
$$+$$
 মিথানল \longrightarrow A $\xrightarrow{\text{CPs}}$ A $\xrightarrow{\text{CH}_3\text{CO}_2\text{O}}$ B $\xrightarrow{\text{CH}_3\text{COONa}}$

The compounds A and B above are respectively উপরের A এবং B যৌগদ্বয় যথাক্রেমে

(A)
$$\stackrel{\text{Ph}}{\smile} \stackrel{\text{OMe}}{\smile}$$
 and $\stackrel{\text{Ph}}{\smile} \stackrel{\text{CO}_2H}{\smile}$

C

49.	For	a spo	ontaneo	us rea	ction	at all temps			ch of the following			
	(A)	Bo	oth ∆H a	nd ΔS	S are r	ositive	rature	S Whice	ch of the following	ig is co	rrect?	
	(C)	ΔΙ	l is nega	ative a	and Δ S	s is positive		(B) (D)	•		-	
	সব	তাপম	আিয় এক	টি স্বত	ঃস্ফর্ড	विक्रिशात कर	ग बिस्स	electo	Both ΔH and Δ বি মধ্যে কোনটি সঠি	as are i	legative	
	(A)	ΔΙ	I & AS t	<u> উভয়ই</u>	ধনাত	T 114 31 X 30	ווייין נו	(B)				
	(C)		I ঋণাত্ত্ব		-			` /	ΔΗ ৭៕ ৭ 4 ও Δ ΔΗ ও ΔS উভয়			
50.	A g						x mol	` .	nO_4^- in acidic me			
									int of Fe ²⁺ in acid			
	(A)	x	_ ,	•		0.83 x	5		2.0x		1.2 x	
	অ্যানি	সৈড ম	াধ্যমে, নি	मिष्ठ १	` /			, ,	রা জারিত হয়। আ	` ′		
						সংখ্যক Cr ₂ (
	(A)					0.83 x	<i>-</i>		2.0x	(D)	1.2 x	
51.			ant amid	alliaa	` ′		ad cub		ice. The edge ler	. ,		
J1.	200	nm a	and the	densi	tv of 1	he element	is 5.0	g cm	n^{-3} . Calculate the	numb	er of atoms in	
			this elen		, 01							
			$\times 10^{23}$						5.0×10^{23}		5.0×10^{24}	
	এক	ট মৌ	न (५२(४	<u> শ্বি</u> ক	ঘনকাৰ	হার কেলাস ^প	গঠন ক	রে। উ	^ট ক্ত কেলাসের এক	ক কো	ষর কিনারা দৈর্ঘ্য	
	200	pm 4	এবং মৌরে	লর ঘন	ত্ব হল	5.0 g cm ⁻³	100 8	ु वे त	মীলে পরমাণু সংখ্যা	নির্ণয় ক	র।	
	(A)	2.5	$\times 10^{23}$		(B)	2.5×10^{24}		(C)	5.0×10^{23}	(D)	5.0×10^{24}	
52.				ties o	f two	gases at the	e same	e tem	perature (T) are	u ₁ and	u ₂ . Their mas	se
	are 1	m ₁ an	d m ₂ res	pectiv	vely. V	Which of the	e follo	wing	expressions is co	orrect a	t temperature T	
	(A)	$\frac{m_1}{u_1^2}$	$=\frac{m_2}{u_2^2}$					(B)	$\mathbf{m}_1 \mathbf{u}_1 = \mathbf{m}_2 \mathbf{u}_2$	v.		
			$=\frac{m_2}{u_2}$	si ,					$m_1 u_1^2 = m_2 u_2^2$			
	একই	তাপ	মাত্রায় (T), দৃটি	ग्राटि	র অণুর গতি	বেগ u	<u>এবং</u>	\mathbf{u}_2 এবং উহাদের	অণুর ভ	র যথাক্রমে m ₁	
	এবং 1	m ₂ र (ল T তাপ	মাত্রায়	নিমুলি	খিতগুলির মা	ধ্যে কো	নটি সা	ठिक ?			
	(A)	$\frac{m_1}{u_1^2}$	$=\frac{m_2}{u_2^2}$						$\mathbf{m}_1 \mathbf{u}_1 = \mathbf{m}_2 \mathbf{u}_2$			
	(C)	$\frac{m_1}{u_1}$	$=\frac{\mathbf{m_2}}{\mathbf{u_2}}$					(D)	$m_1 u_1^2 = m_2 u_2^2$	Spengar II, Land Sign of February	na Mangola, soviera, Michigina, the Minia Haragola, 111 ¹⁸	40.741

C	And the state of t	23	denn de seur dest de seur seur de courdens de sour-seur de sour-destail. Man-destail destains de	P.T.O.						
Management Sancar	(C) 0.1 M KNO ₃	(D)	0.1 M HC <i>l</i>	MANAGER AND MAIN RECORDED MENOGONI, MANAGER & HERPERING MENOGONIA, MANAGER &						
	(A) 0.1 M CH ₃ COOH	(B)	0.1 M NaC <i>l</i>							
	নিমুলিখিত দ্রবণগুলির মধ্যে কোনটির আপেক্ষিক পরিবাহিতা সর্বাধিক ?									
	(C) 0.1 M KNO ₃	(D)	0.1 M HCl							
	(A) 0.1 M CH ₃ COOH	(B)	0.1 M NaC <i>l</i>							
56.	Which one of the following solu	tions will have high		?						
	(C) 1.0 mol dm^{-3}	(D)	$2.0 \text{ mol}^{-1} \text{ dm}^3$							
	(A) $0.5 \text{ mol}^{-1} \text{ dm}^3$	(B)	0.5 mol dm ⁻³							
	(k ₀) বিক্রিয়া দৃটির হার ধ্রবকের অনুপ	ত $\left(rac{\mathbf{k}_1}{\mathbf{k}_0} ight)$ হল								
	বিক্রিয়ায় 40 s এবং শূণ্য-ক্রম বিক্রিয়	য়ি 20 s সময় লাগে। ১	প্ৰম-ক্ৰম (k ₁) এব	ং শূণ্য-ক্ৰম						
	একই শর্ত সাপেক্ষে, একটি পদার্থের প্রারম্ভিক গাঢ়ত্ব 1.386 mol dm ⁻³ অর্দ্ধেকে পরিণত হতে প্রথমক্রম									
	(C) 1.0 mol dm^{-3}		2.0 mol ⁻¹ dm ³							
	(A) $0.5 \text{ mol}^{-1} \text{ dm}^3$	(B)	0.5 mol dm ⁻³	i kalendari ingka						
	the reactions is									
	respectively. Ratio $\left(\frac{k_1}{k_0}\right)$ of the rate constants for first-order (k_1) and zero-order (k_0) of									
55.	Under the same reaction cond substance becomes half in 40	s and 20 s through	gh first-order an	d zero-order kinetics						
	(A) 4×10^{-4} (B) 4×10^{-4}	(C)	4×10^{-5}	(D) 2.5×10^{-4}						
	অনুঘটকের উপস্থিতিতে বিক্রিয়াটি 10 অনুঘটকের উপস্থিতিতে সাম্য ধ্রবকের	0 গুণ দ্ৰুত গতিতে ২ মান হবে	নাম্যে উপনীত হই।	ভ্রনজেন্ন নান 4×10 । লে, 2000 K তাপমাত্রায়						
	N_2 (g) + O_2 (g) \rightleftharpoons 2NO(g), 2	(-)								
	In presence of a catalyst the equilibrium constant, in presence (A) 4×10^{-4} (B) 4×10^{-4}	equilibrium is atta e of the catalyst at 2	ined 10 times	faster. Therefore, the (D) 2.5×10^{-4}						
54.	The equilibrium constant for the									
	(A) 0.5 (B) 1.0		2.0	(D) 3.0						
	$20~{ m g}$ ন্যাপথোয়িক অ্যাসিড (${ m C}_{11}{ m H_8C}$ ভ্যান্ট হফ ফ্যাক্টর (${ m i}$) এর মান হল [${ m H}_{ m S}$) ₂), 50 g বেঞ্জিনে দ্রবী ে= 1.72 K ks mal=	ভূত হলে হিমাঙ্কের	অবনমনের মান হয় 2K।						
	(A) 0.5 (B) 1.0	(-)	2.0	(D) 3.0						
	depression of 2K is observed. T	he vant Hoff factor	(i) is $[K_f = 1.72]$	zene, a freezing point K kg mol ⁻¹]						
53.	When 20 g of naphthoic acid (C	C. H.O.) is dissolve	ed in 50 g of hom							

57. Indicate the products (X) and (Y) in the following reactions: নীচের বিক্রিয়াগুলিতে (X) এবং (Y) সূচিত কর:

$$Na_2S + nS (n = 1 - 8) \rightarrow (X)$$

$$Na_2SO_3 + S \rightarrow (Y)$$

- **(Y)** (A) $Na_2S_2O_3$ Na_2S_2
- (B) $Na_2S_{(n+1)}$ $Na_2S_2O_3$
- Na_2S_n (C) Na₂S₂O₃
- (D) Na₂S₅ Na₂S₂O₄

2.5 ml 0.4 (M) weak monoacidic base ($k_b = 1 \times 10^{-12}$ at 25 °C) is titrated with $\frac{2}{15}$ (M) HC1 in water at 25 °C. The concentration of H⁺ at equivalence point is $(K_w = 1 \times 10^{-14}, at$ 25 °C)

(A) 3.7×10^{-13} (M)

(B) 3.2×10^{-7} (M)

(C) 3.2×10^{-2} (M)

(D) 2.7×10^{-2} (M)

25 °C উষ্ণতায়, জলীয় দ্রবণে 2.5 ml. 0.4 (M) একটি মৃদু এক-আম্লিক ক্ষারক ($k_b = 1 \times 10^{-12}$,

25 °C উষ্ণতায়) $\frac{2}{15}$ (M) HCl দ্রবণ দ্বারা টাইট্রেশন করা হল। প্রশমণ বিন্দুতে H⁺ এর গাঢ়ত্ব হল

$$(K_w = 1 \times 10^{-14}, 25$$
 °C উষ্ণতায়)

(A) 3.7×10^{-13} (M)

(B) 3.2×10^{-7} (M)

(C) 3.2×10^{-2} (M)

- (D) 2.7×10^{-2} (M)
- Solubility products (K_{sp}) of the salts of types MX, MX₂ and M₃X at temperature T are **59.** 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} respectively. Solubilities (in mol dm⁻³) of the salts at temperature T are in the order
 - (A) $MX > MX_2 > M_3X$

 $(B) \quad M_3X > MX_2 > MX$

(C) $MX_2 > M_3X > MX$

(D) $MX > M_3X > MX_2$

T তাপমাত্রায় , তিনটি লবণ MX, MX_2 এবং M_3X এর দ্রাব্যতা গুণফলের মানগুলি যথাক্রমে 4.0×10^{-8} , 3.2×10^{-14} এবং 2.7×10^{-15} । T তাপমাত্রায় ঐ তিনটি লবণের দ্রাব্যতার ($mol\ dm^{-3}$) মানের ক্রম নিমুরূপ

(A) $MX > MX_2 > M_3X$

(B) $M_3X > MX_2 > MX$

(C) $MX_2 > M_3X > MX$

(D) $MX > M_3X > MX_2$

The reduction potential of hydroen half-cell will be negative if **60.**

- (A) $p(H_2) = 1$ atm and $[H^+] = 1.0 \text{ M}$
- (B) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M
- (C) $p(H_2) = 2$ atm and $[H^+] = 1.0$ M
- (D) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M

হাইড্রোজেন অর্দ্ধ-কোষের বিজারণ বিভব ঋণাত্মক হবে যদি

- (A) $p(H_2) = 1$ atm and $[H^+] = 1.0 \text{ M}$
- (B) $p(H_2) = 1$ atm and $[H^+] = 2.0$ M
- (C) $p(H_2) = 2$ atm and $[H^+] = 1.0$ M
- (D) $p(H_2) = 2$ atm and $[H^+] = 2.0$ M

(B) O_2 NaNH ₄ CO ₃ NaHC (C) CO_2 NH ₄ HCO ₃ (NH ₄) (D) CO_2 NaHCO ₃ Na ₂ CO	2CO3
(C) CO_2 NH_4HCO_3 (NH_4)	2CO3
Z 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
(R) O NaNH CO NaHC	
(1114)2003	
(X) (Y) (Z) (A) N_2 (NH ₄) ₂ CO ₃ NH ₄ C	!
্যাওয়া খাস, গোচ্চকে ওওও ক্ষাণে তাম ওজন বে) পাকে। সীচনে স্মানিঙলি স্থাকে (V) (V) এ	বং (७) সনাক্ত কর।
পাৰেয়া হায় সেটিকে উত্তপ্ত কৰলে তাৰ ওজন	প্রায় 37% হ্রাস পায় এবং সাদা ক্ষারকধর্মী একটি অবশেষ
জ্ঞান্তালিয়াকাল NaCl দ্বাধা একটি বৰ্ণহীৰ ও	াগন্ধহীন গ্যাস (X) ্চালনা করলে যে সাধা অবংকেশ (Y)
recidus (7) of basic nature is left. Identi	(X), (Y) and (Z) from following sets.
The white precipitate (Y), obtained on	about 37% of its weight on heating and a white
	(C) Fe (D) Ca
	2
_	·
	SO ₂ ↑
বিক্রিয়াগুলি ঘটে থাকে।	
কোন (M) ধাতুর সালফাইড আকরিক (M	$_2\mathrm{S})$ থেকে ধাতুটিকে নিষ্কাশন করতে নাচের রাসায়ানক
(D) ('11	(C) Fe (D) Ca
-	
$2M_2S + 3O_2 \xrightarrow{\text{heat}} 2M_2O + 2$	$so_2 \uparrow$
reactions:	
Extraction of a metal (M) from its su	lfide ore (M ₂ S) involves the following chemical
(A) ম্যাগনেসিয়াম (B) সোডিয়াম	(C) পটাশিয়াম (D) জিক্ক
ধাত 'M' টি হল :	
হল। ধাতু M এর একটি লবণের দ্রবণ এই ফি	ম্রিত দ্রবণে যোগ করা হলে একটি হলুদ অধঃক্ষেপ পড়ে।
েকাক) -এর গাঢ় দ্বরণের সাথে 50% আ	সিটিক অ্যাসিডে NaNO ₂ এর একটি গাঢ় দ্রবণ মাশ্রত করা
(A) Magnasium (B) Sodium	(C) Polassium (D) 2-1-1
of Nanu ₂ in 50% acetic acid. A solution are in the state is for	emed Metal 'M' 1S'
A solution is made by a concentrated s	ion of a salt containing metal M is added to the
(A) 1.6×10^{-9} M (B) 1.6×10^{-9}	
Na ₂ SQ ₄ Extended BaSU ₄ -un and on act of the second of	M (C) 4×10^{-6} M (D) 4×10^{-4} M
25 °C এ BaSO ₄ -এর এক। সম্পূর্ণ প্রথ	THE THE TO A CONTRACT OF THE TOTAL OF THE
(A) $1.6 \times 10^{-9} \mathrm{M}$ (B) 1.6×10^{-8}	M (C) 4×10°M (D) ব্র
Na SO, at this temperature will be	
A saturated solution of BaSO ₄ at 25 °C	C is 4×10^{-3} M. The solubility of BaSO ₄ in 0.1 W
	And The relative of Dogo in 01 M
	Co(NO ₃) ₂ -এর গাঢ় দ্রবণের সাথে 50% অ্যা হল। ধাড় M এর একটি লবণের দ্রবণ এই বি ধাড় 'M' টি হল: (A) ম্যাগনেসিয়াম (B) সোডিয়াম Extraction of a metal (M) from its su reactions: $2M_2S + 3O_2 \xrightarrow{\text{heat}} 2M_2O + 2$ $M_2S + 2M_2O \xrightarrow{\text{heat}} 6M + SO$ The metal (M) may be (A) Zn (B) Cu কোন (M) ধাড়র সালফাইড আকরিক (M. বিক্রিয়াগুলি ঘটে থাকে। $2M_2S + 3O_2 \xrightarrow{\text{heat}} 2M_2O + 2$ $M_2S + 3O_2 \xrightarrow{\text{heat}} 2M_2O + 2$ $M_2S + 2M_2O \xrightarrow{\text{heat}} 6M + SO$ (M) ধাড়টি হতে পারে (A) Zn (B) Cu The white precipitate (Y), obtained on an ammoniacal solution of NaCl, loses residue (Z) of basic nature is left. Identify আমোনিয়াকাল NaCl দ্রবণে একটি বর্ণহীন ও পাওয়া যায়, সেটিকে উত্তপ্ত করলে তার ওজন (Z) থাকে। নীচের সেটগুলি থেকে (X), (Y) এব

65.	Which structure has delocalised π -electrons? (A) O (C) HCN (D) O ₃ and HCN								
	$(A) O_3 \qquad (B) CO \qquad (C) HCN \qquad (B) O_3 And ICN$								
	কোন গঠনটির মধ্যে বিকেন্দ্রিভূত (delocalised) π-ইলেকট্রন আছে ? (Δ) (C) HCN (D) O ₃ এবং HCN								
	(A) O_3 (B) CO (C) HCN (D) O_3 44% HCN								
66.	The H ₃ O ⁺ ion has the following shape								
	(A) Tetrahedral (B) Pyramidal								
	(C) Triangular planar (D) "T" shaped								
	$ m H_3O^+$ আয়নের আকার নিমুরূপ								
	(A) চতুন্তলকিয় (B) পিরামিডিয়								
	(C) সাম্ভলিক ত্রিকোনাকার (D) "T" আকৃতির								
67.	For the reaction $^{14}N(\alpha, p)^{17}O$, 1.16 MeV (Mass equivalent = 0.00124 amu) of energy is absorbed. Mass on the reactant side is 18.00567 amu and proton mass = 1.00782 amu.								
	The atomic mass of 1/O will be (C) 17.0114 amu (D) 16.9966 amu								
	= 0.00124 amu) = 110° (=11140 27)								
	(A) 17.0044 amu (B) 16.9991 amu (C) 16.9991 amu $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়। $14N(\alpha, p)^{17}O$ কেন্দ্রকীয় বিক্রিয়ায় 1.16 MeV (ভরশক্তিতুল্যতা = 0.00124 amu) শক্তি শোষিত হয়।								
	বিক্রিয়াকারী পদার্থের দিকের ভর 18.00567 ama এবং এটিং নি								
	পারমাণবিক ভর হবে (A) 17.0044 amu (B) 16.9991 amu (C) 17.0114 amu (D) 16.9966 amu								
	(A) 17.0044 amu (B) 16.9991 amu (C) 17.011 data (A' yields ammonia. A solution of NaNO ₃ , when treated with a mixture of Zn dust and 'A' yields ammonia.								
68.									
	'A' can be (A) caustic soda (D) sodium carbonate								
	(A) caustic soda (C) concentrated sulphuric acid (C) concentrated sulphuric acid (D) sodium carbonate								
	(C) concentrated sulphuric acid (D) solitain carbonate NaNO3 এর দ্রবণে Zn পাউভার এবং 'A'-এর একটি মিশ্রন যোগ করা হলে অ্যামোনিয়া উৎপন্ন হয়।								
	(A) 210 9119								
	ক্রিক সোড়া								
(0	considered alastrons in K. IHell (N) 1 and Naire (N) 61								
69.	TO(CN) 1 at Kalfe(CN)61 an Interpretation								
	$K_3[Fe(CN)_6]$ $K_4[Fe(CN)_6]$								
	1								
	(A) 5 6 6 5 (C) 0 1 (D) (D) (Cr(H ₂ O) ₂) ³⁺ ?								
	$\begin{pmatrix} C \end{pmatrix} \qquad \qquad$								
70.									
•	· · · · · · · · · · · · · · · · · · ·								
	(A) $[Cu(H_2O)_6]^3$ (B) $[Cr(H_2O)_6]^{3+}$ এর সমান হবে ? িমুলিখিত কোন যৌগটির চৌম্বকভামক $[Cr(H_2O)_6]^{3+}$ (C) $[Fe(H_2O)_6]^{3+}$ (D) $[Mn(H_2O)_6]^{4+}$ (A) $[Cu(H_2O)_6]^{2+}$ (B) $[Mn(H_2O)_6]^{3+}$ (C) $[Fe(H_2O)_6]^{3+}$ (D) $[Mn(H_2O)_6]^{4+}$								
	(A) $[Cu(H_2O)_6]^{2^4}$ (B) $[Vin(H_2O)_6]$ (c) $[Vin(H_2O)_6]$								

 \widetilde{c}

Category-II (Q 71 to 75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.

একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।

- 71. Among the following chlorides the compounds which will be hydrolysed most easily and most slowly in aqueous NaOH solution are respectively
 - 1. Methoxymethyl chloride

2. Benzyl chloride

3. Neopentyl chloride

4. Propyl chloride

(A) 1 and 3

(B) 2 and 3

(C) 2 and 4

(D) 3 and 1

নীচের ক্লোরাইডগুলির মধ্যে যে যৌগগুলির জলীয় NaOH দ্রবণে সর্বাপেক্ষা সহজে এবং সর্বাপেক্ষা ধীরগতিতে আর্দ্রবিশ্লেষণ হবে সেগুলি যথাক্রমে

1. মিথক্সিমিথাইল ক্লোরাইড

2. বেঞ্জাইল ক্লোরাইড

নিওপেন্টাইল ক্লোরাইড

4. প্রোপাইল ক্লোরাইড

(A) 1 এবং 3

(B) 2 এবং 3

(C) 2 এবং 4

(D) 3 এবং 1

72. The products \underline{X} and \underline{Y} which are formed in the following sequence of reactions are respectively

Phenol
$$\xrightarrow{\text{dil HNO}_3} \underline{X} \xrightarrow{1. \text{Zn/HC}l, \Delta} \underline{Y}$$

2. $(\text{CH}_3\text{CO})_2\text{O (1 equiv.)}$

নীচের বিক্রিয়াক্রমে উৎপাদিত <u>X</u>এবং <u>Y</u> যৌগদূটি হল যথাক্রমে

Phenol
$$\xrightarrow{\text{erg HNO}_3} \underline{X} \xrightarrow{1. \text{Zn/HC}l, \Delta} \underline{Y}$$

2. (CH₃CO)₂O (1 তুল্যান্ক)

C

	PC-2021
73.	The atomic masses of helium and neon are 4.0 and 20.0 amu respectively. The value of the de Broglie wavelength of helium gas at – 73 °C is M times the de Broglie wavelength of neon at 727 °C. The value of M is
	(A) 5 (B) 25 (C) $\frac{1}{5}$ (D) $\frac{1}{25}$
	হিলিয়াম এবং নিয়নের পারমাণবিক ভর যথাক্রমে 4.0 এবং 20.0 amu। — 73 °C উষ্ণতায় হিলিয়াম গ্যাসের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C উষ্ণতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C ডি ব্রম্বতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C ডি ব্রম্বতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C ডি ব্রম্বতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C ডি ব্রম্বতায় নিয়নের ডি ব্রগলি তরঙ্গ দৈর্ঘ্যের মান 727 °C ডি ব্রম্বতায় নিয়নের ডি ব্র্যানির ডি ব্র্যানির মান বর্মির মান বর্মানির মান মান বর্মানির মান মান বর্মানির মান বর্মানির মান বর্মানির মান বর্মানির মান মা
	মান হল (A) 5 (B) 25 (C) $\frac{1}{5}$ (D) $\frac{1}{25}$
74.	The mole fraction of a solute in a binary solution is 0.1. At 298 K, molarity of this solution is same as its molality. Density of this solution at 298 K is 2.0 g cm ⁻³ . The ratio of molecular weights of the solute and the solvent $(M_{solute}/M_{solvent})$ is
	(A) 9 (B) $\frac{1}{9}$ (C) 4.5 (D) $\frac{1}{4.5}$
	একটি দ্বি-দ্রবণে (binary solution) দ্রাবের মোল ভগ্নাংশ হল $0.1 \mid 298 \text{ K}$ তাপমাত্রায়, ঐ দ্রবণের মোলার গাঢ়ত্ব এবং মোলাল গাঢ়ত্ব উভয়ের মান সমান এবং দ্রবণের ঘনত্বের মান 2.0 g cm^{-3} । দ্রাব এবং
	দ্রাবকের আণবিক গুরুত্বের অনুপাত (M _{solute} /M _{solvent})হল
	(A) 9 (B) $\frac{1}{9}$ (C) 4.5 (D) $\frac{1}{4.5}$
75.	5.75 mg of sodium vapour is converted to sodium ion. If the ionisation energy of sodium is 490 kJ mol ⁻¹ and atomic weight is 23 units, the amount of energy needed for this conversion will be
	(B) 1960 kJ (C) 122.5 kJ (D) 0.1225 kJ
	্রতিক্র রাজাক্ত সোডিয়াম আয়নে রূপস্ভারত করা হল। যাদ সোডিয়ামের আয়নন শাও ণ
	(ionisation energy) मान 490 kJ mol प्राथमा विक अप 23 unit २४, ७(४ प्र क्रिमालिक
	শক্তি প্রয়োজন হবে (A) 1.96 kJ (B) 1960 kJ (C) 122.5 kJ (D) 0.1225 kJ

PC-2021

Category-III (Q 76 to 80)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

এক বা একাধিক উন্তর সঠিক। সব কটি সঠিক উন্তর দিলে 2 নম্বর পাবে। যদি কোন ভূল উন্তর না থাকে এবং সঠিক উন্তরত সব কটি না থাকে তাহলে পাবে $2 \times$ যে কটি সঠিক উন্তর দেওয়া হয়েছে তার সংখ্যা \div আসলে যে কটি উন্তর সঠিক তার সংখ্যা। যদি কোনো ভূল উন্তর দেওয়া হয় বা একাধিক উন্তরের মধ্যে একটিও ভূল থাকে তাহলে উন্তরটি ভূল ধ্বে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।

76. The product(s) in the following sequence of reactions will be

$$1. \text{ Na / NH}_{3}(\text{liq.})$$

$$\text{Me - C} = \text{C - Me} \xrightarrow{\text{ethanol, -33 °C}} \text{Product (s)}$$

$$2. \text{ dil. alkaline KMnO}_{4}$$

নীচের বিক্রিয়াক্রমে উৎপন্ন পদার্থ (গুলি) হল

$$1. \ \mathrm{Na} \ / \ \mathrm{NH_3}(\mathrm{o}$$
রল)
$$\mathrm{Me-C} \equiv \mathrm{C-Me} \xrightarrow{ \mathrm{Sec} \ \mathrm{NH_3}(\mathrm{o}$$
 ত $\mathrm{NH_3}(\mathrm{o}$ ত $\mathrm{NH_3}(\mathrm{o}$ ত o ত $\mathrm{NH_3}(\mathrm{o}$ ত o ত $\mathrm{NH_3}(\mathrm{o}$ ত o ত $\mathrm{NH_3}(\mathrm{o}$ ত o o o ত o o

77. The compounds X and Y are respectively X এবং Y যৌগদ্বয় যথাক্রমে,

$$Br \longrightarrow CH_{3} \xrightarrow{\begin{array}{c} 1.Mg, \text{ ether} \\ 2. \text{ acetaldehyde} \end{array}} X \xrightarrow{\begin{array}{c} 1. \text{ SOCl}_{2} \\ 2. \text{ NH}_{3} \end{array}} Y$$

$$(A) \quad H_{3}C \longrightarrow CH_{3} \quad \text{and} \quad H_{3}C \longrightarrow NH_{2}$$

$$(B) \quad H_{3}C \longrightarrow CH_{3} \quad \text{and} \quad H_{3}C \longrightarrow NH_{2}$$

$$(C) \quad H_{3}C \longrightarrow CO_{2}H \quad \text{and} \quad H_{3}C \longrightarrow NH_{2}$$

- Aqueous solution of HNO3, KOH, CH3COOH and CH3COONa of identical **78.** concentration are provided. The pair (s) of solutions which form a buffer upon mixing is (are)
 - HNO3 and CH3COOH (A)

KOH and CH₂COONa (B)

HNO₃ and CH₃COONa

CH₃COOH and CH₃COONa (D)

একই গাঢ়ত্বের $\mathrm{HNO_3}$, KOH , $\mathrm{CH_3COOH}$ এবং $\mathrm{CH_3COONa}$ এর জলীয় দ্রবণ দেওয়া আছে। যে দুটি দ্রবণ বা যে যে দ্রবণ দুটির মিশ্রণ বাফার হবে তা হল

HNO₃ এবং CH₃COOH

- KOH এবং CH3COONa (B)
- HNO2 এবং CH2COONa (C)

- CH3COOH এবং CH3COONa (D)
- Reaction of silver nitrate solution with phosphorous acid produces: **79.**
 - Silver phosphite (A)

Phosphoric acid (B)

Metallic silver (C)

Silver phosphate (D)

ফসফরাস অ্যাসিডের সহিত সিলভার নাইট্রেট দ্রবণের বিক্রিয়ায় তৈরী হবে:

সিলভার ফসফাইট (A)

ফসফরিক অ্যাসিড (B)

ধাতব সিলভার (C)

- সিলভার ফসফেট (D)
- N_2H_4 and H_2O_2 show similarity in 80.
 - Density (A)

- (B) Reducing nature
- Oxidising nature (C) $m N_2H_4$ এবং $m H_2O_2$ এর মধ্যে সাদৃশ্য হল
- Hybridisation of central atoms (D)

ঘনত (A)

 $\tilde{\boldsymbol{c}}$

বিজ্ঞারণ প্রকৃতি (B)

জারণ প্রকৃতি (C)

কেন্দ্রিক মৌলের সংকরায়ণ (D)