Unleashing Potential
Untersing Pont

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Questions \& Solutions

(Reproduced from memory retention)
Date : 26 February, 2021 (SHIFT-2) Time ; (3.00 pm to 6.00 pm)

Duration : 3 Hours | Max. Marks : 300

SUBJEGT : CHEMISTRY

CHEMISTRY

1．Match the coloumn

Column－I

（A）

（B）

（C）

（D） $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{\text { Na／Dry ether }}$
（1）A－i，B－ii，C－iii，D－iv
（3）A－i，B－ii，C－iv，D－iii

Column－II

（i）Gattermann
（ii）Sandmayer
（iii）Wurtz
（iv）Fittig
（2）A－ii，B－i，C－iv，D－iii
（4）A－ii，B－i，C－iii，D－iv

Ans．（2）

Sol．（A）

（B）

（C）

Fittig reaction
（D） $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow{\mathrm{Na} / \text { Dry ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}$
Wurtz reaction
2．Match the coloumn

Column－I

（A）Sucrose
（B）Lactose
（C）Maltose
（1）A－i，B－ii，C－iii
（3）A－iii，B－i，C－ii

Column－II

（i）α－glucose and α－glucose
（ii）α－glucose and β－fructose
（iii）β－galactose and β－glucose
（2） $\mathrm{A}-\mathrm{ii}, \mathrm{B}-\mathrm{i}, \mathrm{C}-\mathrm{iii}$
（4）A－ii，B－iii，C－i
Ans．（4）
Sol．（A）Sucrose－α－glucose and β－fructose
（B）Lactose $-\beta$－galactose and β－glucose
（C）Maltose $-\alpha$－glucose and α－glucose

Unleashing Potential
3. Which of the following give positive test with ceric ammonium nitrate and $\mathrm{CHCl}_{3}, \mathrm{KOH}$ respectively
(1) Amine \& Phenol
(2) Phenol \& Amine
(3) Alcohol \& Amine
(4) Amine \& Alcohol

Ans. (3)
Sol. Alcohols give positive test with ceric ammonium nitrate and primary amines gives carbyl amine test with CHCl_{3}, KOH .
4. Seliwanoff's test and xanthoprotic test is used to distinguish respectively
(1) Proteins \& ketoses
(2) Aldoses \& ketoses
(3) Ketoses \& proteins
(4) Proteins \& Ketones

Ans. (3)
Sol. Seliwanoff's test is used to distinguish between carbohydrates and xanthoprotic test is used to distinguish proteins.
5.

(1)

(2)

(3)

(4)

Ans. (4)
Sol. It is intramolecular aldol condensation reaction.
6.

(1)

(2)

(3)

Ans. (2)

Sol.

In first step ketonic group is reduced by Clemenssen reduction, in second step aromatisation takes place.

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
visit us at: www.reliablekota.com, Email: info@reliablekota.com
Call us: +91-744-2665544

(1)

(2)

(3)

(4)

Ans. (3)

Sol.

Phenolic OH group does not give substitution reaction as lone pair of oxygen is delocalised with benzene and double bond character in $\mathrm{C}-\mathrm{O}$ bond.
8. What will be the correct basic strength $\left(\mathrm{K}_{\mathrm{b}}\right)$ order for the following amines ?
(i) Phenyl methanamine
(ii) N, N-Dimethylaniline
(iii) N -methylaniline
(iv) Benzenamine
(1) i $>$ ii $>$ iii $>$ iv
(2) ii $>$ iii $>$ i $>$ iv
(3) i $>$ iii $>$ ii $>$ iv
(4) ii $>$ iv $>$ iii $>$ i

Ans. (1)
Sol. In phenyl methanamine lone pair of nitrogen is localised so it is most basic among the given amines. Benzenamine is least basic because lone pair of nitrogen is delocalised.
9.

(1)

(2)

(3)

(4)

Ans. (1)

Sol.

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA

Unleashing Potential
10. Which of the following oxides are acidic ?
(1) $\mathrm{CaO}, \mathrm{B}_{2} \mathrm{O}_{3}$
(2) $\mathrm{BaO}, \mathrm{SiO}_{2}$
(3) $\mathrm{ZnO}, \mathrm{B}_{2} \mathrm{O}_{3}$
(4) $\mathrm{ZnO}, \mathrm{CaO}$

Ans. (2)

Sol. Oxide
CaO
$\mathrm{B}_{2} \mathrm{O}_{3}$
SiO_{2}
ZnO

Nature
Basic
Acidic
Acidic
Amphoteric
11. Which amongs the following will give positive 2,4-DNP-test?
(1)Aldehyde
(2) Ester
(3) Alcohol
(4) Ether

Ans. (1)
12. Arrange in order of increasing electron gain enthalpy $\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$
(1) $\mathrm{O}<\mathrm{Te}<\mathrm{Se}<\mathrm{S}$
(2) $\mathrm{O}<\mathrm{S}<\mathrm{Se}<\mathrm{Te}$
(3) $\mathrm{O}>\mathrm{S}>\mathrm{Se}>\mathrm{Te}$
(4) $\mathrm{S}<\mathrm{Te}<\mathrm{Se}<\mathrm{O}$

Ans. (1)
Sol. Electron gain enthalpy decreases down the group but for oxygen it is minimum in its group.
13. Assertion : $\mathrm{T} \ell \mathrm{I}_{3}$ is isomorphous with $\mathrm{CsI}_{3} \&$ oxidation number of $\mathrm{T} \ell=1$

Reason: $\mathrm{T} \ell$ has 14 f electrons
(1) Assertion is true, Reason is true and Reason is correct explanation for Assertion.
(2) Assertion is true, Reason is true and Reason is not correct explanation for Assertion.
(3) Assertion is true, Reason is false.
(4) Assertion is false, Reason is true.

Ans. (2)
14. Which of the following emits low energy β-particles?
(1) ${ }_{1}^{1} \mathrm{H}$
(2) ${ }_{1}^{2} \mathrm{H}$
(3) H^{+}
(4) ${ }_{1}^{3} \mathrm{H}$

Ans. (4)
Sol. Fact Based
${ }_{1} \mathrm{H}^{3}$ (tritium) is radio active
Its $\frac{\mathrm{n}}{\mathrm{p}}=\frac{2}{1}$ (Higher), Hence
It emits β particle
15. $\mathrm{FeCl}_{3}+$ Hot water \longrightarrow Colloid

What is the charge on the particles of colloid formed?
(1) Positive
(2) Negative
(3) No charge
(4) Can not be predicted

Ans. (1)
Sol. $\quad \mathrm{FeCl}_{3} \xrightarrow{\text { Hydrolysis }} \mathrm{Fe}(\mathrm{OH})_{3} \downarrow \underset{\text { Adsorption }}{\mathrm{Fe}^{3+}} \mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{Fe}^{3+}$

Reinsintute	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	5
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

Compounds

(p) NaOH
(q) Cl_{2}
(r) Ti
(s) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(1) $\mathrm{A} \rightarrow \mathrm{q}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{s}, \mathrm{D} \rightarrow \mathrm{p}$
(2) $\mathrm{A} \rightarrow \mathrm{r}, \mathrm{B} \rightarrow \mathrm{q}, \mathrm{C} \rightarrow \mathrm{s}, \mathrm{D} \rightarrow \mathrm{p}$
(3) $\mathrm{A} \rightarrow \mathrm{q}, \mathrm{B} \rightarrow \mathrm{s}, \mathrm{C} \rightarrow \mathrm{r}, \mathrm{D} \rightarrow \mathrm{p}$
(4) $\mathrm{A} \rightarrow \mathrm{p}, \mathrm{B} \rightarrow \mathrm{r}, \mathrm{C} \rightarrow \mathrm{s}, \mathrm{D} \rightarrow \mathrm{q}$

Ans. (1)
Sol. Theory based
17. Species
(1) Ne_{2}
(2) N_{2}
(3) O_{2}
(4) F_{2}

Bond order

(p) 1
(q) 3
(r) 2
(s) 0
(1) $1 \rightarrow \mathrm{~s}, 2 \rightarrow \mathrm{q}, 3 \rightarrow \mathrm{r}, 4 \rightarrow \mathrm{p}$
(2) $1 \rightarrow \mathrm{p}, 2 \rightarrow \mathrm{q}, 3 \rightarrow \mathrm{r}, 4 \rightarrow \mathrm{~s}$
(3) $1 \rightarrow \mathrm{r}, 2 \rightarrow \mathrm{p}, 3 \rightarrow \mathrm{~s}, 4 \rightarrow \mathrm{q}$
(4) $1 \rightarrow \mathrm{~s}, 2 \rightarrow \mathrm{q}, 3 \rightarrow \mathrm{p}, 4 \rightarrow \mathrm{r}$

Ans. (1)
Sol. Species Bond order
Ne_{2} 0
N_{2}
O_{2}
F_{2}32

1
18. Which of the following statement is incorrect regarding calgon process for treatment of hard water?
(1) It contains the $2^{\text {nd }}$ most abundant element in the earth crust
(2) It does not precipitate Ca^{2+}
(3) Calgon is polymeric and water soluble
(4) It is also called Graham's salt

Ans. (1)
Sol. Calgon $\left.\rightarrow \mathrm{Na}_{2}\left[\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right] \xrightarrow{\text { Water Soluble }} 2 \mathrm{Na}^{+}\left[\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right]^{2-} \xrightarrow{\mathrm{Ca}^{2+}} 2 \mathrm{Na}^{+} \underset{\substack{\text { Soluble }}}{\underset{\mathrm{Na}}{2}} \mathrm{Ca}\left(\mathrm{PO}_{6}\right)_{6}\right]^{2-}$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	6
Relíable	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
institute	Callus: +91-744-2665544	

19. Match the column

Ore

(i) Siderite
(ii) Calamine
(iii) Malachite
(iv) Cryolite

Metal

(p) Cu
(q) Fe
(r) Zn
(s) Al
(1) (i) $\rightarrow \mathrm{q}$, (ii) $\rightarrow \mathrm{r}$, (iii) $\rightarrow \mathrm{p}$, (iv) $\rightarrow \mathrm{s}$
(2) (i) $\rightarrow r$, (ii) \rightarrow q, (iii) $\rightarrow p$, (iv) $\rightarrow s$
(3) (i) $\rightarrow \mathrm{s}$, (ii) $\rightarrow \mathrm{q}$, (iii) $\rightarrow \mathrm{p}$, (iv) $\rightarrow \mathrm{r}$
(4) (i) $\rightarrow \mathrm{p}$, (ii) $\rightarrow \mathrm{q}$, (iii) $\rightarrow \mathrm{r}$, (iv) $\rightarrow \mathrm{s}$

Ans. (1)
Sol. Theory based
20. $\quad \mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}_{0.1 \mathrm{M}}^{2+} \| \underset{0.01 \mathrm{M}}{\mathrm{Ag}^{+}}\right| \mathrm{Ag}$
$\begin{array}{ll}\mathrm{E}_{\mathrm{Zn}^{+2} / \mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V} & \mathrm{E}=\mathrm{x} \times 10^{-2} \\ \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=0.8 \mathrm{~V} & \text { Determine ' } \mathrm{x} \text { ' }\end{array}$
Ans. 147
Sol. $\quad \mathrm{E}_{\mathrm{Cell}}^{\circ}=\left[\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}\right]_{\text {cathode }}-\left[\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}\right]_{\text {anode }}$
$=0.8+0.76=1.56 \mathrm{~V}$
Anode : $\mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-}$(oxidation)
Cathode: $2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}(\mathrm{s})$ (Reduction)

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {Cell }}^{\circ}-\frac{0.0591}{2} \log _{10}\left[\frac{\left[\mathrm{Zn}^{+2}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}\right]$
$=1.56-\frac{0.0591}{2} \log _{10}\left[\frac{0.1}{10^{-4}}\right]$
$=1.56-\frac{0.0591}{2} \times 3$
$=1.56-0.088=1.472 \mathrm{~V}$
$=147 \times 10^{-2} \mathrm{C}$
$\mathrm{X}=147$
21. For the complex $\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{Br})\left(\mathrm{NO}_{2}\right)\right]^{3-}$, total number of stereoisomers are

Ans. 3

Sol.

Cis
optically active
having two stereoisomers d \& ℓ

Trans
optically inactive

Therefore total three stereoisomers are possible
22. $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ of $\mathrm{S}(\mathrm{g})=275 \mathrm{~kJ} / \mathrm{mole}$

$$
\mathrm{F}(\mathrm{~g})=80 \mathrm{~kJ} / \mathrm{mole}
$$

$$
\mathrm{SF}_{6}(\mathrm{~g})=-1100 \mathrm{~kJ} / \mathrm{mole}
$$

Determine bond energy of S-F bond.

Ans. $\mathbf{3 0 9 . 1 6 ~ k J / m o l e ~}$

Sol. $\quad \mathrm{S}(\mathrm{g})+6 \mathrm{~F}(\mathrm{~g}) \longrightarrow \mathrm{SF}_{6}(\mathrm{~g})$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{R}}^{\circ} & =\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{SF}_{6}\right)-\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{S})-6 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{F}) \\
& =(-1100)-(275)-6(80)=-1855 \\
\Delta \mathrm{H}_{\mathrm{R}}^{\circ} & =-1855=0-6 \times\left(\Delta \mathrm{H}_{\mathrm{S}-\mathrm{F}}^{\circ}\right) \\
& \Rightarrow \Delta \mathrm{H}_{\mathrm{S}-\mathrm{F}}^{\circ}=\frac{1855}{6}=309.16 \frac{\mathrm{~kJ}}{\mathrm{~mole}}
\end{aligned}
$$

23. How much mass of NaNO_{3} is required to prepare 50 ml of aqueous solution to get $70 \mathrm{mgNa}^{+}$per ml of solution

Ans. 129.3478gm

Sol. Mass of Na^{+}in $50 \mathrm{ml}=70 \times 50=3500 \mathrm{mg}$
23000 mg of Na^{+}is present in 85000 mg NaNO 3
$\therefore 3500 \mathrm{mg} \mathrm{Na}^{+}$will be present in $\frac{85000}{23000} \times 35000=129347.8 \mathrm{mg}$
$=129.3478 \mathrm{gm}$.

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
24. Fraction of molecules crossing activation energy barrier $=e^{-x}$. Determine ' x '
($\mathrm{E}_{\mathrm{a}}=80.3 \mathrm{~kJ} / \mathrm{mole}, \mathrm{T}=700 \mathrm{~K}, \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$)
Ans. 14
Sol. \quad Fraction $(f)=e^{-\frac{E_{a}}{R T}}$

$$
\begin{aligned}
& =e^{-\frac{80.3 \times 10^{3}}{8.314 \times 700}} \\
& =e^{-13.8} \\
& \simeq e^{-14}
\end{aligned}
$$

25. Ratio of octahedral voids \& number of lattice points in a FCC crystal structure is

Ans. 1
Sol. Effective number of octahedral void in FCC lattice $=4$
Effective number of lattice point in $\mathrm{FCC}=4$
26. In mildly alkaline medium KMnO_{4} reacts with thiosulphate ion to yield a species 'A' containing sulphur. What is the oxidation state of S in ' A '.
Ans. 6
Sol. $\mathrm{MnO}_{4}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{MnO}_{2}+\mathrm{SO}_{4}^{2-}$
Oxidation state of ' S^{\prime} in SO_{4}^{2-} is 6
27. Calculate the pH of ammonium phosphate solution. Given $\mathrm{pk}_{\mathrm{a}}=4.75 \quad ; \mathrm{pk}_{\mathrm{b}}=5.23$

Ans. 6.76
Sol. $\mathrm{pH}=\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$
$=\frac{1}{2}(14+4.75-5.23)$
$=6.76$
28. $\quad 12.2 \mathrm{~g}$ benzoic acid is added in 100 g water. T_{f} of this solution is $-0.93^{\circ} \mathrm{C}$. Consider ' n ' number of benzoic acid molecules are associated. Calculate ' n ', assuming 100% association.
$\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$.
Ans. 2
Sol. $\quad \Delta T_{f}=i \times K_{f} \times m$
$0.93=\mathrm{i} \times 1.86 \times 1 \quad \therefore \mathrm{i}=\frac{1}{2}$
$\therefore \frac{1}{2}=1+\left(\frac{1}{\mathrm{n}}-1\right) 1 \quad \therefore \mathrm{n}=2$

