Unleashing Potential
Untersing Pont

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Questions \& Solutions

(Reproduced from memory retention)
Date : 26 February, 2021 (SHIFT-1) Time ; (9.00 am to 12.00 pm) Duration: 3 Hours | Max. Marks : 300

SUBJECT : CHEMISTRY

CHEMISTRY

1. Which of the following compounds is formed by ammonolysis of ethyl chloride and reacts with tosyl-chloride but remains insoluble in KOH ?
(1) $\mathrm{Ph}-\mathrm{NH}-\mathrm{PH}$
(2) $\mathrm{Et}-\mathrm{NH}_{2}$
(3) $\mathrm{Ph}-\mathrm{NH}-\mathrm{Pr}$
(4) $\mathrm{Et}-\mathrm{NH}-\mathrm{Pr}$

Ans. (4)
Sol. Sulphonamides of secondary amine will be insoluble in KOH .
2. Statement-I: Orthonitrophenol has intra molecular H-bonding

Statement-II: Orthonitrophenol has high melting point due to H -bonding.
(1) Statement I is true, Statement II is false
(2) Statement I is false, Statement II is true
(3) Statement I, II both are true
(4) Statement I, II both are false

Ans. (1)
3. Give the major product (P) of the following reaction

(1)

(2)

(3)

(4)

Ans. (2)
4. Which metal is used in the coagulation of blood?
(1) Vitamin K
(2) Vitamin C
(3) Vitamin A
(4) Vitamin E

Ans. (1)
Sol. Vitamin K is used by the body to help blood clot. Warfarin (Coumadin) is used to show blood clotting. By helping the blood clot, vitamin K might decrease the effectiveness of warfarin.
5. What is the major product of the following reaction

(1)

(2)

(3)

(4)

Ans. (2)

Sol.

It is free-radical substitution reaction of alkanes, so bromination takes place at benzylic carbon.
6. What is the structure of neoprene?
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

7. What will be major product $[\mathrm{A}]$ and $[\mathrm{B}]$ in the given sequence of reactions ?

(1)

(2)

\&

(3)

(4)

Ans. (2)

Sol.

8. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}(\mathrm{~A}) \xrightarrow{\text { Hydrolysis }} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ (B)

B forms oxime with $\mathrm{NH}_{2} \mathrm{OH}$ but does not give Tollen's test.
Compound (A) and (B) are respectively :
(1) 2,2-Dichlorobutane \& 2-Butanone
(2) 2,2-Dichlorobutane \& 2-Butanal
(3) 1,1-Dichlorobutane \& 2-Butanal
(4) 1,2-Dichlorobutane \& 2-Butanone

Ans. (1)

Sol.

2-Butanone forms oxime with $\mathrm{NH}_{2} \mathrm{OH}$ but does not give Tollen's test.
9. Statement -I : Chloroform and aniline is separated by simple distillation.

Statement - II : When we separate water and aniline by steam distillation aniline boils below its boiling point.
(1) Statement I is true ,Statement II is false
(2) Statement I is false, Statement II is true
(3) Statement I , II both are true
(4) Statement I , II both are false

Ans. (3)

Unleashing Potential
10. Which statement is false?
(1) Kjeldal method is used for estimation of nitrogen.
(2) Carius tube is used for estimation of sulphur
(3) Carius tube is used for estimation of Nitrogen
(4) Phosphoric acid is precipitated by adding magnesia mixture on yields $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$

Ans. (3)
11. A compound on reaction with hot dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ liberates a gas ' X ' which when brought in contact with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ paper dipped in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives a green compound ' Y '.
' X ' and ' Y ' respectively are
(1) $\mathrm{SO}_{3}, \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(2) $\mathrm{SO}_{2}, \mathrm{Cr}_{2} \mathrm{O}_{3}$
(3) $\mathrm{SO}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}$
(4) $\mathrm{SO}_{2}, \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Ans. (4)
Sol. Compound $+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{SO}_{2(\mathrm{~g})} \xrightarrow{\mathrm{k}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (sulphite) Hot dil.
12. Which of the following combination is correct?

Ore Elements
(A) Kernite
(P) Zn
(B) Calamine
(Q) F
(C) Cassiterite
(R) B
(D) Cryolite
(S) Sn
(1) $A-R, B-P, C-S, D-Q$
(2) $A-R, B-Q, C-P, D-S$
(3) $\mathrm{A}-\mathrm{P}, \mathrm{B}-\mathrm{R}, \mathrm{C}-\mathrm{S}, \mathrm{D}-\mathrm{Q}$
(4) $A-Q, B-S, C-P, D-R$

Ans. (1)
13. A compound which is used in lead storage battery, having amphoteric nature \& is a strong oxidising agent is ?
(1) PbO_{2}
(2) $\mathrm{Pb}_{3} \mathrm{O}_{4}$
(3) PbSO_{4}
(4) PbO

Ans. (1)
14. Which does not form MO_{2} ?
(1) Nd
(2) Yb
(3) Dy
(4) Pr

Ans. (2)
Sol. Yb shows $+2 \&+3$ only

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA

Unleashing Potential
15. Match the following electronic configuration with $\Delta \mathrm{H}_{\mathrm{IE}}$ values :
(i) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
(p) 801
(ii) $1 s^{2} 2 s^{2} 2 p^{1}$
(p) 899
(iii) $1 s^{2} 2 s^{2} 2 p^{3}$
(r) 1300
(iv) $1 s^{2} 2 s^{2} 2 p^{4}$
(s) 1400
(1) (i) - q ; (ii) - p ; (iii) - s ; (iv) -r
(2) (i) - q; (ii) - s ; (iii) -p ; (iv) -r
(3) (i) -s ; (ii) -q ; (iii) -p ; (iv) -r
(4) (i) -s ; (ii) -p ; (iii) -q ; (iv) -r

Ans. (1)
Sol. Order : B $<\mathrm{Be}<\mathrm{O}<\mathrm{N}$
16. Select the correct statement
(a) Heavy water is used to determine reaction mechanism
(b) Viscosity of heavy water is less than that of water
(c) $\mathrm{D}_{2} \mathrm{O}$ can be prepared by exhaustive electrolysis of $\mathrm{H}_{2} \mathrm{O}$
(d) Boiling point of heavy water is more than that of normal water
(1) a, d
(2) a, b, d
(3) a, c
(4) a, b, c

Ans. (1)
Sol. Since extent of intermolecular forces are more in $\mathrm{D}_{2} \mathrm{O}$ as compared to $\mathrm{H}_{2} \mathrm{O}$, therefore $\mathrm{D}_{2} \mathrm{O}$ has more viscosity as well as Boiling point as compared to $\mathrm{H}_{2} \mathrm{O}$.
17. Statement-I : Dipole-dipole interaction is the only non-covalent interaction force responsible for H -Bonding

Statement-II : F is the most EN element \& HF forms symmetrical H-bond
(1) Statement I is true, Statement II is true and Statement II is correct explanation of Statement I
(2) Statement I is false, Statement II is true
(3) Statement I, II both are true
(4) Statement I , II both are false

Ans. (2)
18. For which of the following orbital, number of angular node and radial node are each 2 .
(1) 5 d
(2) 4 f
(3) $3 p$
(4) 2 s

Ans. (1)
Sol.

Orbital	Angular Node	Radial Node
5 d	2	2
4 f	3	0
3 p	1	1
2 s	0	1

19. O_{3} is troposphere
(1) Form photochemical smog
(2) Protect us from UV light
(3)
(4)

Ans. (1)
20. When dichromate reacts with base. What is the oxidation number of Cr in the product?

Ans. 6
Sol. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \rightleftharpoons 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
CrO_{4}^{2-}
$x+(-2 \times 4)=-2$
$\mathrm{x}=6$
21. 3.12g of O_{2} is adsorbed in 1.2 g Pt. Determine volume of O_{2} (in L) adsorbed per gm of Pt at 1 atm and 300 K
$\mathrm{R}=0.082 \frac{\mathrm{~atm}-\mathrm{L}}{\mathrm{Mol}-\mathrm{K}}$
Ans. (2)
Sol. Moles of $\mathrm{O}_{2}=\frac{3.12}{32}=0.0975$
Volume of $\mathrm{O}_{2}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.0975 \times 0.082 \times 300}{1}=2.3985$ litres $\simeq 2.4 \mathrm{litres}$
Volume of O_{2} adsorbed per gm of $\mathrm{Pt}=\frac{2.4}{1.2}=2$
22. $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Determine the amount of current in faraday for conversion of 5 moles of $\mathrm{MnO}_{4}{ }^{-}$to Mn^{2+}.
(Given $\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{\circ}=1.51 \mathrm{~V}$)
Ans. 25
Sol. $\quad \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
1 mole of $\mathrm{MnO}_{4}{ }^{-}$require 5 Faraday charge
5 moles of $\mathrm{MnO}_{4}{ }^{-}$will require 25 Faraday

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
visit us at: www.reliablekota.com, Email: info@reliablekota.com
23. No. of Bridging CO ligands in $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ is

Ans. Zero

Sol.

24. $\Delta \mathrm{H}=-20 \mathrm{~kJ} / \mathrm{mole} \quad \mathrm{E}_{\mathrm{a}}$ for forward $=30 \mathrm{~kJ} / \mathrm{mole}$

Determine E_{a} for backward = ?
Ans. 50 kJ/mole
Sol. $\Delta H=E_{a}, f-E_{a, b}$
$-20=30-\mathrm{E}_{\mathrm{a}, \mathrm{b}}$
$\mathrm{E}_{\mathrm{a}, \mathrm{b}}=50 \mathrm{~kJ} / \mathrm{mole}$
25. For a reaction $\Delta \mathrm{H}=80 \mathrm{~kJ}$ $\Delta \mathrm{S}=2 \mathrm{~T} \mathrm{~J} / \mathrm{mole}-\mathrm{k}$
Calculate the minimum temperature at which the reaction will be spontaneous.
Ans. 200 K
Sol. For spontaneous reaction $\Delta \mathrm{G}<0$
$\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}<0$
80,000 -(T) (2T) <0
$2 \mathrm{~T}^{2}>80,000$
$\mathrm{T}^{2}>40,000$
$\mathrm{T}>200 \mathrm{~K}$
\therefore Ans. 200 K
26. For a gas $\mathrm{P}\left(\mathrm{V}_{\mathrm{m}}-\mathrm{b}\right)=\mathrm{RT}$

If $\left(\frac{d z}{d p}\right)_{T}=\frac{x b}{R T}$ find x
Ans. 1
Sol. $\quad \mathrm{P}(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
$\mathrm{PV}-\mathrm{Pb}=\mathrm{RT}$
$\frac{\mathrm{PV}}{\mathrm{RT}}-\frac{\mathrm{Pb}}{\mathrm{RT}}=1$
$\mathrm{z}=1+\frac{\mathrm{Pb}}{\mathrm{RT}}$
$\frac{\mathrm{dz}}{\mathrm{dp}}=0+\frac{\mathrm{b}}{\mathrm{RT}}$
$=\frac{\mathrm{b}}{\mathrm{RT}}=\frac{\mathrm{xb}}{\mathrm{RT}}$
$\mathrm{x}=1$

a

27. $\quad \mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g})$

Starting with 1 mole of AB_{2} in 25 L container, pressure at equilibrium is found to be 1.9 atm at 300 K . If K_{P} is $\mathrm{x} \times 10^{-1}$, determine x .
Ans. 7
Sol. $\quad \mathrm{AB}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g})$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}} & =\frac{1 \times 1}{12} \times \frac{300}{25} \\
& =1
\end{aligned}
$$

1 - x
x
2 x
$1+2 \mathrm{x}=1.9$

$$
\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{A}} \times\left(\mathrm{P}_{\mathrm{B}}\right)^{2}}{\mathrm{P}_{\mathrm{AB}}}
$$

$2 x=0.9$
$x=0.45$

$$
\mathrm{K}_{\mathrm{P}}=\frac{9 \times 9 \times 9 \times 20}{20 \times 100 \times 11}
$$

$K_{P}=\frac{9 \times 9 \times 9}{100 \times 11}=0.6627=6.627 \times 10^{-1}$

