——INSTITUTE
Unleashing Potential

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Questions \& Solutions

(Reproduced from memory retention)
Date : 26 February, 2021 (SHIFT-1) Time ; (9.00 am to 12.00 pm) Duration: 3 Hours | Max. Marks : 300

SUBJECT : MATHEMATICS

MATHEMATICS

1. $\int_{-\pi / 2}^{\pi / 2} \frac{\cos ^{2} x}{1+3^{x}} d x=$
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{8}$
(4) $\frac{\pi}{3}$

Ans. (1)
Sol. $I=\int_{0}^{\pi / 2}\left(\frac{\cos ^{2} x}{1+3^{x}}+\frac{\cos ^{2} x}{1+3^{-x}}\right) d x=\int_{0}^{\pi / 2}\left(\frac{\cos ^{2} x}{1+3^{x}}+\frac{3^{x} \cos ^{2} x}{1+3^{x}}\right) d x=\int_{0}^{\pi / 2} \cos ^{2} x d x$

$$
=\frac{1}{2} \int_{0}^{\pi / 2}(1+\cos 2 x) d x=\left.\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right)\right|_{0} ^{\pi / 2}=\frac{1}{2}\left(\frac{\pi}{2}\right)=\frac{\pi}{4}
$$

2. Value of $\lim _{x \rightarrow 0} 2\left\{\frac{\sqrt{3} \sin \left(\frac{\pi}{6}+x\right)-\cos \left(\frac{\pi}{6}+x\right)}{\sqrt{3} x(\sqrt{3} \cos x-\sin x)}\right\}$ is equal to
(1) $\frac{4}{3}$
(2) $\frac{2}{\sqrt{3}}$
(3) $\frac{2}{3}$
(4) $\frac{4}{\sqrt{3}}$

Ans. (1)
Sol. $=\lim _{x \rightarrow 0} \frac{2\left[\sin \left(\frac{\pi}{6}+x-\frac{\pi}{6}\right)\right]}{\sqrt{3} x(\sqrt{3})}=\lim _{x \rightarrow 0} \frac{4}{3} \frac{\sin x}{x}=\frac{4}{3}$
3. If $x-y=0, x+2 y=3$ and $2 x+y=6$ are three lines forming a triangle, then the triangle is
(1) Isosceles
(2) Right angled
(3) Equilateral
(4) None of these

Ans. (1)

Sol.

$\mathrm{L}_{1}: \mathrm{x}-\mathrm{y}=0$
$\mathrm{L}_{2}: \mathrm{x}+2 \mathrm{y}=3$
$\mathrm{L}_{3}: 2 \mathrm{x}+\mathrm{y}=6$
A $(2,2)$
B $(1,1)$
C $(3,0)$
$\Rightarrow \mathrm{AB}=\sqrt{2}, \mathrm{BC}=\sqrt{5}, \mathrm{AC}=\sqrt{5}$
\therefore Triangle is isosceles
4. Find the number of integral values of k for which the equation $3 \sin x+4 \cos x=k+1$ has a solution.
(1) 13
(2) 6
(3) 8
(4) 11

Ans. (4)
Sol. $-\sqrt{3^{2}+4^{2}} \leq 3 \sin x+4 \cos x \leq \sqrt{3^{2}+4^{2}}$
$-5 \leq(k+1) \leq 5$
$-6 \leq \mathrm{k} \leq 4$
5. Number of 7 digits number in which sum of digits is 10 and digits can take $1,2,3$ values, is
(1) 77
(2) 42
(3) 60
(4) 35

Ans. (1)
Sol. Case-1: 1, 1, 1, 1, 1, 2, 3
ways $=\frac{7!}{5!}=42$
Case-2: 1, 1, 1, 1, 2, 2, 2
ways $=\frac{7!}{4!\cdot 3!}=35$
total ways $=42+35=77$
6. Find the number of solutions of the equation $4(x-1)=\log _{2}(x-3)$
(1) 0
(2) 1
(3) 2
(4) 4

Ans. (1)
Sol. $4(x-1)=\log _{2}(x-3)$
$2^{4(x-1)}=(x-3)$ here $x \geq 3$
So no solution
7. If A is a symmetric matrix of order 2 and sum of diagonal elements of A^{2} is 1 , where elements of matrix are integer, then number of such matrices are
(1) 4
(2) 6
(3) 8
(4) 5

Ans. (1)
Sol. $\quad A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
$A^{2}=\left[\begin{array}{ll}a^{2}+b^{2} & b(a+c) \\ b(a+c) & b^{2}+c^{2}\end{array}\right]$
$\operatorname{tr}\left(A^{2}\right)=a^{2}+2 b^{2}+c^{2}=1$
$\Rightarrow \mathrm{b}=0$ and $\mathrm{a}^{2}+\mathrm{c}^{2}=1$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \equiv(1,0),(-1,0),(0,1),(0,-1)$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	3
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

,
8. The maximum value of slope of tangent to $y=\frac{x^{4}}{2}-5 x^{3}+18 x^{2}+6$ is at a point.
(1) $(2,2)$
(2) $(2,46)$
(3) $\left(1, \frac{39}{2}\right)$
(4) $(1,0)$

Ans. (2)
Sol. $\quad \mathrm{m}=\frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{x}^{3}-15 \mathrm{x}^{2}+36 \mathrm{x}$

$$
\frac{d y}{d x}=6 x^{2}-30 x+36
$$

$=6\left(x^{2}-5 \mathrm{x}+6\right)=0$
$\Rightarrow \mathrm{x}=2,3$
$\frac{d^{2} y}{d^{2}}=6(2 x-5)$
$\left.\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right|_{\mathrm{n}=2}=-\mathrm{ve}$
\therefore Maximum at $\mathrm{x}=2$
Point (2, 46)
9. $\{(\mathrm{P}, \mathrm{Q}) ; \mathrm{P}, \mathrm{Q}$ be 2 points which are equidistant from origin $\}$, then point (x, y) which are equivalence class of $(1,-1)$
(1) $x^{2}+y^{2}=2$
(2) $x^{2}+y^{2}=\sqrt{2}$
(3) $x^{2}+y^{2}=1$
(4) $x^{2}+y^{2}=2 \sqrt{2}$

Ans. (1)
Sol. The equivalence class containing $(1,-1)$ for this relation is $\mathrm{x}^{2}+\mathrm{y}^{2}=2$
10. Value of $\left|\begin{array}{lll}(a+1)(a+2) & (a+1) & 1 \\ (a+2)(a+3) & (a+2) & 1 \\ (a+3)(a+4) & (a+3) & 1\end{array}\right|$ is equal to
(1) -2
(2) 2
(3) 0
(4) 1

Ans. (1)
Sol. $\quad \mathrm{D}=\left|\begin{array}{ccc}a^{2}+3 a+2 & a+1 & 1 \\ a^{2}+5 a+6 & a+2 & 1 \\ a^{2}+7 a+12 & a+3 & 1\end{array}\right|$
$\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$
$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
$D=\left|\begin{array}{ccc}a^{2}+3 a+2 & a+1 & 1 \\ 2 a+4 & 1 & 0 \\ 4 a+10 & 2 & 0\end{array}\right|=4 a+8-4 a-10=-2$

l

11. If $\frac{\sin ^{-1} x}{a}=\frac{\cos ^{-1} x}{b}=\frac{\tan ^{-1} y}{c}$, then find the value of $\cos \left(\frac{\pi c}{a+b}\right)$
(1) $\frac{1+y^{2}}{1-y^{2}}$
(2) $\frac{2 y}{1+y^{2}}$
(3) $\frac{1-y^{2}}{1+y^{2}}$
(4) $\frac{y}{1+y^{2}}$

Ans. (3)
Sol. Let $\sin ^{-1} x=a \lambda, \cos ^{-1} x=b \lambda, \tan ^{-1} y=c \lambda$
$\Rightarrow(\mathrm{a}+\mathrm{b}) \lambda=\frac{\pi}{2}$
$\Rightarrow \frac{\pi}{a+b}=2 \lambda$
Now $\cos \left(\frac{\pi}{a+b}\right)=\cos (2 \lambda c)=\cos \left(2 \tan ^{-1} y\right)$
$=\frac{1-y^{2}}{1+y^{2}}$
12. If $\mathfrak{a} \times(\mathrm{a} \times(\mathrm{a} \times(\mathrm{a} \times \mathrm{b})))=$
(1) $|a|^{4} b$
(2) $-|a|^{4} b$
(3) $|a|^{2} b$
(4) $-|a|^{2} b$

Ans. (1)
Sol. $\quad \mathrm{a} \times\left(\mathrm{a} \times\left((\mathrm{a} . \mathrm{b}) \mathrm{a}-|\mathrm{a}|^{2} \mathrm{~b}\right)\right)$

$$
\begin{aligned}
& =\mathrm{a} \times\left(-|\mathrm{a}|^{2}(\mathrm{a} \times \overline{\mathrm{b}})\right)=--|\mathrm{a}|^{2}\left((\mathrm{a} \cdot \overline{\mathrm{~b}}) \mathrm{a}-|\overline{\mathrm{a}}|^{2} \overline{\mathrm{~b}}\right)=-|\mathrm{a}|^{4} \mathrm{~b}-|\mathrm{a}|^{2}(\mathrm{a} \cdot \mathrm{~b}) \mathrm{a} \\
& =|\mathrm{a}|^{4} \mathrm{~b} \quad(\because \mathrm{a} \cdot \mathrm{~b}=0)
\end{aligned}
$$

13. If $|f(x)-f(y)| \leq\left|(x-y)^{2}\right| ; x, y \in R$ and $f(0)=1$ then
(1) $f(x)=0$ for $x \in R$
(2) $f(x)>0: x \in R$
(3) $f(x)<0 ; x \in R$
(4) $f(x)$ can take any value

Ans. (2)
Sol. $\quad\left|\frac{f(x)-f(y)}{x-y}\right| \leq|x-y|$
$\Rightarrow\left|\mathrm{f}^{\prime}(\mathrm{x})\right| \leq 0$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=0$
$\Rightarrow \mathrm{f}(\mathrm{x})=$ constant
$\Rightarrow \mathrm{f}(\mathrm{x})=1$
14. $1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}} \ldots \ldots . . \infty$
(1) $\frac{13}{4}$
(2) $\frac{13}{2}$
(3) $\frac{11}{4}$
(4) $\frac{11}{2}$

Ans. (1)
Sol. $\mathrm{S}=1+\frac{2}{3}+\frac{7}{3^{2}}+\frac{12}{3^{3}}+\ldots . . . \infty$
$\frac{1}{3} S=\frac{1}{3}+\frac{2}{3^{2}}+\frac{7}{3^{3}}+\ldots \ldots \ldots$.
(i) - (ii)
$\frac{2}{3} S=1+\frac{1}{3}+\frac{5}{3^{2}}+\frac{5}{3^{3}}+\ldots \ldots$.
$\frac{2}{3} S=\frac{4}{3}+\frac{5}{3^{2}}+\frac{5}{3^{3}}+\ldots \ldots \ldots$.
$\frac{2}{3} S=\frac{4}{3}+\frac{\frac{5}{3^{2}}}{1-\frac{1}{3}}=\frac{4}{3}+\frac{5}{6}=\frac{13}{6}$
$S=\frac{13}{6} \times \frac{3}{2}=\frac{13}{4}$
15. Find maximum value of term independent of t in expansion of $\left(\mathrm{tx}^{1 / 5}+\frac{(1-\mathrm{x})^{1 / 10}}{\mathrm{t}}\right)^{10}$
(1) $56 \sqrt{3}$
(2) $\frac{56}{\sqrt{3}}$
(3) 56
(4) $28 \sqrt{3}$

Ans. (1)
Sol. $\quad \mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}}\left(\mathrm{t} \mathrm{x}{ }^{1 / 5}\right)^{10-\mathrm{r}}\left(\frac{(1-\mathrm{x})^{1 / 10}}{\mathrm{t}}\right)^{\mathrm{r}}$
$10-\mathrm{r}-\mathrm{r}=0 \Rightarrow \mathrm{r}=5$
$\mathrm{T}_{6}={ }^{10} \mathrm{C}_{5} \mathrm{x}(1-\mathrm{x})^{1 / 2}$
$\frac{d\left(T_{6}\right)}{d x}={ }^{10} \mathrm{C}_{5}\left((1-\mathrm{x})^{1 / 2}+\frac{-\mathrm{x}}{2 \sqrt{1-\mathrm{x}}}\right)=0$
$2(1-\mathrm{x})-\mathrm{x}=0 \Rightarrow \mathrm{x}=\frac{2}{3}$
Maximum $\mathrm{T}_{6}={ }^{10} \mathrm{C}_{3} \frac{2}{3}\left(\frac{1}{3}\right)^{1 / 2}=56 \sqrt{3}$
16. $\sum_{n=1}^{n=100} \int_{n-1}^{n} e^{x-[x]} d x$ is equal to :
(1) $100(\mathrm{e}-1)$
(2) 100 e
(3) 100
(4) $100(1-\mathrm{e})$

Ans. (1)
Sol. $\sum_{n=1}^{n=100} \int_{n-1}^{n} e^{\{x\}} d x$

$$
=100 \int_{0}^{1} \mathrm{e}^{\mathrm{x}}=100(\mathrm{e}-1)
$$

17. If a fair coin is tossed n times, probability of getting 9 heads is equal to probability of getting 7 heads . Find the probability of given 2 heads.
(1) ${ }^{16} \mathrm{C}_{2} \times\left(\frac{1}{2}\right)^{16}$
(2) ${ }^{16} \mathrm{C}_{2} \times\left(\frac{1}{2}\right)^{14}$
(3) ${ }^{16} \mathrm{C}_{3} \times\left(\frac{1}{2}\right)^{16}$
(4) ${ }^{16} \mathrm{C}_{3} \times\left(\frac{1}{2}\right)^{14}$

Ans. (1)
Sol. ${ }^{\mathrm{n}} \mathrm{C}_{9} \times\left(\frac{1}{2}\right)^{9} \times\left(\frac{1}{2}\right)^{\mathrm{n}-9}={ }^{\mathrm{n}} \mathrm{C}_{7} \times\left(\frac{1}{2}\right)^{7} \times\left(\frac{1}{2}\right)^{\mathrm{n}-7}$
${ }^{\mathrm{n}} \mathrm{C}_{9}={ }^{\mathrm{n}} \mathrm{C}_{7} \Rightarrow \mathrm{n}=16$
$\mathrm{P}(2$ Heads $)={ }^{16} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{2}\right)^{14}$
$={ }^{16} \mathrm{C}_{2} \times\left(\frac{1}{2}\right)^{16}$
18. Given three planes $P_{1}: 3 x-15 y+21 z=9$

$$
\begin{aligned}
& P_{2}: 4 x-20 y+21 z=10 \\
& P_{3}: 2 x-10 y+14 z=10
\end{aligned}
$$

Then
(1) P_{1}, P_{2} are parallel
(2) P_{1}, P_{2}, P_{3} are parallel
(3) P_{1}, P_{3} are parallel
(4) P_{2}, P_{3} are parallel

Ans. (3)
Sol. $\quad P_{1}: x-5 y+7 z=3$
$\mathrm{P}_{2}: 4 \mathrm{x}-20 \mathrm{y}+21 \mathrm{z}=10$
$P_{3}: x-5 y+7 z=5$
P_{1} and P_{3} are parallel as dr's of normal are same
19. The summation of $2^{\text {nd }} \& 6^{\text {th }}$ terms of an increasing GP is $\frac{25}{2}$ and product of $3^{\text {rd }} \& 5^{\text {th }}$ term is 25 , then summation of $4^{\text {th }}, 6^{\text {th }} \& 8^{\text {th }}$ term is
(1) 30
(2) 35
(3) 20
(4) 22

Ans. (2)
Sol. \quad ar $+\mathrm{ar}^{5}=\frac{25}{2}$ and $\mathrm{ar}^{2} . \mathrm{ar}^{4}=25 \quad \Rightarrow \mathrm{ar}^{3}=5$
$\therefore \frac{\mathrm{r}+\mathrm{r}^{5}}{\mathrm{r}^{3}}=\frac{5}{2}$
$\Rightarrow 2+2 \mathrm{r}^{4}=5 \mathrm{r}^{2}$
$\Rightarrow 2 \mathrm{r}^{4}-5 \mathrm{r}^{2}+2=0$
$\Rightarrow \mathrm{r}^{2}=2$ or
$\mathrm{r}^{2}=\frac{1}{2}$ Reject
Now, $\mathrm{ar}^{3}+\mathrm{ar}^{5}+\mathrm{ar}^{7}=5+\mathrm{ar}^{5}\left(1+\mathrm{r}^{2}\right)=5+5.2(1+2)=35$
20. If $\mathrm{P}(1,5,35) \mathrm{Q}(7,5,2) \mathrm{R}(1, \lambda, 7) \mathrm{S}(2 \lambda, 1,2)$ are coplanar then sum of value of λ is :
(1) $\frac{39}{5}$
(2) $\frac{17}{2}$
(3) $\frac{-39}{5}$
(4) $\frac{-17}{2}$

Ans. (2)
Sol. for points to be coplanar $\left|\begin{array}{ccc}6 & 0 & -33 \\ 0 & \lambda-5 & -28 \\ 2 \lambda-1 & -4 & -38\end{array}\right|=0$
$\Rightarrow 6(-33 \lambda+165-112)+33\left(2 \lambda^{2}-11 \lambda+5\right)=0$
$\Rightarrow-198 \lambda+318+66 \lambda^{2}-363 \lambda+165=0$
$\Rightarrow 66 \lambda^{2}-561 \lambda+483=0$
$\operatorname{Sum}=\frac{561}{66}=\frac{187}{22}=\frac{17}{2}$
21. $\int_{0}^{\pi}|\sin 2 x| d x$ is equal to

Ans. 2
Sol. $\quad \int_{0}^{\pi}|\sin 2 x| d x$

$$
\text { Here } f(2 a-x)=f(x)
$$

$$
\begin{aligned}
& =2 \int_{0}^{\pi / 2}(\sin 2 x) d x \\
& =2\left(-\frac{\cos 2 x}{2}\right)_{0}^{\pi / 2} \\
& =2
\end{aligned}
$$

22. If $30 .{ }^{30} \mathrm{C}_{0}+29 .{ }^{30} \mathrm{C}_{1}+28 .{ }^{30} \mathrm{C}_{2}+\ldots \ldots . .+{ }^{30} \mathrm{C}_{29}=\mathrm{n} .2^{\mathrm{m}}$ then find the value of $(\mathrm{m}+\mathrm{n})$

Ans. 59
Sol. General term $=(30-r) \cdot{ }^{30} \mathrm{C}_{\mathrm{r}}$
L.H.S $=\sum_{\mathrm{r}=0}^{30}(30-\mathrm{r}) .{ }^{30} \mathrm{C}_{\mathrm{r}}$
$=30 \sum_{\mathrm{r}=0}^{30}{ }^{30} \mathrm{C}_{\mathrm{r}}-\sum_{\mathrm{r}=0}^{30} \mathrm{r} .{ }^{30} \mathrm{C}_{\mathrm{r}}$
$=30.2^{30}-30.2^{29}$
$=30.2^{29}$
So $\mathrm{n}=30, \mathrm{~m}=29$
$\mathrm{m}+\mathrm{n}=59$
23. If $x^{3}-2 x^{2}+2 x-1=0$ has roots α, β, γ then find $\left(\alpha^{162}+\beta^{162}+\gamma^{162}\right)$

Ans. 3
Sol. $\mathrm{n}=1, \mathrm{n}=-\omega, \mathrm{n}=-\omega^{2}$
$\alpha=1, \beta=-\omega, \gamma=-\omega^{2}$
$\mathrm{E}=1+\omega^{162}+\left(\omega^{2}\right)^{162}$
$=3$
24. Find the area bounded by the curve $\mathrm{y}=||\mathrm{x}-1|-2|$ with x -aixs

Ans. 4

Sol.

$$
\text { Area }=\frac{1}{2} \times 4 \times 2=4
$$

25. Find number of solutions of $\sqrt{3} \cos ^{2} x=(\sqrt{3}-1) \cos x+1$ in $x \in\left[0, \frac{\pi}{2}\right]$

Ans. 1
Sol. $\quad \sqrt{3} \cos ^{2} x-(\sqrt{3}-1) \cos x-1=0$
$\cos x=\frac{(\sqrt{3}-1) \pm \sqrt{(\sqrt{3}-1)^{2}+4 \sqrt{3}}}{2 \sqrt{3}}$
$=\frac{(\sqrt{3}-1) \pm \sqrt{(4+2 \sqrt{3})}}{2 \sqrt{3}}=\frac{(\sqrt{3}-1) \pm(\sqrt{3}+1)}{2 \sqrt{3}}$
$=1, \frac{-1}{\sqrt{3}}$
since $x \in\left[0, \frac{\pi}{2}\right]$
$\Rightarrow \cos x=\frac{-1}{\sqrt{3}}$, not possible
$\therefore \cos \mathrm{x}=1$
$\Rightarrow \mathrm{x}=0$
\therefore number of solution 1
26. In the given figure $\mathrm{AD}=13, \mathrm{DE}=1, \mathrm{AD}$ bisects angle BAC and BC is perpendicular to AD , then, area of triangle ABC .

Ans. 41.568
Sol. Let O be mid-point of AD , now perpendicular from C to BC bisects chord BC , ($\triangle \mathrm{ACE}$ and $\triangle \mathrm{ABE}$ are congruent). Hence $A D$ is diameter and O is centre of circle.

So BE $=\sqrt{(6.5)^{2}-(5.5)^{2}}$
$=\sqrt{12}$
Hence area $=\frac{1}{2} \cdot 12.2 \sqrt{12}=24 \sqrt{3}$
27. Find the difference between the value of degree and order of differential equation corresponding to the family of curves $y^{2}=a(x+\sqrt{2})$.

Ans. 2
Sol. order of differential equation is 1.
$2 y^{\prime}=\mathrm{a}$
$\Rightarrow y^{2}=2 y y^{\prime}\left(x+\sqrt{2 y^{\prime}}\right)$
$\Rightarrow y-2 x y^{\prime}=2 y^{\prime} \cdot \sqrt{2 y^{\prime}}$
$\Rightarrow\left(y-2 x y^{\prime}\right)^{2}=4\left(y^{\prime}\right)^{2} .2 y^{\prime}$
$\Rightarrow\left(y-2 x \cdot \frac{d y}{d x}\right)^{2}=8 y \cdot\left(\frac{d y}{d x}\right)^{3}$
Degree of Differential equation $=3$
28. A plane is passing through $(\lambda, 2,1) \&(4,-2,2)$. It is perpendicular to line joining points $A(-2,23,18)$ and $B(-1,29,16)$. Find value of $\left(\frac{\lambda}{11}\right)^{2}-\frac{4 \lambda}{11}-4$

Ans. 8
Sol. $\quad \overline{\mathrm{AB}}=\hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
$\alpha=(\lambda-4) \hat{i}+4 \hat{j}-\hat{k}$
$\overline{\mathrm{AB}} . \alpha=0$
$\lambda-4+24+2=0 \quad \Rightarrow \lambda=-22$
$\mathrm{E}=4+8-4=8$
29. Number of bacteria are increasing at a rate proportional to its number at time ' t ' of at $\mathrm{t}=0$, $\mathrm{N}=1000$ and after 2 hours, number of bacteria increased by 20%.If at $\mathrm{t}=\frac{\mathrm{k}}{\ell \mathrm{n} \frac{5}{6}}$, number of bacteria are 2000 , then find $\left(\frac{\mathrm{k}}{\ell \mathrm{n} 2}\right)^{2}$?

Ans. 4

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	11
	visit us at: www.reliablekota.com, Email: info@reliablekota.com	
	Call us: +91-744-2665544	

Sol.

$$
\begin{aligned}
& \frac{d x}{d t} \propto x \\
& \Rightarrow \frac{d x}{d t}=\lambda x \\
& \Rightarrow \int_{1000}^{x} \frac{d x}{x}=\lambda \int_{0}^{t} \mathrm{dt} \\
& \Rightarrow \ln \frac{\mathrm{x}}{1000}=\lambda \mathrm{t} \\
& \text { at } \mathrm{t}=2, \mathrm{x}=1200 \\
& \therefore 2 \lambda=\ell \mathrm{n} \frac{6}{5} \\
& \therefore \mathrm{x}=1000 \cdot \mathrm{e}^{\frac{1}{2} \ell \mathrm{n} \frac{6}{5} \cdot \mathrm{t}} \\
& \text { Now } 2000=1000 \cdot \mathrm{e}^{\frac{1}{2} \ln \frac{6}{5} \cdot \frac{\mathrm{k}}{\ln \frac{5}{6}}} \\
& \Rightarrow 2=\mathrm{e}^{-\frac{\mathrm{k}}{2}} \\
& \Rightarrow \frac{\mathrm{k}}{2}=-\ell \mathrm{n} 2 \\
& \Rightarrow \frac{\mathrm{k}}{\ln 2}=-2
\end{aligned}
$$

