

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Question & Solutions

(Reproduced from memory retention)

Date: 25 February, 2021 (SHIFT-2) Time; (3.00 pm to 6.00 pm)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: PHYSICS

A-10 Road No. 1, IPIA, Kota-324005 (Rajasthan), India

Tel.: + 91-744-2665544 | Website: www.reliablekota.com | E-mail: info@reliablekota.com

JEE-MAIN 2021 FEBRUARY ATTEMPT

PHYSICS

1. A solid sphere as shown is rolling without slipping. Find maximum length travelled on an inclined plane?

$$(1) \frac{7v^2}{10q\sin\theta}$$

$$(2) \frac{10v^2}{7g\sin\theta}$$

$$(3) \frac{5v^2}{7g\sin\theta}$$

$$(4) \frac{7v^2}{5a\sin\theta}$$

Ans. (1)

Sol. Mg
$$(\ell \sin \theta) = \frac{1}{2}MV_0^2 + \frac{1}{2} \times \frac{2}{5}MV_0^2$$

$$\therefore Mg\ell \sin\theta = \frac{7}{10}MV^2 :: \ell = \frac{7v^2}{10g\sin\theta}$$

In an amplitude modulated wave, message wave frequency f_m and carrier wave frequency f_c. Find 2. out wavelength of amplitude modulated wave.

$$(1) \frac{c}{f_c}$$

(2)
$$\frac{c}{f_m}$$

(3)
$$\frac{c}{f_c + f_m}$$

$$(4) \frac{c}{f_c - f_m}$$

Ans. (1)

Sol. Using theory
$$\lambda = \frac{c}{f_c}$$

A unit mass particle is moving in a circle of radius R such that its projection on diameter executes 3. SHM. In 0.1 sec interval, particle undergoes angular displacement of 30°. Find force acting on particle at position B. If it starts from A. (R = 0.36m)

(1)9.7

(2) 0.1

(3) 100

(4) 53.2

Ans. (1)

Sol. Particle is in uniform circular motion.

$$\therefore \quad \omega = \frac{\frac{\pi}{6}}{0.1} = \frac{10\pi}{6} = \frac{5\pi}{3}$$

:.
$$F = m\omega^2 R = 1 \times \frac{25\pi^2}{9} \times 0.36 = \pi^2$$

- 4. Sun light is diffracted through a circular aperture of diameter 0.1 µm. If diameter is slightly increased then
 - (1) Size of circular fringe will increase, intensity decrease.
 - (2) Size of circular fringe will decrease, intensity increase.
 - (3) Size of circular fringe will increase, intensity increase.
 - (4) Size of circular fringe will decrease, intensity decrease.

(2) Ans.

Sol.
$$\sin \theta = \frac{1.22\lambda}{D} \Rightarrow \text{If D is increased} \Rightarrow \sin \theta \text{ decreased}$$

: size of circular fringe will decrease

Intensity will increase.

- Proton and electron are moving along circular path with same speed. Find out ratio of debroglie 5. wavelength that is $\frac{\lambda_e}{\lambda_p}$. If $m_p = 1836$ m_e.
 - (1) 1836
- (2) 1837
- $(4) \frac{1}{1837}$

Ans. (1)

Sol.
$$\lambda = \frac{h}{mv}$$

$$\frac{\lambda_e}{\lambda_p} = \frac{m_p}{m_e} = 1836$$

Find out dimension of $\frac{1}{4\pi\epsilon_0} \frac{e^2}{hc}$ where e : electronic charge, ϵ_0 = permittivity of free space, h : plank

constant, c: speed of light

- (1) $M^1L^1T^{-2}C^2$
- (2) $M^2L^2T^{-3}C^2$ (3) $M^1L^1T^{-2}C^2$
- (4) Dimension less

Ans. (4)

Sol.
$$\frac{1}{4\pi\epsilon_0} \frac{e^2}{hc} = \frac{Ke^2 \times \lambda^2}{\lambda^2 \times hc} = \frac{F \times \lambda}{E} = \frac{E}{E}$$
: dimension less

- 7. In a given AC series circuit containing elements R, L and C & source voltage = 220v, it is known that if L alone is removed or if C alone is removed, phase difference between current & voltage remains 45°. Find i_{RMS} ? (R = 110 Ω)
 - (1)2A
- (2) 2.5A
- (3) 1A
- (4) 1.5A

Ans. (1)

Sol. Since ϕ remains same,

circuit is in resonance.

$$\therefore i_{RMS} = \frac{V_{RMS}}{Z} = \frac{220}{110} = \boxed{2A}$$

8. Statement-1: Rotational KE of a gas molecule follows Maxwell's speed distribution curve.

Statement-2: Rotational KE & translational KE of a diatomic gas molecule is same.

(1) 1-true 2-false

(2) 1-false 2-true

(3) 1-false 2-false

(4) 1-true 2-true

Ans. (3)

Sol. Maxwell's Boltzmann distribution curve is always drawn for no. of molecules (N) vs velocity of molecules. so statement-1 is false.

T.K.E. of diatomic molecule = $\frac{3}{2}$ KT

R.K.E. of diatomic molecule = $\frac{2}{2}$ KT

Statement-2 is false.

- **9.** If an electron of a hydrogen atom jumps from n = 2 to n = 1 then find the wavelength of released photon.
 - (1) 121.5 nm
- (2) 123.15 nm
- (3) 125.15 nm
- (4) 128.15 nm

Ans. (1)

Sol.
$$13.6 \times \left(1 - \frac{1}{4}\right) = \frac{1240}{\lambda(\text{nm})}$$

$$\lambda = \frac{4 \times 1240}{13.6 \times 3} \text{nm} = 121.5 \text{ nm}$$

- **10.** In photoelectric effect of a certain metal the stopping potential is 0.71 V if the wavelength of incident radiation is 491 nm. Now the stopping potential comes out to be 1.43 V if the wavelength of incident radiation is:
 - (1) 390 nm
- (2) 382 nm
- (3) 275 nm
- (4) 392 nm

Ans. (2)

Sol.
$$\frac{\text{hc}}{\lambda} = \phi + eV_s$$
.

$$\frac{1240}{491} = \phi + 0.71$$

$$\frac{1240}{\lambda} = \phi + 1.43$$

$$1240\left(\frac{1}{\lambda} - \frac{1}{491}\right) = 0.72$$

$$\lambda = 382 \text{ nm}$$

- 11. Two particles having mass $M_1 = 4$ gm, $M_2 = 16$ gm. If kinetic energy of both the particle is equal then ratio of their momentum is n : 2 then n is:
 - (1) 2
- (2) 1/2
- (3)4
- (4) 1/4

Ans. (2)

Sol.
$$K_1 = \frac{P_1^2}{2m_1} \& K_2 = \frac{P_2^2}{2m_2}$$

$$\therefore \frac{\mathbf{K}_1}{\mathbf{K}_2} = \left(\frac{\mathbf{P}_1}{\mathbf{P}_2}\right)^2 \times \left(\frac{\mathbf{M}_2}{\mathbf{M}_1}\right)$$

$$\therefore \left(\frac{P_1}{P_2}\right)^2 = \frac{M_2}{M_1} \qquad \Rightarrow \frac{P_1}{P_2} = \sqrt{\frac{M_2}{M_1}} = \frac{1}{2}.$$

- 12. An electron enters in a capacitor making an angle α with one plane having kinetic energy K_1 and comes out with kinetic energy K_2 making an angle β with other plane. Find ratio of K_1 and K_2
 - (1) $\frac{\cos^2 \beta}{\cos^2 \alpha}$
- $(2) \frac{\cos^2 \alpha}{\cos^2 \beta}$
- (3) $\frac{\sin^2 \alpha}{\sin^2 \beta}$
- $(4) \frac{\sin^2 \beta}{\sin^2 \alpha}$

Ans. (1)

Sol.
$$v_1 \cos \alpha = v_2 \cos \beta$$

$$v_1^2 \cos^2 \alpha = v_2^2 \cos^2 \beta$$

$$\frac{K_1}{K_2} = \frac{\cos^2 \beta}{\cos^2 \alpha}$$

13. A gas follows $PV^{1/2} = \text{constant}$ as shown. If $V_2 = 2V_1$, find $\frac{T_2}{T_1}$?

- $(1) \frac{1}{\sqrt{2}}$
- (2) $\sqrt{2}$
- $(3) \sqrt{3}$

Ans. (2)

Sol. $PV^{1/2} = C$

$$\therefore TV^{-1/2} = C$$

$$\therefore \ \frac{T_1}{\sqrt{V_1}} = \frac{T_2}{\sqrt{V_2}}$$

$$\therefore \left(\frac{T_2}{T_1}\right)^2 = \frac{V_2}{V_1} = 2$$

$$\therefore \frac{T_2}{T_1} = \sqrt{2}$$

For given logic gates circuit, which truth table is right.

	A	В	Y
(1)	0	0	1
	1	0	0
	0	1	0
	1	1	1

	A	В	Y
(2)	0	0	0
	1	0	1
	0	1	0
	1	1	0

(3)	0	0	0
	1	0	0
	0	1	0
	1	1	1

A	В	Y	(4)	A	В	Y
0	0	0		0	0	0
1	0	0		1	0	1
0	1	0		0	1	1
1	1	1		1	1	1

Ans. (1)

Sol.
$$Y = \overline{A\overline{B} + \overline{A}B}$$

$$Y = \overline{A}\overline{\overline{B}} \cdot \overline{\overline{A}B}$$

$$Y = (\overline{A} + B) \cdot (A + \overline{B})$$

$$Y = \overline{A} \cdot A + \overline{A} \overline{B} + A \cdot B + B\overline{B}$$

$$Y = AB + \overline{A}\overline{B}$$

15. Match the column I and column II.

Column I

- (A) Transformer
- (B) Rectifier
- (C) Filter
- (D) Stabiliser
- $(1) A \rightarrow Q B \rightarrow P C \rightarrow R D \rightarrow S$
- (2) $A \rightarrow Q \quad B \rightarrow P \quad C \rightarrow S \quad D \rightarrow R$
- $(3) A \rightarrow P B \rightarrow Q C \rightarrow R D \rightarrow S$
- $(4) A \rightarrow P B \rightarrow Q C \rightarrow S D \rightarrow R$

Ans. (1)

Sol. Transformer \rightarrow Step up – Step down

Rectifier \rightarrow AC to DC

Filter \rightarrow Ripple is removed

Stabiliser → For any input, output would be same

16. Find time period of oscillation of mass M, assume surface to be smooth.

(1)
$$2\pi\sqrt{\frac{M}{K}}$$

(2)
$$2\pi\sqrt{\frac{M}{4K}}$$

(3)
$$2\pi\sqrt{\frac{2M}{K}}$$

Column II

(P) AC to DC

(Q) Step up – Step down

(S) For any input, output would be same

(R) Ripple is removed

(4)
$$2\pi \sqrt{\frac{3M}{2K}}$$

Ans. (2)

Sol.
$$K_{eff} = 2K + 2K = 4K$$

$$T = 2\pi \sqrt{\frac{M}{4K}}$$

- A particle starts performing SHM on a smooth horizontal plane and it is released from $x = \frac{A}{2}$ & it's **17.** moving in –ve x-direction then $\phi = ?$
 - (1) $\frac{\pi}{6}$
- (2) $\frac{5\pi}{6}$
- (3) $\frac{2\pi}{3}$

Ans. (2)

Sol.

$$\varphi = \frac{\pi}{2} + \frac{\pi}{3}$$

$$\varphi = \frac{5\pi}{6}$$

- **18.** For an extrinsic semiconductor if doping concentration is increases then.
 - (1) For N type and P-type fermi level will increase if $T > T_f$ (T=temp of semi-conductor, T_f = fermi Temp.)
 - (2) For N type fermi level will increase and for P type fermi level will decrease.
 - (3) For N-type fermi level will decrease and for P-type fermi level will increase.
 - (4) For N-type fermi level will decrease and for P-type fermi level will decrease.

Ans. 2

- **Sol.** The variation of the fermi level obeys two conditions.
 - \rightarrow The mass action law
 - \rightarrow The neutrality equation.
- If tension is increased by 4% in vibrating string, find % change in speed of wave?

Tension = T

Ans. 2

Sol.

$$v = \sqrt{\frac{T}{\mu}}$$

$$\therefore \ \ell nv = \frac{1}{2} \ell nT - \frac{1}{2} \ell n\mu$$

$$\%\frac{dv}{v} = \%\frac{1}{2}\frac{dT}{T}$$

$$\therefore \% \frac{dv}{v} = \frac{1}{2} \times 4 = 2\%$$

20. If $\vec{p} \times \vec{g} = \vec{g} \times \vec{p}$ and angle between \vec{p} & \vec{g} is θ where $\theta \in (0, 360^{\circ})$ then value of θ is:

Ans. 180°

Sol. $\vec{p} \times \vec{g} = \vec{g} \times \vec{p}$ only if $\vec{p} = 0$ or $\vec{g} = 0$ or angle between them is 0° or 180° .

$$\theta = 180^{\circ}$$

21. A satellite is projected from surface of earth so that it can attain 10R height from surface of earth.

Its speed at surface of earth is $v = V_{escape} x \sqrt{\frac{x}{11}}$ find x.

Ans. 10

$$\textbf{Sol.} \qquad -\frac{GMm}{R} + \frac{1}{2}mv^2 = -\frac{GMm}{11R}$$

$$\frac{1}{2}mv^2 = \frac{10GMm}{11R}$$

$$v = V_{escape} x \sqrt{\frac{10}{11}}$$

$$x = 10$$

Find $i_1 = ?$

Ans. 2A

22.

23. For Carnot engine $\frac{W}{Q_{in}} = \frac{1}{4}$. If sink temperature is decreased by 52°C then $\frac{W}{Q_{in}} = \frac{1}{2}$. Find out source temperature in °C.

Ans. 208 °C

Sol.
$$\frac{W}{Q_{in}} = \frac{1}{4} = 1 - \frac{T_2}{T_1}$$
 ...(i)
$$\frac{T_2}{T_1} = \frac{3}{4}$$
 ...(i)
$$\frac{W}{Q_{in}} = \frac{1}{2} = 1 - \frac{(T_2 - 52^\circ)}{T_1}$$

$$\frac{T_1}{2} = T_2 - \frac{3}{4}T_1 + 52^\circ$$

 $T_1 = 208 \, ^{\circ}C$

24. A particle is dropped from the top of a tower. When it has travelled a distance of 5m, another particle is dropped from a distance of 25m below the top of tower. If both of them reach the bottom of tower simultaneously, then find the height of tower.

Ans. 45 m

Sol. At the instant 2nd particle is dropped 1st particle is moving at 10 m/s & has moved for time 1s.

H
$$25\text{m}$$
 5m 1^{st} particle 10m/s 2^{nd} particle

Time for particles to meet, $\Delta t = \frac{S_{rel}}{V_{rel}} = \frac{20}{10} = 2s$

 \therefore Time taken by first particle to reach ground = 3s

$$H = \frac{1}{2}g(3)^2 = 45m$$

25. For a x-ray if it's wavelength is 10A° & mass of a particle having same energy and same wavelength as x-ray is $\frac{xh}{3}$ where h is plank's constant then value of x is:

Ans. 5

Sol.
$$\frac{hc}{\lambda} = \frac{1}{2}mv^2$$

$$\frac{hc}{\lambda} = \frac{m^2 v^2}{2m}$$

$$\frac{hc}{\lambda} = \frac{h^2}{\lambda^2 (2m)}$$

$$m = \frac{h}{2c\lambda} = \frac{h}{2(3\times10^8)(10\times10^{-10})}$$

$$m = \frac{5h}{3}$$

26. Two conducting charge particles of negligible volume whose charges are 2.1 nc and -0.1 nc respectively are brought in contact and then separated by 0.5 m. If force of interaction between them is $x \times (10^{-9})N$ then x is :-

Ans. 36

Sol.
$$|\leftarrow 0.5m \rightarrow |$$
 1 nc 1 nc

$$F = \frac{K(1 \times 10^{-9})(1 \times 10^{-9})}{(0.5)^2} = 36 \times 10^{-9} N$$

$$x = 36$$

27. Coming soon.

Ans.

Sol.

28. Coming soon.

Ans.

Sol.

29. Coming soon.

Ans.

Sol.

30. Coming soon.

Ans.

Sol.