Unleashing Potential
Untersing Pont

PAPER-1(B.E./B. TECH.)

JEE (Main) 2021

Questions \& solutions

(Reproduced from memory retention)
Date : 24 February, 2021 (SHIFT-2) Time ; (3.00 pm to 6.00 pm)

Duration : 3 Hours | Max. Marks : 300

SUBJ=CT \& CHEMISTRY

Unleashing Potential

CHEMISTRY

1. Compare the rate of aromatic nucleophilic substitution reaction of the following compounds

(I)

(II)

(III)
(3) I $>$ II $>$ III $>$ IV

(IV)
(4) IV $>$ III $>$ II $>$ I
(1) IV $>$ II $>$ III $>$ I
(2) III $>$ II $>$ I $>$ IV

Ans. (4)
Sol. Rate of aromatic nucleophilic substitution reaction depends upon type of halogens and electronic effect of the group present on the ring. Electron withdrawing groups ($-\mathrm{I},-\mathrm{M}$) increases rate of reaction increases.
2. What is S in Buna-S ?
(1) Sulphure
(2) Styrene
(3) Rubber
(4) Strength

Ans. (2)
Sol. Buna-S is the co-polymer of buta-1,3-diene and styrene
3. Which of the following set of the reagent is used to convert nitrobenzene to 1,3-Dibromobenzene?
(1) $\mathrm{Br}_{2} / \mathrm{Fe} \longrightarrow \mathrm{Sn} / \mathrm{HCl} \longrightarrow \mathrm{NaNO}_{2} / \mathrm{HCl} \longrightarrow \mathrm{CuBr} / \mathrm{HBr}$
(2)
(3)
(4)

Ans. (1)

Sol.

1,3-Dibromobenzene

4. The reagent used to convert the following is ?

(1) $\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{\oplus}$
(2) Red $\mathrm{P} / \mathrm{Cl}_{2}$
(3) $\mathrm{Ni} / \mathrm{H}_{2}$
(4) NaBH_{4}

Ans. (1)

Unleashing Potential
 it is wolff-Kishner reduction of carbonyl compounds.
Sol.

5. Match the following

Column - I
(a) Valium
(b) Morphine
(c) Norethindrone
(d) Vitamin B-12

Column - II

(p) Pernicious anaemia
(q) Analgesic
(r) Tranquilizer
(s) Antifertility

Ans. $\quad \mathrm{a} \rightarrow \mathrm{r} ; \mathrm{b} \rightarrow \mathrm{q} ; \mathrm{c} \rightarrow \mathrm{s} ; \mathrm{d} \rightarrow \mathrm{p}$
6. Statement -I : BOD is the parameter that can be helpful for survival of aquatic life.

Statement - II : Optimum value of BOD is 6.5 ppm .
(1) Statement I is true ,Statement II is false
(2) Statement I is false ,Statement II is true
(3) Statement I , II both are true
(4) Statement I , II both are false

Ans. (1)
7. How many of the following amines can be prepared by Gabriel phthalimide synthesis ?
(i)

(ii)

(iii) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$
(iv) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

Ans. (3)
Sol. Only aliphatic amines can be prepared by Gabriel phthalimide synthesis.
8. Which of the following compound cannot be prepared by the reaction of alkyne with $\mathrm{HgSO}_{4} /$ dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(1) $\mathrm{CH}_{3} \mathrm{CHO}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
(4)

Ans. (2)
9. Diazonium salt of which of the following will give coloured dye on reaction with β-Napthol in NaOH
(1)

(2)

(3)

(4)

Ans. (4)
Sol. Only aromatic Primary amines will gives Dye test.
10. The correct bond angle \& shape of I_{3}^{-}is
(1) Linear \& 180°
(2) Trigonal pyramidal \& 120°
(3) V-shape \& 120°
(4) T-shape \& $109^{\circ} 28^{\prime}$

Ans. (1)

Sol.

$\mathrm{sp}^{3} \mathrm{~d}$ hybridisation

Linear shape $\angle \mathrm{I}-\mathrm{I}-\mathrm{I}=180^{\circ}$
11. Correct statements
(a) K.E. $\propto \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$
(b) (nv) $\propto z^{2}$
(c) Frequency $\propto \frac{z^{3}}{n^{3}}$
(d) Electrostatic force $\propto \frac{z^{3}}{n^{4}}$
(1) $\mathrm{a} \& \mathrm{~d}$ are correct
(2) $\mathrm{a} \& \mathrm{~b}$ are correct
(3) $b \& c$ are correct
(4) b \& d are correct

Ans. (1)
12. Which of the following is incorrect?
(1) $\mathrm{Cr}_{2} \mathrm{O}_{3}$ is Amphoteric
(2) RuO_{4} is oxidising agent
(3) VOSO_{4} is reducing agent
(4) Ruby appears due to presence of Co^{3+}

Ans. (4)
13. Which of the following order of melting point is correct
(1) $\mathrm{LiF}>\mathrm{LiC1}, \mathrm{NaCl}>\mathrm{MgO}$
(2) $\mathrm{LiF}<\mathrm{LiCl}, \mathrm{NaCl}>\mathrm{MgO}$
(3) $\mathrm{LiF}>\mathrm{LiCl}, \mathrm{NaCl}<\mathrm{MgO}$
(4) $\mathrm{LiF}<\mathrm{LiCl}, \mathrm{NaCl}>\mathrm{MgO}$

Ans. (3)
Sol. Lattice energy $\propto\left|Z^{+}\right|\left|Z^{-}\right|$

$$
\propto \frac{1}{\mathrm{r}^{+}+\mathrm{r}^{-}}
$$

LiF $\quad \mathrm{LiCl}$

Size $\quad \mathrm{F}^{-}<\mathrm{Cl}^{-} \quad$ [charge are same]
Lattice energy $\quad \mathrm{LiF}>\mathrm{LiCl}$

$$
\begin{array}{ll}
\mathrm{NaCl} \longrightarrow \mathrm{Na}^{\oplus}+\mathrm{Cl}^{-} & \left|\mathrm{Z}^{+}\right|\left|\mathrm{Z}^{-}\right|=1 \times|1|=1 \\
\mathrm{MgO} \longrightarrow \mathrm{Mg}^{+2}+\mathrm{O}^{-2} & |2||-2|=4
\end{array}
$$

Lattice energy $\quad \mathrm{MgO}>\mathrm{NaCl}$
Charge dominate over size
14. Spin only magnetic moment of the following complexes

$$
\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CO}(\mathrm{ox})_{3}\right]^{3-}, \mathrm{MnO}_{4}^{2-}
$$

(1) $4.9,0,1.76 \mathrm{BM}$
(2) $5.9,1.73 \mathrm{BM}$
(3) $1.73,2.83,0 \mathrm{BM}$
(4) $2.83,6.9,0 \mathrm{BM}$

Ans. (1)
Sol. $\left[\mathrm{FeCl}_{4}\right]^{2-}$ Contain Fe^{+2} in tetrahedral complex. Its configuration is $\mathrm{e}_{\mathrm{g}}{ }^{2,1} \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1}$ it have 4 unpaired electron in $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-} \mathrm{Co}^{+3}$ have configuration $\mathrm{t}_{2 \mathrm{y}}{ }^{2,2,2} \mathrm{eg}^{0,0} \quad \mathrm{MnO}_{4}^{2-}$ have Mn in +6 oxidation state and configuration of Mn is $\mathrm{e}_{\mathrm{g}}{ }^{1,0} \mathrm{t}_{2 \mathrm{~g}}{ }^{0,0,0}$
15. α-sulphur, β-Sulphur, $S_{2} \rightarrow$ find how many are paramagnetic

Ans. (1)
Sol. In S_{2}, like O_{2} two unpaired electron are present, $\alpha \& \beta$ - sulphur have S_{8} ring which are diamagnetic
16. Which of the following can be used for clotting of blood efficiently?
(1) NaHCO_{3}
(2) FeCl_{3}
(3) FeSO_{4}
(4) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$

Ans. (2)
Sol. Blood is a negative charged Sol. Therefore according hardy-Schulz rule Fe^{+3} cation have highest coagulation power. Therefore FeCl_{3} can be used for clotting of blood efficiently.
17. $3 \mathrm{C}_{2} \mathrm{H}_{2} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\ell)$
given that
$\mathrm{G}_{\mathrm{m}}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=2.4 \times 10^{5} \mathrm{~J}$
$\mathrm{G}_{\mathrm{m}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=-1.4 \times 10^{5} \mathrm{~J}$
Find $\log _{10} \mathrm{k}$ at $25^{\circ} \mathrm{C}$
Ans. (150.72)

Sol. $\quad \Delta \mathrm{G}^{\circ}=\left(\mathrm{G}_{\mathrm{M}}^{\circ}\right)_{\mathrm{C}_{6} \mathrm{H}_{6}}-3\left(\mathrm{G}_{\mathrm{M}}^{\circ}\right)_{\mathrm{C}_{2} \mathrm{H}_{2}}$
$=-1.4 \times 10^{5}-3 \times 2.4 \times 10^{5}$
$=-8.6 \times 10^{5}$ Joule
-2.303 RT $\log _{10} \mathrm{k}=-8.6 \times 10^{5}$
$-2.303 \times 8.314 \times 298 \log _{10} \mathrm{k}=-8.6 \times 10^{5}$
$\log _{10} \mathrm{k}=150.72$
18. 1.86 gm of aniline is converted into acetanilide with 90% efficiency. Mass of acetanilide formed is $[\mathrm{X}] \times 10^{-2} \mathrm{gm}$

Ans. 243×10^{-2}

Sol. $\quad \mathrm{Ph}-\mathrm{NH}_{2} \xrightarrow{\mathrm{Ac}_{2} \mathrm{O} \text { or } \mathrm{CH}_{3} \mathrm{COCl}, \text { Pyridine }} \mathrm{Ph}-\mathrm{NH}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3}$
$\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right) \quad$ Acetanilide $\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}\right)$
1.86 g

Molar mass $=93 \quad$ Molar mass $=135$

* 93 g aniline produces 135 g acetanilide
1.86 g aniline produces $\frac{135 \times 1.86}{93}=2.70 \mathrm{~g}$
* At 90% efficiency of reaction it produces $=\frac{2.70 \times 90}{100}=2.43 \mathrm{~g}$

Ans. 243×10^{-2}
19. Freezing point of $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$ is $5.5^{\circ} \mathrm{C}$. If 10 g of $\mathrm{C}_{4} \mathrm{H}_{10}$ is mixed with 200 g of $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$. Calculate freezing point of solution $\mathrm{k}_{\mathrm{f}}=5.12^{\circ} \mathrm{C} / \mathrm{m}$.

Ans. $\left(1.09^{\circ} \mathrm{C}\right)$
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$=5.12 \times \frac{10}{58} \times \frac{1000}{200}=4.41^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{F}}=\left(\mathrm{T}_{\mathrm{F}}\right)_{\text {Solvent }}-\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solution }}$
$4.41^{\circ} \mathrm{C}=5.5-\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solution }}$
$\left(\mathrm{T}_{\mathrm{F}_{1}}\right)_{\text {Solution }}=5.5-4.41=1.09^{\circ} \mathrm{C}$

Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA
20. De-broglie's wavelength of a proton and an α-particle is same. Calculate ratio of their velocities

Ans. (4)
Sol. $\lambda_{\mathrm{p}}=\lambda_{\alpha}$
$\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}}}=\frac{\mathrm{h}}{\mathrm{m}_{\alpha} \mathrm{v}_{\alpha}}$
$\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{v}_{\alpha}}=\frac{\mathrm{m}_{\alpha}}{\mathrm{m}_{\mathrm{p}}} \quad \because \mathrm{m}_{\alpha}=4 \mathrm{~m}_{\mathrm{p}}$
$\frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{v}_{\alpha}}=\frac{4 \mathrm{~m}_{\mathrm{p}}}{\mathrm{m}_{\mathrm{p}}}=4$
Ans. 4
21. If $\left[\mathrm{H}^{+}\right]$changed from 1 M to $10^{-4} \mathrm{M}$

Find change in electrode potential $\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{+2}}^{\circ},\left(\frac{\mathrm{RT}}{\mathrm{F}}=0.059\right)$
[Assume $\left.\left[\mathrm{MnO}_{4}^{-}\right]=\left[\mathrm{Mn}^{+2}\right]=1 \mathrm{M}\right]$
Ans. 0.3776 V
Sol. $\quad 5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\underset{1 \mathrm{M}}{\mathrm{MnO}_{4}^{-}} \longrightarrow \underset{1 \mathrm{M}}{\mathrm{Mn}^{+2}}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}_{1}=\mathrm{E}^{\mathbf{o}}-\frac{0.59}{5} \log _{10}\left[\frac{1}{\left[\mathrm{H}^{+}\right]^{8}} \times \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\right]$
$=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \log _{10}\left[\frac{1}{(1)^{8}}\right]=\mathrm{E}^{\mathrm{o}}$
$\mathrm{E}_{2}=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \log _{10}\left[\frac{1}{\left(10^{-4}\right)^{8}} \times \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\right]$
$=\mathrm{E}^{\mathbf{o}}-\frac{0.059}{5} \log _{10}\left[10^{32}\right]$
$=\mathrm{E}^{\mathrm{o}}-\frac{0.059}{5} \times 32$
$\mathrm{E}_{1}-\mathrm{E}_{2}=\mathrm{E}^{\mathrm{o}}-\mathrm{E}^{\mathrm{o}}+\frac{0.059}{5} \times 32$
$=0.3776 \mathrm{~V}$
22. V ml of a hydrocarbon $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$ requires 6 V ml of oxygen for complete combustion \& forms 4 V ml of CO_{2}. Determine y

Ans. 8
Sol. $\quad \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{XCO}_{2}\left(\frac{\mathrm{y}}{2}\right) \mathrm{H}_{2} \mathrm{O}(\ell)$
Volume-Volume V 6V 4V
Analysis
$\frac{\mathrm{V}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}}}{1}=\frac{\mathrm{V}_{\mathrm{CO}_{2}}}{\mathrm{x}}$
$\frac{\mathrm{v}}{1}=\frac{4 \mathrm{v}}{\mathrm{x}} \quad \mathrm{x}=4$
$\frac{v_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}}}{1}=\frac{\mathrm{V}_{\mathrm{O}_{2}}}{\mathrm{x}+\frac{\mathrm{y}}{4}}$
$\frac{\mathrm{V}}{1}-\frac{6 \mathrm{~V}}{\mathrm{x}+\frac{\mathrm{y}}{4}}$
$x+\frac{y}{4}=6$
$4+\frac{y}{4}=6$
$\frac{y}{4}=2$
$y=8$
Formula $\mathrm{C}_{4} \mathrm{H}_{8}$
23. Sucrose $\xrightarrow{\text { I order }}$ Glucose + Fructose
$\mathrm{t}_{1 / 2}=3.33$ hour
$\mathrm{f}=$ fraction remaining of sucrose at 9 hour.
Find out value of $100 \times \log \left(\frac{1}{f}\right)$

$$
\left[\log _{10} 2=0.3\right]
$$

Ans. (81)
$\mathrm{n}=\frac{\text { time given }}{\mathrm{t}_{1 / 2}}=\frac{9 \mathrm{hr}}{3.33 \mathrm{hr}}=2.7$
$=\frac{1}{2^{2.7}}$
$\log \frac{1}{\mathrm{f}}=\log 2^{2.7}=2.7 \times 0.3=0.81$
$100 \times \log _{10}\left(\frac{1}{f}\right)=100 \times 0.81=81$
Ans. 81
24. Determine volume occupied by 4.75 g acetylene gas at 740 mmHg pressure $\& 50^{\circ} \mathrm{C}$ temperature $\mathrm{R}=0.0826 \mathrm{Latm} / \mathrm{molk}($ in L)

Ans. (5)
Sol. $\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{\left(\frac{4.75}{26}\right) \times 0.0826 \times 323}{\left(\frac{740}{760}\right)} \approx 5 \mathrm{~L}$

