

JEE MAIN 2021

PAPER-1 (B.E. / B.TECH)

Duration : 3 Hours

Max. Marks: 300

SUBJECT - CHEMISTRY

JEE (MAIN) FEB 2021 RESULT Legacy of producing **Best Results Proved again** %tile %tile

in MATHS PRANAV JAIN Roll No. : 20771421 99.993%tile **RESULT HIGHLIGHTS**

All are from KOTA CLASSROOM only

Secured 100%tile

in Maths / Physics

Students

students secured

above 99%tile (Overall)

TARGET **EE (MAIN+** 2021 COMPACT COURSE for XII passed students Duration

Starting from MAR 2021 Course will be available in both Offline & Online mode

'hll

CHEMISTRY

Rélicie visit us at: <u>www.reliablekota.com</u> , <u>Email: info@reliablekota.com</u>	
<u>— INSTITUTE</u> <u>Call us: +91-744-2665544</u>	

Compound (X) $\xrightarrow{O_3}$ Y $\xrightarrow{AgNO_3}$ silver mirror 5. Which of the following is [X]

(1) (2)
$$CH_3-C=C-CH_3$$

Ans. (4)

6. Wooden laminates are made by

(1) Urea-formaldehyde resin

(3) Phenol–formaldehyde resin

(2) Melamine-formaldehyde resin (4) PVC

Ans. (2)

7. Which of the following is least basic among the following compounds? (3) (CH₃CO)₂NH (4) CH₃-C-NH-Et (2) $(Et)_2 NH$ (1) Et₃N Ĭ O

(3) Ans.

8.	CH_3 Reagent OCH_3 Reagent is			
	(1) LiAlH ₄	(2) NaBH ₄	(3) ZnHg/HCl	(4) KMnO ₄ /H ^{\oplus}
Ans.	(4)			

- 9. Ammonolysis of alkyl halide to prepare primary, secondary and tertiary amines followed by NaOH is
 - (1) to remove acidic impurities
 - (2) to remove basic impurities
 - (3) to activate halide
 - (4) to activate ammonia
- (1) Ans.
- 10. Secondary structure of protein in stabilized by
 - (1) H-bond

(2) Vanderwaal force of attraction

(3) Peptide bond

(4) Glycosidic linkage

(1) Ans.

visit us at: <u>www.reliablekota.com</u> , <u>Email: info@reliablekota.com</u>	
<u>Call us: +91-744-2665544</u>	

11. Statement-1: NaH can be used as an oxidising agent.

Statement-2: Pyridine is basic due to lone pair of nitrogen.

- (1) Both Statement-1 and Statement-2 are correct
- (2) Both Statement-1 and Statement-2 are false
- (3) Statement-1 is correct and Statement-2 is false
- (4) Statement-1 is false and Statement-2 is correct

Ans. (4)

12. Vapour pressure of pure liquid A & B are 21 & 18 mm of Hg respectively. Determine vapour pressure of a solution (in mm of Hg) obeying Raoult's law containing 1 mole of A & 2 mole of B.Ans. (19)

Sol.	$X_A = \frac{1}{1+2} = \frac{1}{3}$	$X_{\rm B} = \frac{2}{3}$
	$P_A^{\circ} = 21 \text{ mm of Hg}$	$P_{\rm B}^{\circ} = 18 \text{ mm of Hg}$
	$P_{\text{total}} = P_{A}^{\circ} X_{A} + P_{B}^{\circ} X_{B}$	
	$=21\times\frac{1}{3}+18\times\frac{2}{3}$	
	= 7 + 12 = 19 mm of Hg	
12	True also and A & D have f	

13. Two elements A & B have following ionisation energy data:

	IE ₁	IE ₂		
A	400	4000 (in kJ/mol)		
В	700	1400 (in kJ/mol)		
A &	B are respect	ively :		
(1) N	Na, Mg	(2) Mg, Na	(3) Na, F	(4) Mg, F
(1)				

- **Ans.** (1)
- 14. Half life time of two first order reactions
 - $A \longrightarrow Products$
 - $B \longrightarrow Products$

are 54 & 18 min respectively. Starting with equimolar quantities of A & B, determine the time after which [A] = 16 [B]

Sol.
$$[A]_t = \frac{[A]_0}{2^{\frac{\text{Time}}{54}}}$$
 $[B]_t = \frac{[B]_0}{2^{\frac{\text{Time}}{18}}}$

:: $[A]_0 = [B]_0$ and $[A]_t = 16 [B]_t$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	
Réliable	visit us at: <u>www.reliablekota.com, Email: info@reliablekota.com</u>	
— INSTITUTE —	<u>Call us: +91-744-2665544</u>	

	$\frac{[A]_{0}}{T} = 16 \frac{[A]_{0}}{T}$			
	$2^{\overline{54}}$ $2^{\overline{18}}$			
	$16 = 2^{\frac{T}{18} - \frac{T}{54}}$			
	$16 = 2^{\frac{2T}{54}}$			
	$2^4 = 2^{\frac{2T}{54}}$			
	$4 = \frac{2T}{54}$			
	T = 108 min			
15.	If both FeX ₂ & FeY ₃	are found to exist, X	& Y can be :	
	(1) $X = F, Cl, Br, I$	Y = F, Cl, Br	(2) $X = Cl, Br, I$	Y = F, Cl, Br, I
	(3) $X = F, Cl, Br$	Y = Cl, Br, I	(4) $X = F, Cl, Br, I$	Y = F, Cl, Br, I
Ans.	(1)			
Sol.	FeI ₃ does not exist b	ecause of I [–] being ver	y good reducing agent.	
17			1 1 0	
16.	Which of the follows	(2) $7xO$	by coke?	
Ang	(1) AI_2O_3	(2) ZnO	$(3) \operatorname{Fe}_2 \operatorname{O}_3$	(4) Cu_2O
Alls.	(1)			
17.	Volume of 1 M Nat	OH solution required	to neutralise 50 mL 1	M H ₃ PO ₃ & 100 ml 2M H ₃ PO ₂
	(1) 100 ml, 200 ml	(2) 200 ml, 100 ml	(3) 50 ml, 100 ml	(4) 100 ml, 50 ml
Ans.	(1)			
Sol.	(1) $2NaOH + H_3P_{100 \text{ m mole}} + 50 \text{ m}$	$PO_3 \longrightarrow Na_2HPO_3 +$	2H ₂ O	
	100 m mole = M	$I \times V_{ml}$		
	100 m mole = 1	$\times V_{ml}$		
	$V_{ml} = 100 \text{ ml}$			
	(2) NaOH + H_{3} 200 m mole 200 m	$PO_2 \longrightarrow NaH_2PO_2$	+ H ₂ O	
	200 m mole = M	$\mathbf{I} imes \mathbf{V}_{ml}$		
	$V_{ml} = 200 \text{ ml}$			

visit us at: www.reliablekota.com, Email: info@reliablekota.com		Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	
	Réliable	visit us at: <u>www.reliablekota.com, Email: info@reliablekota.com</u>	
<u>— INSTITUTE</u> <u>— Call us: +91-744-2665544</u>		<u>Call us: +91-744-2665544</u>	

18. Elements with atomic number 33, 53 & 83 are respectively

(1) Metalloid, Non-metal, Metal

(2) Metal, Non-metal, Metalloid

- (3) Non-metal, Metal, Metalloid
- (4) Metalloid, Metal, Non-metal

- **Ans.** (1)
- Sol. Atomic number Element
 - $33 \rightarrow \text{As (Metalloid)}$
 - 53 \rightarrow I (Non-metal)
 - 83 \rightarrow Bi (Metal)
- **19.** Which of the following are correct for H_2O_2
 - (A) Used in pollution control treatment of industrial effluents.
 - (B) H_2O_2 can act as both oxidising agent & reducing agent
 - (C) Miscible in water
 - (D) two hydroxy groups are in same plane
 - (1) ABC (2) ACD (3) ABCD (4) BCD
- **Ans.** (1)
- Sol. In $H_2O_2^{-1}$ oxidation state of oxygen is -1 therefore acts both as oxidising agent & reducing agent. H_2O_2 is miscible in water due to intermolecular H-bonding.

 $\mathrm{H_2O_2}$ has open book structure in which both –OH groups are not in same plane

- **20.** Arrange the following compounds (assuming to be high spin) in increasing order of spin magnetic moment :
 - (1) $(NH_4)_2[Ce(NO_3)_6] \le Eu(NO_3)_3 \le Gd(NO_3)_3$
 - (2) $(NH_4)_2[Ce(NO_3)_6] < Gd(NO_3)_3 < Eu(NO_3)_3$
 - (3) $Eu(NO_3)_3 \le Gd(NO_3)_3 \le (NH_4)_2[Ce(NO_3)_6]$
 - (4) $Gd(NO_3)_3 < (NH_4)_2[Ce(NO_3)_6] < Eu(NO_3)_3$
- **Ans.** (1)
- **Sol.** $(NH_4)_2[Ce(NO_3)_6] (n=0) \Rightarrow \mu = 0 BM$

 $Eu(NO_3)_3 (n=6) \Rightarrow \mu = 6.93 BM$

 $Gd(NO_3)_3(n=7) \Rightarrow \mu = 7.94 BM$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	
Rélighle	visit us at: <u>www.reliablekota.com, Email: info@reliablekota.com</u>	6
	<u>Call us: +91-744-2665544</u>	

- 21. Gallium (At. Mass = 70) crystallises in HCP lattice. If the total number of voids in 0.581 gram of gallium is $x \times 10^{21}$ then determine 'x' :
- **Ans.** 15
- **Sol.** No. of moles of Ga = $\frac{0.581}{70}$

No. of atoms of Ga = $\frac{0.581}{70} \times N_A$

 $\therefore \text{ Total no. of voids} = \frac{0.581}{70} \times \text{N}_{\text{A}} \times 3$ $= 0.0249 \times 6 \times 10^{23}$

$$= 15 \times 10^{21}$$

As there are one octahedral void and two tetrahedral voids per atom.

- 22. Which of the following is incorrect?
 - (1) $Al^{3+} > Na^+$ flocculation power
 - (2) Colloids show Brownian motion
 - (3) Colloids show colligative property
 - (4) Colloidal solution can not pass through ordinary filter paper
- **Ans.** (4)
- **Sol.** Colloidal solution can pass through ordinary filter paper but can not pass through special filter paper.
- **23.** Number of orbitals having $m_{\ell} = +2$ in n = 5 are:
- **Ans.** (3)
- Sol. n = 5
 - $\ell = 0, 1, 2, 3, 4$

 $\ell = 2 \rightarrow m = -2, -1, 0, +1, +2$

 $\ell = 3 \rightarrow m = -3, -2, -1, 0, +1, +2, +3$

- $\ell = 4 \rightarrow m = -4, -3, -2, -1, 0, +1, +2, +3, +4$
- **24.** Incorrect statement regarding C_{60} is:
 - (1) It has 24 6-membered rings & 12 5-membered rings.
 - (2) It has 5-membered rings only attached to 6-membered rings.
 - (3) It has 6-membered rings attached to both 5 & 6-membered rings.
 - (4) Each Carbon is attached to 3 C-atoms.
- **Ans.** (1)

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	
Réliable	visit us at: <u>www.reliablekota.com, Email: info@reliablekota.com</u>	
— INSTITUTE —	<u>Call us: +91-744-2665544</u>	

- 25. The number of mol of PbSO₄ obtained on reacting 35 ml of 0.15M Pb(NO₃)₂ with 50 ml, 0.2M $Cr_2(SO_4)_3$ is x × 10⁻⁵. Find x.
- **Ans.** (525)

Sol.

 $3Pb(NO_3)_2 + Cr_2(SO_4)_3 \longrightarrow 3PbSO_4 + 2Cr(NO_3)_3$ m.mol. 5.25 (L.R.) 10 $0 \qquad 5.25 \text{ m.mol} \\ \text{formed} \\ \Rightarrow \text{ i.e.} = 525 \times 10^{-5} \\ \therefore \text{ x} = 525$

- 26. Determine pH of 0.588 M H₂SO₃ solution given $K_{a_1} = 1.7 \times 10^{-2} K_{a_2} = 10^{-8}$
- **Ans.** (1)

Sol. $\frac{0.588\alpha^2}{1-\alpha} = 1.7 \times 10^{-2}$ $\frac{\alpha^2}{1-\alpha} = 0.029 \qquad \therefore \ \alpha^2 + 0.029\alpha - 0.029 = 0$ $\alpha = \frac{-0.029 + \sqrt{(0.029)^2 + 4(1)(0.029)}}{2}$ = 0.1564 $[H^+] = 0.\ 588 \times 0.1564 = 0.092 \text{ M}$

 $pH = 2 - \log 9.2 = 2 - 0.964 = 1.036 \approx 1$

	Address : 'Reliable Institute', A-10 Road No.1, IPIA, Kota-324005 (Rajasthan), INDIA	
Rélinhle	visit us at: <u>www.reliablekota.com, Email: info@reliablekota.com</u>	
	<u>Call us: +91-744-2665544</u>	