DR ACADEMY DO RIGHT FOR GENUINE EDUCATION

Coaching Offered for NEET | JEE | KCET | COMED-K

\#42, 100ft Road, Kammagondanahalli, Jalahalli West, Bengaluru - 560015. 9008030463 / 896 / 9513330437 E-mail - info@dracademy.co.in

Malur Road, ISRI Cross, Kattigenahalli, Jadigenahalli Hobli, Hoskote. Bengaluru-562 114 9741332998 / 7760575487 website : https://dracademy.co.in

KCET EXAMINATION - 2021 SUBJECT : CHPMISTRY
 VERSION :
 C3

1. For the reaction
$\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g}) ; \Delta \mathrm{H}=-\mathrm{QKJ}$
The equilibrium constant cannot be disturbed by
a) Addition of A
b) Addition of D
c) Increasing of pressure
d) Increasing of temperature

Ans. \mathbf{c}
Sol. $\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})} ; \Delta \mathrm{H}=-\mathrm{Q} \mathrm{KJ}$
Pressure has no effect on equilibrium state if $\Delta \mathrm{n}=0$
2. An organic compound ' X ' on treatment with PCC in dichloromethane gives the compound Y . Compound ' Y ' reacts with I_{2} and alkali to form yellow precipitate of triiodomethane. The compound X is
a) $\mathrm{CH}_{3} \mathrm{CHO}$
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{COOH}$

Ans. \mathbf{c}
Sol.
$\mathrm{CH}_{3}-\stackrel{\mathrm{X}}{\mathrm{CH}_{2}}-\mathrm{OH} \xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\mathrm{PCC}} \mathrm{CH}_{3} \stackrel{\mathrm{Y}}{-\mathrm{CHO}} \xrightarrow[\text { NaOH }]{\mathrm{I}_{2}} \mathrm{CHI}_{3}+\mathrm{HCOONa}$ $\therefore \mathrm{X}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
3. A compound ' A ' $\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}\right)$ is insoluble in NaHCO_{3} solution but dissolve in NaOH and give a characteristic colour with neutral FeCl_{3} solution. When treated with Bromine water compound ' A ' forms the compound B with the formula $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OBr}_{3}$. 'A' is
a)

b)

c)

d)

Ans. b

Sol.

4. In set of reactions, identify D

a)

b)

c)

d)

Ans. d
Sol.

5. $\quad \mathrm{K}_{\mathrm{a}}$ values for acids $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HNO}_{2}, \mathrm{CH}_{3} \mathrm{COOH}$ and HCN are respectively $1.3 \times 10^{-2}, 4 \times 10^{-4}$, 1.8×10^{-5} and 4×10^{-10}, which of the above acids produces stronger conjugate base in aqueous solution ?
a) $\mathrm{H}_{2} \mathrm{SO}_{3}$
b) HNO_{2}
c) $\mathrm{CH}_{3} \mathrm{COOH}$
d) HCN

Ans. d
Sol. Acidic strength $\propto \mathrm{Ka}$
The conjugate base of a weakest acid is strongest $\therefore \operatorname{HCN}\left(K_{a}=4 \times 10^{-10}\right)$ (least value)

A, B and C respectively are
a) ethanol, ethane nitrile and ethyne
b) ethane nitrile, ethanol and ethyne
c) ethyne, ethanol and ethane nitrile
d) ethyne, ethane nitrile and ethanol

Ans. c
Sol.

$\mathrm{B} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3} \mathrm{CHO}$
$\mathrm{C} \rightarrow \mathrm{CH}_{3} \mathrm{CN} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{HnCl}_{2}} \mathrm{CH}_{3} \mathrm{CHO}$
7. The reagent which can do the conversion $\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$ is
a) $\mathrm{LiAlH}_{4} /$ ether
b) $\mathrm{H}_{2}, \mathrm{Pt}$
c) NaBH_{4}
d) Na and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Ans. a
Sol. $\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{LiAlH}_{4}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
8. $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CH}_{3} \mathrm{Mgr}} \mathrm{A} \xrightarrow[\Delta]{\text { Conc } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{~B} \xrightarrow\left[\left(\text { (ii) } \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}\right]{\text { (i) } \mathrm{B}_{2} \mathrm{H}_{6}} \mathrm{C}\right.$

A and C are
a) Identical
b) Position isomers
c) Functional
d) Optical isomers

Ans. b

Sol.

B
C
$\therefore \mathrm{A}$ and C are position isomers.
9. Which of the following is not true for oxidation?
a) addition of oxygen
b) addition of electronegative element
c) removal of hydrogen
d) removal of electronegative element

Ans. d
Sol. Conceptual
10. Which is the most suitable reagent for the following conversion ?

a) Tollen's reagent
b) Benzoyl peroxide
c) I_{2} and NaOH solution with subsequent acidification
d) Sn and NaOH solution

Ans. c
Sol. Conceptual
11.
 product B is
a) N, N-Dimethyl phenyl methanamine
b) N, N-Dimethyl benzenamine
c) N-Benzyl-N-methyl methanamine
d) phynyl-N-N-dimethyl methanamine

Ans. a
Sol.

12. The method by which aniline cannot be prepared is
a) Nitration of benzene followed by reduction with Sn and con. HCl
b) Degradation of benzamide with bromine in alkaline solution
c) Reduction of nitrobenzene with $\mathrm{H}_{2} / \mathrm{Pd}$ is ethanol
d) Potassium salt of pthalimide treated with chlorobenzene followed by the hydrolysis with aqueous NaOH solution
Ans. d
Sol. Conceptual
13. Permanent hardness cannot be removed by
a) Using washing soda
b) Calgon's method
c) Clark's method
d) Ion exchange method

Ans. c
Sol. Conceptual
14. A hydrocarbon $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ on reaction with HCl gives a compound $\mathrm{B}\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}\right)$ which on reaction with 1 mol of NH_{3} gives compound $\mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}\right)$. On reacting with NaNO_{2} and HCl followed by treatment with water, compound C yields an optically active compound D . The is
a)

b)

c)

d)

Ans. b
Sol. Optically active compound is option B.
15. RNA and DNA are chiral molecules, their chirality is due to the presence of
a) D-sugar component
b) L-sugar component
c) Chiral bases
d) Chiral phosphate ester unit

Ans. a
Sol. Conceptual
16. The property of the alkaline earth metals that increases with their atomic number is
a) Ionisation enthalpy
b) Electronegativity
c) Solubility of their hydroxide in water
d) Solubility of their sulphate in water

Ans. c
Sol. Conceptual
17. Primary structure in a nucleic acid contains bases as GATGC ... The chain which is complementary to this chain is
a) G G T G A....
b) T G A A G....
c) C T A C G ...
d) T T T A G

Ans. \mathbf{c}
Sol. Conceptual
18. In the detection of II group acid radical, the salt containing chloride is treated with concentrated sulphuric acid, the colourless gas is liberated. The name of the gas is
a) Hydrogen chloride gas
b) Chlorine gas
c) Sulphur dioxide gas
d) Hydrogen gas

Ans. a
Sol. Conceptual
19. The number of six membered and five membered rings in Buckminster Fullerence respectively is
a) 20,12
b) 12,20
c) 14,18
d) 14,11

Ans. a
Sol. Conceptual
20. In chrysoberyl, a compound containing Beryllium, Aluminium and oxygen, oxide ions form cubic close packed structure. Aluminium ions occupy $\frac{1}{4}$ th of octahedral voids. The formula of the compound is
a) BeAlO_{4}
b) $\mathrm{BeAl}_{2} \mathrm{O}_{4}$
c) $\mathrm{Be}_{2} \mathrm{AlO}_{2}$
d) BeAlO_{2}

Ans. b
Be Al $\mathrm{O} \mathrm{N}=$ No. of oxide ions invoved in CCP
Sol. $\frac{N}{4}: \frac{2 N}{4}: N \quad \therefore$ octahedral voids $=\mathrm{N}$
1: 2: 4 Tetrahedral voids $=2 \mathrm{~N}$
21. The correct statement regarding defects in solid is
a) Frenkel defect is a vacancy defect
b) Schottky defect is a dislocation defect
c) Trapping of an electron in the lattice leads to the formation of F -centre
d) Schottky defect has no effect on density

Ans. c
Sol. Frenkel defect - dislocation defect
Schottky defect - decreases density
F-centre - Trapping of on electrons in the lattices
22. A metal crystallises in BCC lattice with unit cell edge length of 300 pm and density $6.15 \mathrm{gcm}^{-3}$. The molar mass of the metal is
a) $50 \mathrm{~g} \mathrm{~mol}^{-1}$
b) $60 \mathrm{~g} \mathrm{~mol}^{-1}$
c) $40 \mathrm{~g} \mathrm{~mol}^{-1}$
d) $70 \mathrm{~g} \mathrm{~mol}^{-1}$

Ans. a
Sol. $d=\frac{Z M}{a^{3} N_{A}}$

$$
\begin{aligned}
\mathrm{M}=\frac{\mathrm{da}^{3} \mathrm{~N}_{\mathrm{A}}}{\mathrm{Z}} & =\frac{6.15 \times\left(300 \times 10^{-10}\right)^{3} \times 6 \times 10^{23}}{2} \\
& \cong 50 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

23. Henry's law constant for the solubility of N_{2} gas in water at 298 K is 1.0×10^{5} atm. The mole fraction of N_{2} in air is 0.8 The number of moles of N_{2} from air dissolved in 10 moles of water at 298 K and 5 atm pressure is
a) 4.0×10^{-4}
b) 4.0×10^{-5}
c) 5.0×10^{-4}
d) 4.0×10^{-6}

Ans. a
Sol. $\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{X}_{\mathrm{N}_{2}} \cdot \mathrm{P}_{\text {total }}$
$=0.8 \times 5=4 \mathrm{~atm}$
$\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{K}_{\mathrm{H}} \cdot \mathrm{X}_{\mathrm{N}_{2}}$
$4=10^{5} . \mathrm{X}_{\mathrm{N}_{2}}$
$\mathrm{X}_{\mathrm{N}_{2}}=4 \times 10^{-5}$
$\mathrm{X}_{\mathrm{N}_{2}}=\frac{\mathrm{n}_{\mathrm{N}_{2}}}{\mathrm{n}_{\mathrm{N}_{2}}+\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}}\left(\mathrm{n}_{\mathrm{N}_{2}} \lll \lll \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}\right)$
$4 \times 10^{-5}=\frac{\mathrm{n}_{\mathrm{N}_{2}}}{10}$
$\mathrm{n}_{\mathrm{N}_{2}}=4 \times 10^{-4}$
24. A pure compound contains 2.4 g of $\mathrm{C}, 1.2 \times 10^{23}$ atoms of $\mathrm{H}, 0.2$ moles of oxygen atoms. Its empirical formula is
a) $\mathrm{C}_{2} \mathrm{HO}$
b) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
c) $\mathrm{CH}_{2} \mathrm{O}$
d) CHO

Ans. d
Sol. $2.4 \mathrm{~g} \mathrm{C}=\frac{2.4}{12}=0.2 \mathrm{~mol}$
1.2×10^{23} atoms of $\mathrm{H}=\frac{1.2 \times 10^{23}}{6 \times 10^{23}}=0.2 \mathrm{~mol}$
0.2 mole of ' O ' atoms
\therefore simplest ratio $=\mathrm{C}: \mathrm{H}: \mathrm{O}$

$$
\begin{aligned}
& 0.2: 0.2: 0.2 \\
= & \mathrm{CHO}
\end{aligned}
$$

25. Choose the correct statement
a) K_{H} value is same for a gas in any solution
b) Higher the K_{H} value more the solubility of gas
c) K_{H} value increases on increasing the temperature of the solution
d) Easily liquefiable gases usually has lesser K_{H} values
Ans. c
Sol. K_{H} value changes with solvent nature
Higher the K_{H} less is solubility
K_{H} value increase with increase of ' T '
Eerily liquefied gases have high K_{H} value
26. The K_{H} value (K bar) of Argon (I), Carbondioxide (II) formuldehyde (III) and methane (IV) are respectively 40.3 , 167, 1.83×10^{-5} and 0.413 at 298 K . The increasing order of solubility of gas in liquid is
a) I $<$ II $<$ IV $<$ III
b) III $<$ IV $<$ II $<$ I
c) I $<$ III $<$ II $<$ IV
d) I $<$ IV $<$ II $<$ III

Ans. a
Sol. $\mathrm{P}_{\mathrm{H}}=\mathrm{K}_{\mathrm{H}} \times$
$\mathrm{K}_{\mathrm{H}} \propto \frac{1}{\mathrm{X}(\text { solubility })}$
\therefore more is the K_{H} less is the solubility
27. The vapour pressure of pure liquids A and B are 450 and 700 mm of Hg at 350 K respectively. If the total vapour pressure of the mixture is 600 mm of Hg , the composition of the mixture in the solution is
a) $\mathrm{x}_{\mathrm{A}}=0.4, \mathrm{x}_{\mathrm{B}}=0.6$
b) $\mathrm{x}_{\mathrm{A}}=0.6, \mathrm{x}_{\mathrm{B}}=0.4$
c) $\mathrm{x}_{\mathrm{A}}=0.3, \mathrm{x}_{\mathrm{B}}=0.7$
d) $x_{A}=0.7, x_{B}=0.3$

Ans. a
So1. $P_{\text {total }}=P_{A}^{0} X_{A}+P_{B}^{0} X_{B}$

$$
=P_{A}^{o} X_{A}+P_{B}^{0}\left(1-X_{A}\right)
$$

$600=450 . \mathrm{X}_{\mathrm{A}}+700\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\mathrm{X}_{\mathrm{A}}=0.4$
$\mathrm{X}_{\mathrm{B}}=1-0.4=0.6$
28. Consider the following electrodes

$$
\begin{array}{ll}
\mathrm{P}=\mathrm{Zn}^{2+}(0.0001 \mathrm{M}) / \mathrm{Zn} & \mathrm{Q}=\mathrm{Zn}^{2+}(0.1 \mathrm{M}) / \mathrm{Zn} \\
\mathrm{R}=\mathrm{Zn}^{2+}(0.01 \mathrm{M}) / \mathrm{Zn} & \mathrm{~S}=\mathrm{Zn}^{2+}(0.001 \mathrm{M}) / \mathrm{Zn}
\end{array}
$$ $\mathrm{E}^{\circ} \mathrm{Zn} / \mathrm{Zn}^{2+}=-0.76 \mathrm{~V}$ electrode potentials of the above electrodes in volts are in the order

a) P $>$ S $>$ R $>$ Q
b) $\mathrm{S}>\mathrm{R}>\mathrm{Q}>\mathrm{P}$
c) Q $>$ R $>$ S $>P$
d) $\mathrm{P}>\mathrm{Q}>\mathrm{R}>\mathrm{S}$

Ans. c
Sol. $\quad \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}_{(\mathrm{s})}$
$\mathrm{E}_{\text {red }}=\mathrm{E}_{\text {red }}^{\Theta}-\frac{0.059}{\mathrm{n}} \log \frac{1}{\left[\mathrm{Zn}^{2+}\right]}$
$\mathrm{E}_{\text {red }}=-0.76+\frac{0.059}{2} \log \left[\mathrm{Zn}^{2+}\right]$
as $\left[\mathrm{Zn}^{2+}\right] \uparrow \mathrm{E}_{\text {red }} \uparrow$
29. The number of angular and radial nodes in 3p orbital respectively are
a) 3,1
b) 1,1
c) 2,1
d) 2,3

Ans. b
Sol. No. of angular nodes $=l=1(3 \mathrm{p})$
No. of radial nodes $=n-l-1=3-1-1=1$
30. The resistance of 0.01 m KCl solution at 298 K is 1500Ω. If the conductivity of 0.01 m KCl solution at 298 K is $0.1466 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$. The cell constant of the conductivity cell in cm^{-1} is
a) 0.219
b) 0.291
c) 0.301
d) 0.194

Ans. a
Sol. $G^{*}=K R$

$$
\begin{aligned}
& =0.146 \times 10^{-3} \times 1500 \\
& =0.219
\end{aligned}
$$

31. $\quad \mathrm{H}_{2(\mathrm{~s})}+2 \mathrm{AgCl}_{(\mathrm{s})} \rightleftarrows 2 \mathrm{Ag}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})}$
$\mathrm{E}_{\text {cell }}^{0}$ at $25^{\circ} \mathrm{C}$ for the cell is 0.22 V . The equilibrium constant at $25^{\circ} \mathrm{C}$ is
a) 2.8×10^{7}
b) 5.2×10^{8}
c) 2.8×10^{5}
d) 5.2×10^{4}

Ans. a
Sol. $\quad \log \mathrm{K}_{\mathrm{c}}=\frac{\mathrm{E}_{\text {cell }}^{\Theta} \times \mathrm{n}}{0.059}=\frac{0.22 \times 2}{0.059}=7.45$

$$
\mathrm{K}_{\mathrm{c}}=\operatorname{Antilog}(7.45)=2.8 \times 10^{7}
$$

32. For a reaction $\mathrm{A}+2 \mathrm{~B} \rightarrow$ Products, when concentration of B alone is increased half life remains the same. If concentration of A alone is doubled, rate remains the same. The unit of rate constant for the reaction is
a) S^{-1}
b) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~S}^{-1}$
c) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~S}^{-1}$
d) atm^{-1}

Ans. a
Sol. As ['B'] increase, $\mathrm{t}_{\frac{1}{2}}$ remains same
i.e. $1^{\text {st }}$ order with respect to ' B '
rate $=\mathrm{k}[\mathrm{A}]^{0}[\mathrm{~B}]^{1}$
overall order =1
\therefore units of $\mathrm{k}=\mathrm{S}^{-1}$
33. The third ionisation enthalpy is highest in
a) Alkali metals
b) Alkaline earth metals
c) Chalcogens
d) Pnictogens

Ans. b
Sol. Conceptual
34. If the rate constant for a first order reaction is k , the time (t) required for the completion of 99% of the reaction is given by
a) $\mathrm{t}=\frac{4.606}{\mathrm{k}}$
b) $\mathrm{t}=\frac{2.303}{\mathrm{k}}$
c) $\mathrm{t}=\frac{0.693}{\mathrm{k}}$
d) $t=\frac{6.909}{k}$

Ans. a
Sol. $\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$
$=\frac{2.303}{\mathrm{k}} \log \left(\frac{100}{1}\right)$
$=\frac{4.606}{\mathrm{k}}$
35. The rate of a gaseous reaction is given by the expression $k[A][B]^{2}$. If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is
a) $\frac{1}{16}$
b) $\frac{1}{8}$
c) 8
d) 16

Ans. c
Sol. rate $=K[A]^{1}[B]^{2}$
$=K\left[\frac{\mathrm{n}}{\mathrm{v}}\right]_{\mathrm{A}}^{1}\left[\frac{\mathrm{n}}{\mathrm{v}}\right]_{\mathrm{B}}^{2}$
$=K\left[\frac{\frac{\mathrm{n}}{\mathrm{v}}}{2}\right]^{1}\left[\frac{\mathrm{n}}{\mathrm{v}}\right]^{2}$
$={ }^{\prime} 8^{\prime} \mathrm{K}\left[\frac{\mathrm{n}}{\mathrm{v}}\right]^{1}\left[\frac{\mathrm{n}}{\mathrm{v}}\right]^{2}$
'8'times increases
36. The correct IUPAC name of

a) 4-Ethyl-1-Fluoro-2-nitrobenzene
b) 1-Ethyl-4-Fluoro-3-nitrobenzene
c) 3-Ethyl-6-Fluoronitrobenzene
d) 5-Ethyl-2-Fluoronitrobenzene

Ans. a
Sol. Conceptual
37. Higher order (>3) reactions are rare due to
a) Shifting of equilibrium towards reactants due to elastic collisions
b) Loss of active species on collision
c) Low probability of simultaneous collision of all reacting species
d) Increase in entropy as more molecules are involved
Ans. c
Sol. Conceptual
38. Arrange benzene, n-hexane and ethyne in decreasing order of their acidic behaviour
a) Benzene $>$ n-hexane $>$ ethyne
b) n-hexane $>$ Benzene $>$ ethyne
c) ethyne $>\mathrm{n}$-hexane $>$ Benzene
d) ethyne $>$ Benzene $>$ n-hexane

Ans. d
Sol. Conceptual
39. A colloidal solution is subjected to an electric field than colloidal particles more towards anode. The amount of electrolytes of $\mathrm{BaCl}_{2}, \mathrm{AlCl}_{3}$ and NaCl required to coagulate the given colloid is in the order
a) $\mathrm{NaCl}>\mathrm{BaCl}_{2}>\mathrm{AlCl}_{3}$
b) $\mathrm{BaCl}_{2}<\mathrm{AlCl}_{3}>\mathrm{NaCl}$
c) $\mathrm{AlCl}_{3}=\mathrm{NaCl}=\mathrm{BaCl}_{2}$
d) $\mathrm{AlCl}_{3}>\mathrm{BaCl}_{2}>\mathrm{NaCl}$

Ans. a
Sol. As ions are moving toward anode i.e. negatively charged colloid
Coagulation value $\propto \frac{1}{\text { cogulating power }}$
$\therefore \mathrm{Na}^{+1}>\mathrm{Ba}^{+2}>\mathrm{Al}^{+3}$
40. Which of the following is an incorrect statement?
a) Hydrogen bonding is stronger than dispersion forces
b) Sigma bonds are stronger than π-bonds
c) Ionic bonding is non-directional
d) σ-electrons are referred to as mobile electrons
Ans. d
Sol. Conceptual
41. Zeta potential is
a) Potential required to bring about coagulation of a colloidal sol.
b) Potential required to give the particle a speed of $1 \mathrm{~cm}^{-1}$
c) Potential difference between fixed charged layer and the diffused layer having opposite charges
d) Potential energy of the colloidal particles.

Ans. \mathbf{c}
Sol. Conceptual
42. Which of the following compound on heating gives $\mathrm{N}_{2} \mathrm{O}$?
a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) $\mathrm{NH}_{4} \mathrm{NO}_{2}$
d) NaNO_{3}

Ans. b
Sol. Conceptual
43. Which of the following property is true for the given sequence

$$
\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3} ?
$$

a) Reducing property
b) Thermal stability
c) Bond angle
d) Acidic character

Ans. b
Sol. Conceptual
44. The correct order of boiling point in the following compounds is
a) $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
b) $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
c) $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$
d) $\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$

Ans. b
Sol. Conceptual
45. XeF_{6} on partial hydrolysis gives a compound X , which has square pyramidal geometry ' X ' is
a) XeO_{3}
b) XeO_{4}
c) XeOF_{4}
d) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$

Ans. c
Sol. $\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}\left(\mathrm{XeOF}_{4}-\right.$ square pyramidal $)$

$$
\mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}\left(\mathrm{XeO}_{2} \mathrm{~F}_{2}-\mathrm{See}-\text { saw }\right)
$$

46. A colourless, neutral, paramagnetic oxide of Nitrogen 'P' on oxidation gives reddish brown gas Q. Q on cooling gives colourless gas R. R on reaction with P gives blue solid S . Identify P, Q, R, S respectively
a) $\mathrm{N}_{2} \mathrm{O} \mathrm{NO} \mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$
b) $\mathrm{N}_{2} \mathrm{O} \mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$
c) $\mathrm{NO} \mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}$
d) $\mathrm{NO} \mathrm{NON}_{2} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$

Ans. c

Sol.

47. Which of the following does not represent property stated against it?
a) $\mathrm{CO}^{+2}<\mathrm{Fe}^{+2}<\mathrm{Mn}^{+2}$ - Ionic size
b) $\mathrm{Ti}<\mathrm{V}<\mathrm{Mn}$ - Number of oxidation states
c) $\mathrm{Cr}^{+2}<\mathrm{Mn}^{+2}<\mathrm{Fe}^{+2}-$ Paramagnetic behaviour
d) $\mathrm{Sc}>\mathrm{Cr}>\mathrm{Fe}-$ Density

Ans. c
Sol. Conceptual
48. Which one of the following is correct for all elements from Sc to Cu ?
a) The lowest oxidation state shown by them is $+2$
b) 4 S orbital is completely filled in the ground state
c) $3 d$ orbital is not completely filled in the ground state
d) The ions in +2 oxidation states are paramagnetic
Ans. d
Sol. Conceptual
49. When the absolute temperature of ideal gas is doubled and pressure is halved, the volume of gas
a) will be half of original volume
b) will be 4 times the original volume
c) will be 2 times the original volume
d) will be $1 / 4^{\text {th }}$ times the original volume

Ans. b
Sol. $\mathrm{PV}=\mathrm{nRT}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \quad \frac{\mathrm{P} \times \mathrm{V}_{1}}{\mathrm{~T}}=\frac{\mathrm{P}}{2} \times \frac{\mathrm{V}_{2}}{2 \mathrm{~T}} \quad \mathrm{~V}_{2}=4 \mathrm{~V}_{1}$
50. Which of the following pairs has both the ions coloured in aqueous solution? [Atomic numbers of
$[\mathrm{Sc}=21, \mathrm{Ti}=22, \mathrm{Ni}=28, \mathrm{Cu}=29, \mathrm{Mn}=25$]
a) $\mathrm{Sc}^{3+}, \mathrm{Mn}^{2+}$
b) $\mathrm{Ni}^{2+}, \mathrm{Ti}^{4+}$
c) $\mathrm{Ti}^{3+}, \mathrm{Cu}^{+}$
d) $\mathrm{Mn}^{2+}, \mathrm{Ti}^{3+}$

Ans. d
Sol. Conceptual
51. For the crystal field splitting in octahedral complexes,
a) the energy of the e_{g} orbitals will decrease by $(3 / 5) \Delta_{0}$ and that of the $t_{2 g}$ will increase by $(2 / 5) \Delta_{0}$
b) the energy of the e_{g} orbitals will increase by $(3 / 5) \Delta_{0}$ and that of the $t_{2 g}$ will decrease by $(2 / 5) \Delta_{0}$
c) the energy of the e_{g} orbitals will increase by $(3 / 5) \Delta_{0}$ and that of the $t_{2 g}$ will increase by $(2 / 5) \Delta_{0}$
d) the energy of the e_{g} orbitals will decrease by $(3 / 5) \Delta_{0}$ and that of the $t_{2 g}$ will decrease by $(2 / 5) \Delta_{0}$
Ans. b
Sol. Conceptual
52. Peroxide effect is observed with the addition of HBr but not with the addition of HI to unsymmetrical alkene because
a) $\mathrm{H}-\mathrm{I}$ bond is stronger that $\mathrm{H}-\mathrm{Br}$ and is not cleaved by the free radical
b) H-I bond is weaker than $\mathrm{H}-\mathrm{Br}$ bond so that iodine free radicals combine to form iodine molecules
c) Bond strength of HI and HBr are same but free radicals are formed in HBr
d) All of these

Ans. b
Sol. Conceptual
53. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CO}_{3}\right)\right] \mathrm{Cl}$ is
a) Pentaamminecarbonatocobalt (III) Chloride
b) Carbonatopentamminecobalt (III) Chloride
c) Pentaamminecarbonatocobaltate (III) Chloride
d) Pentaammine cobalt (III) Carbonate Chloride
Ans. a
Sol. Conceptual
54. Homoleptic complexes among the following are
A) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$,
B) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$
C) $\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$
a) A only
b) A and B only
c) A and C only
d) C only

Ans. c
Sol. Conceptual
55. The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is
a) $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
c) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$

Ans. a
Sol. Wave length of light absorbed is inversely proportional to strength of the ligand.
56.

The compound A (major product) is
a)

b)

c)

d)

Ans. b
Sol. Free radical substitution of alkane part. (Benzyl free radical) takes place.
57. Bond enthalpies of $\mathrm{A}_{2}, \mathrm{~B}_{2}$ and AB are in the ratio 2:1:2. If bond enthalpy of formation of $A B$ is $-100 \mathrm{KJ} \mathrm{mol}^{-1}$. The bond enthalpy of B_{2} is
a) $100 \mathrm{KJ} \mathrm{mol}^{-1}$
b) $50 \mathrm{KJ} \mathrm{mol}^{-1}$
c) $200 \mathrm{KJ} \mathrm{mol}^{-1}$
d) $150 \mathrm{KJ} \mathrm{mol}^{-1}$

Ans. \mathbf{c}
Sol. Assume bond strength of $A_{2}=2 \mathrm{X}$, then,
$\mathrm{B}_{2}=\mathrm{X}, \mathrm{AB}=2 \mathrm{X}$
$\Delta_{\mathrm{r}} \mathrm{H}^{\ominus}=\sum \Delta_{\text {diss }} \mathrm{H}^{\ominus}{ }_{(\mathrm{R})}-\sum \Delta_{\text {diss }} \mathrm{H}^{\ominus}{ }_{(\mathrm{P})}$
$\frac{1}{2} \mathrm{~A}_{2}+\frac{1}{2} \mathrm{~B}_{2} \rightarrow \mathrm{AB}$
$-100=\frac{1}{2} 2 \mathrm{X}+\frac{1}{2} \mathrm{X}-2$
$X=200$
58. The order of reactivity of the compounds $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Br}$ in $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction is
a)

b)

c)

d)

Ans. a
Sol. Conceptual
59. The major product of the following reaction is

a) $\mathrm{CH}_{3}-\mathrm{CHBr}-\mathrm{CH}_{2} \mathrm{Br}$
b) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$
c) $\mathrm{CH}_{3}-\mathrm{CHBr}-\mathrm{CH}_{2}-\mathrm{OH}$
d) $\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{2} \mathrm{OH}$

Ans. a
Sol.

$\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{HBr}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{2} \mathrm{Br}$
60.

The product ' A ' gives white precipitate when treated with bromine water. The product ' B ' is treated with Barium hydroxide to give the product C . The compound C is heated strongly to form product D . The product D is
a) 4-Methylpent-3-en-2-one
b) But-2 enal
c) 3-Methylpent-3-en-2-one
d) 2-Methylbut-2-enal

Ans. a
Sol. A is phenol
B is acetone
Acetone when treated with $\mathrm{Ba}(\mathrm{OH})_{2}$ Undergoes aldol condensation and followed by heating gives 4-methylpent -3-en-2-one

