Strictly Confidential - (For Internal and Restricted Use Only)

Senior School Certificate Examination-2020 Marking Scheme - MATHEMATICS Subject Code: 041 Paper Code: 65/5/1

General instructions:-

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- **6.** If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0 80 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- **15.** Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- **16.** The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

XII MATHEMATICS

QUESTION PAPER CODE 65/5/1

EXPECTED ANSWER/VALUE POINTS

Q.	VALUE POINTS	Marks
110.	SECTION - A	
Que	stion Numbers 1 to 20 carry 1 mark each.	
Q. N	os. 1 to 10 are multiple choice questions of 1 mark each. Select the correct option:	[
1	If A is a square matrix of order 3, such that $A(adjA) = 10I$, then $ adjA $ is equal to	
	(a) 1 (b) 10 (c) 100 (d) 101	
	Answer: (c) 100	1
2	If A is a 3 x 3 matrix such that $ A = 8$, then $ 3A $ equals.	
	(a) 8 (b) 24 (c) 72 (d) 216	
	Answer: (d) 216	1
3	d^2 v	
	If $y = Ae^{5x} + Be^{-5x}$, then $\frac{d^2y}{dx^2}$ is equal to	
	(a) $25y$ (b) $5y$ (c) $-25y$ (d) $15y$	
	Answer: (a) 25 <i>y</i>	1
4	$\int x^2 e^{x^3} dx$ equals	
	(a) $\frac{1}{2}e^{x^3} + C$ (b) $\frac{1}{2}e^{x^4} + C$ (c) $\frac{1}{2}e^{x^3} + C$ (d) $\frac{1}{2}e^{x^2} + C$	
	Answer: (a) $\frac{1}{3}e^{x^3} + C$	1
5	If $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along three mutually perpendicular directions, then	
	(a) $\hat{i}_{k} \hat{i}_{j} = 1$ (b) $\hat{i}_{k} \times \hat{i}_{j} = 1$ (c) $\hat{i}_{k} \hat{k}_{j} = 0$ (d) $\hat{i}_{k} \times \hat{k}_{j} = 0$	
	Answer: (c) $\hat{i}\hat{k} = 0$	1
6	ABCD is a rhombus whose diagonals intersect at E. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$	
	equals	
	(a) $\vec{0}$ (b) $\vec{A}\vec{D}$ (c) $2\vec{B}\vec{C}$ (d) $2\vec{A}\vec{D}$	
	$\begin{bmatrix} (a) & 0 \\ \hline Answer: (a) & 0 \end{bmatrix}$	1
7	x-2 $y-3$ $4-z$ $x-1$ $y-4$ $z-5$	1
	The lines $\frac{k}{1} = \frac{y}{1} = \frac{z}{k}$ and $\frac{k}{k} = \frac{y}{2} = \frac{z}{-2}$ are mutually perpendicular	
	if the value of k is	
	(2) (2) (3) (2) (3) (3) (3)	
	$\begin{array}{c} (a) -\frac{-}{3} \\ \hline 3 \\ \hline \end{array} \\ (b) \frac{-}{3} \\ (c) -2 \\ (d) 2 \\ \hline \end{array}$	
	Answer: (a) $-\frac{2}{3}$	1

8
 The graph of the inequality
$$2x+3y > 6$$
 is
 (a) half plane that contains the origin nor the points of the line $2x + 3y = 6$

 (c) whole XOY-plane excluding the points on the line $2x + 3y = 6$
 (d) entire XOY-plane

 Answer: (b) half plane that neither contains the origin nor the points of the line $2x + 3y = 6$
 1

 9
 A card is picked at random from a pack of 52 playing cards. Given that the picked card is a queen, the probability of this card to be a card of spade is
 1

 10
 A die is thrown once. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then, $P(A \cup B)$ is
 1

 11
 In Q. Nos. 11 to 15, fill in the blanks with correct word/sentence:
 1
 1

 11
 Answer: $(a) \frac{1}{3}$
 (b) $\frac{3}{5}$
 (c) 0
 (d) 1

 12
 If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then $A =$
 1

 12
 If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then $A =$
 1

 13
 The least value of the function $f(x) = ax + \frac{b}{x}$ ($a > 0, b > 0, x > 0$) is
 1

 14
 The integrating factor of the differential equation $x \frac{dy}{dx} + 2y = x^2$ is
 .

 14
 The integrating factor of the differential equation $1 + \left(\frac{dy}{dx}\right)^2 = x$ is
 1

15	The vector equation of a line which passes through the points $(3, 4, -7)$ and $(1, -1, 6)$	
	is	1
	Answer: $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(-2\hat{i} - 5\hat{j} + 13\hat{k})$	1
	Or, $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(2\hat{i} + 5\hat{j} - 13\hat{k})$	
	The line of shortest distance between two skew lines is to both the	1
	lines.	
	Answer: perpendicular	
Q.1	6 to 20 are very short answer questions.	
16	Find the value of $\sin^{-1}\left[\sin\left(-\frac{17\pi}{8}\right)\right]$.	
	Answer:	
	$\left \sin^{-1} \left \sin \left(-\frac{17\pi}{2} \right) \right = -\sin^{-1} \left \sin \left(2\pi + \frac{\pi}{2} \right) \right $	1
		2
	$=-\frac{\pi}{8}$	$\frac{1}{2}$
17	For $A = \begin{bmatrix} 3 & -4 \end{bmatrix}$, write A^{-1} .	2
	Answer: $ A = 1$	
	$\begin{bmatrix} A - 1 \\ \Gamma & 1 \end{bmatrix}$	1/2
	$A^{-1} = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$	1/2
18	If the function f defined as $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ k & x = 3 \end{cases}$ is continuous at $x = 3$, find the value	
	of k.	
	Answer:	
	$\lim \frac{x^2 - 9}{x^2} = 6, \therefore k = 6$	1 1
	$x \rightarrow 3$ $x - 3$	$\frac{-}{2} + \frac{-}{2}$
19	If $f(x) = x^4 - 10$, then find the approximate value of $f(2.1)$.	
	Answer: $f(2, 1) = f(2) = f(2, 1) = f(2)$	
	$f(2.1) \approx f(2) + (0.1)f'(2)$	1/2
	=9.2	1/2
	$\nabla \mathbf{R}$	
	Find the slope of the tangent to the curve $y = 2\sin^2(3x)$ at $x = -\frac{1}{6}$.	
	Answer:	
	$\frac{dy}{dx} = 6\sin 6x$	1/2
	\therefore slope of tangent = 0	1/2
20		1/ 2
	Find the value of $\int x-5 dx$.	
	Answer: $\int_{-\infty}^{\infty} x-5 dx = \int_{-\infty}^{\infty} (5-x) dx = \frac{15}{2}$	1/2 + 1/2
1		

SECTION – B				
Q. N	os. 21 to 26 carry 2 marks each.			
21	If $f(x) = \frac{4x+3}{6x-4}$, $x \neq \frac{2}{3}$, then show that $(fof)(x) = x$, for all $x \neq \frac{2}{3}$. Also, write inverse			
	of f.			
	Answer: $(fof)(x) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{34x}{34} = x$	$1\frac{1}{2}$		
	Now, $(fof)(x) = x \Longrightarrow f^{-1} = f \text{ or } f^{-1}(x) = \frac{4x+3}{6x-4}$	$\frac{1}{2}$		
	UN Check if the relation R in the set R of real numbers defined as $R = \{(a, b): a < b\}$ is			
	(i) symmetric, (ii) transitive. Answer:			
	(i) 1, $2 \in \mathbb{R}$ such that $1 < 2 \Rightarrow (1,2) \in R$,			
	but since 2 is not less than $1 \Rightarrow (2,1) \notin R$.	1		
	Hence <i>R</i> is not symmetric.			
	(ii) Let $(a,b) \in R$ and $(b,c) \in R$, $\therefore a < b$ and $b < c$			
	$\Rightarrow a < c \Rightarrow (a, c) \in R \therefore R \text{ is transitive.}$	1		
22	Find $\int \frac{x}{x^2 + 3x + 2} dx$			
	Answer:			
	$\int \frac{x}{x^2 + 3x + 2} dx = \int \frac{x}{(x+1)(x+2)} dx = \int \left(\frac{-1}{x+1} + \frac{2}{x+2}\right) dx$	1		
	$= -\log x+1 + 2\log x+2 + C$	1		
23	If $x = a\cos\theta$; $y = b\sin\theta$, then find $\frac{d^2y}{d^2}$.			
	Answer:			
	$\frac{dx}{dx} = a \sin \theta \frac{dy}{dy} = b \cos \theta \Rightarrow \frac{dy}{dy} = \frac{b}{\cot \theta}$	1 1		
	$\frac{d\theta}{d\theta} = -\frac{d}{dx} \sin \theta, \frac{d\theta}{d\theta} = \frac{\partial}{\partial \cos \theta} = \frac{\partial}{\partial x} \frac{dx}{dx} = -\frac{\partial}{\partial x} \cos \theta$	$\frac{1}{2} + \frac{1}{2}$		
	$\frac{d^2 y}{dx^2} = \frac{b}{a} \cos ec^2 \theta \left(\frac{-1}{a \sin \theta}\right) = -\frac{b}{a^2} \cos ec^3 \theta$	$\frac{1}{2} + \frac{1}{2}$		
	OR	2 2		
	Eind the differential of $\sin^2 x w \pi t e^{\cos x}$			
	Answer: A			
	Let $y = \sin^2 x$ and $z = e^{\cos x}$. $\frac{dy}{dx} = 2\sin x \cos x$ and $\frac{dz}{dx} = -\sin x \cdot e^{\cos x}$	$\frac{1}{2} + \frac{1}{2}$		
	$\therefore \frac{dy}{dt} = \frac{2\sin x \cos x}{\cos x} = \frac{-2\cos x}{\cos x} \text{ or } -2\cos x e^{-\cos x}$	22		
	$dz = \sin x e^{\cos x} e^{\cos x}$	$\frac{1}{2} + \frac{1}{2}$		

24	Evaluate $\int_{1}^{2} \left[\frac{1}{x} - \frac{1}{2x^2} \right] e^{2x} dx$	
	Answer: $\begin{bmatrix} 1 \\ 2x \end{bmatrix}$	
	Put $2x = t$, $\therefore dx = \frac{1}{2}dt$	$\frac{1}{2}$
	$\therefore I = \int_{1}^{2} \left[\frac{1}{x} - \frac{1}{2x^{2}} \right] e^{2x} dx = \int_{2}^{4} \left[\frac{1}{t} - \frac{1}{t^{2}} \right] e^{t} dt$	$\frac{2}{\frac{1}{2}}$
	$= \left[\frac{1}{t}e^{t}\right]_{2}^{4} = \frac{e^{4}}{4} - \frac{e^{2}}{2}$	$\frac{1}{2} + \frac{1}{2}$
25	Find the value of $\int_{0}^{1} x(1-x)^n dx$.	
	Answer:	
	$\int_{0}^{1} x(1-x)^{n} dx = \int_{0}^{1} (1-x)(1-1+x)^{n} dx = \int_{0}^{1} (x^{n}-x^{n+1}) dx$	1
	$-\left[\frac{x^{n+1}}{x^{n+2}},\frac{x^{n+2}}{x^{n+2}}\right]^{1}-\frac{1}{x^{n+1}}-\frac{1}{x^{n+1}}$ or $-\frac{1}{x^{n+1}}$	1 1
	$-\left[\frac{n+1}{n+1} - \frac{n+2}{n+2}\right]_{0}^{-1} - \frac{n+1}{n+2} - \frac{n+2}{n+2} - \frac{n+2}{(n+1)(n+2)}$	$\frac{-}{2}$ $\frac{+}{2}$
26	Given two independent events A and B such that $P(A) = 0.3$ and $P(B) = 0.6$, find	
	$P(A \cap B).$	
	Answer: $P(A^{'} \cap B^{'}) = P(A^{'})P(B^{'})$	1
	=(0.7)(0.4)=0.28	1
	SECTION – C	
Q. N	Tos. 27 to 32 carry 4 marks each.	
27	Solve for $x : \sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$.	
	Answer:	
	$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2} \Longrightarrow (1-x) = \sin\left(\frac{\pi}{2} + 2\sin^{-1}x\right)$	$1\frac{1}{-}$
	$\Rightarrow (1-x) = \cos(2\sin^{-1}x) \Rightarrow 1-x = 1-2x^2$	2 1
	$\therefore 2x^2 - x = 0 \Longrightarrow x = 0, x = \frac{1}{2}$	1
	since $x = \frac{1}{2}$ does not satisfy the given equation	1
	$\therefore x = 0$ is the required solution.	$\frac{1}{2}$
28	If $y = (\log x)^x + x^{\log x}$, then find $\frac{dy}{dx}$	

Answer:
$$y = (\log x)^{1} + x^{\log x} = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$
1 $\therefore \log u = x \log(\log x) and \log v = (\log x)^{2}$ $\frac{1}{2}$ $\frac{du}{dx} = (\log x)^{1} \left[\frac{1}{\log x} + \log(\log x)\right] = d\frac{dv}{dx} = x^{\log x}, \frac{2\log x}{x}$ $\frac{1}{2}$ 2^{29} Solve the differential equation: $x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\left(\frac{y}{x}\right) = 0$, given that
 $x = 1$ when $y = \frac{\pi}{2}$. $\frac{1}{2}$ Answer:
Given differential equation gives $\frac{dy}{dx} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)}$ $\frac{1}{2}$ $\frac{y}{x} = v \Rightarrow y = vx$ and $\frac{dv}{dx} = v + x \frac{dv}{dx}$ $\frac{1}{2}$ $\therefore v + x \frac{dv}{dx} = \frac{v \sin v - 1}{\sin v} \Rightarrow x \frac{dv}{dx} = -\frac{1}{\sin v}$ $\frac{1}{2}$ $\Rightarrow \int \sin v \, dv = -\int \frac{1}{x} \, dx$ $\frac{1}{2}$ $\therefore \cos(\frac{y}{x}) = \log|x|$ to $\cos\left(\frac{y}{x}\right) = \log|x| + C$ $\frac{1}{2}$ 3^{20} If $\vec{a} = \vec{i} + 2j + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 4j - 5\vec{k}$ represent two adjacent sides of a parallelogram.
find unit vectors parallel to the diagonals of the parallelogram.
Answer: $1 + 1$ 3^{20} If $\vec{a} = \vec{i} + 2j + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 4j - 5\vec{k}$ represent two adjacent sides of a parallelogram.
find unit vectors are: $\vec{a} + \vec{b} = 3\vec{i} + 6j - 2\vec{k}$ and $\vec{a} - \vec{b} = -\vec{i} - 2j + 8\vec{k}$ $1 + 1$ 3^{20} If $\vec{a} = \vec{i} + 2j + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 4j - 5\vec{k}$ represent two adjacent sides of $\vec{a} = \vec{a} - 2j - 8\vec{k}$ $1 + 1$ 3^{20} If $\vec{a} = \vec{b} = 3\vec{i} + 6j - 2\vec{k}$ and $\vec{a} = \vec{b} - 2j + 8\vec{k}$ $1 + 1$ 3^{20} If $\vec{a} = \vec{b} = 3\vec{i} = 3\vec{i} + 6j - 2\vec{k}$ and $\vec{a} = -\vec{i} - 2j + 8\vec{k}$ $1 + 1$ 3^{20} Using vectors, find the area of the triangle ABC with vertices A (1, 2, 3), B(2, -1, 4) $1 + 1$ 3^{2

	Answer:		1				
		а	rea of $\Delta ABC = \frac{1}{2}$	cross product of a	any two side vect	ors	1
		-	$\overrightarrow{AB} = \hat{i} - 3\hat{j} + \hat{k}$ and	d $\overrightarrow{BC} = 2\hat{i} + 6\hat{j} - 3\hat{j}$	$5\hat{k}$		$\frac{1}{1} + \frac{1}{1}$
		- /	$\overrightarrow{AB} \times \overrightarrow{BC} = 9\hat{i} + 7\hat{j}$	$+12\hat{k}$			2 2 1
		:	. area of $\triangle ABC =$	$\frac{1}{2}\sqrt{81+49+144}$	$=\frac{1}{2}\sqrt{274}$		1
31	A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A requires 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. Given that total time for cutting is 3 hours 20 minutes and for assembling 4 hours. The profit for type A souvenir is ₹100 each and for type B souvenir, profit is ₹120 each. How many souvenirs of each type should the company manufacture in order to maximize the profit? Formulate the problem as an LPP and solve it graphically. Answer: Let the company manufacture 'x' number of souvenirs of Type A And 'y' number of souvenirs of Type B						
	Y				D 100 100		1
	(0,25) A 10x+8y=2	40		LPP1s: Max1m1se	P = 100x + 120y	~ _	2
	20 B (8,2	o)	S	ubject to $5x + 8y \le 10x + 10x $	≤200 ≤240		
	10			10x + 8y	≥240 •0		1
	0 10	20 .30 40 ×		$x \ge 0, y \ge$.0		1
		5x+8y=200	-		Correct Gr	aph	$1\frac{1}{2}$
	P(A) = ₹ 3,000 P(B) = ₹ 3,000 (Max.)						
			I	P(C) = ₹2,400			
	• •	For Maximum	profit, No. of so	uvenirs of Type A	A = 8	_	1
32	Three rotten a	pples are mixed	l with seven fres	h apples. Find the	<u>b = 20</u> probability dist	ribution	
	of the number Find the mean	of rotten apple of the number	s, if three apples of rotten apples.	are drawn one by	one with replac	cement.	
	Answer:	ta tha numban	of notton applace	hown			1
	X :	0	1	rawn. 2	3		$\frac{1}{2}$
							2
	P (X) :	$\frac{7}{10} \cdot \frac{7}{10} \cdot \frac{7}{10}$	$3.\frac{7}{10}.\frac{7}{10}.\frac{3}{10}$	$3.\frac{7}{10}.\frac{3}{10}.\frac{3}{10}$	$\frac{3}{10}, \frac{3}{10}, \frac{3}{10}$		
		10 10 10	10 10 10	10 10 10	10 10 10	-	2
		_ 343	_ 441	= 189	_ 27		
		1000	1000	1000	1000	-	
	X P(X)	0	441	378	81		1
		000	1000	1000	1000		1
	Mean = $\sum X$	$P(X) = \frac{900}{1000} =$	<u>9</u> 10				1
		1000	10				2

OR In a shop X, 30 tins of ghee of type A and 40 tins of ghee of type B which look alike, are kept for sale. While in a shop Y, similar 50 tins of ghee of type A and 60 tins of ghee of type B are there. One tin of ghee is purchased from one of the randomly selected shop and is found to be of type B. Find the probability that it is purchased from shop Y. Answer: E_1 : selecting shop X 1 E_2 : selecting shop Y $\frac{1}{2}$ A: purchased tin is of type B $P(E_1) = P(E_2) = \frac{1}{2}$ 1 $P(A | E_1) = \frac{4}{7}, P(A | E_2) = \frac{6}{11}$ $P(E_2 | A) = \frac{P(E_2)P(A | E_2)}{P(E_1)P(A | E_1) + P(E_2)P(A | E_2)}$ $=\frac{\frac{1}{2}\cdot\frac{6}{11}}{\frac{1}{2}\cdot\frac{4}{7}+\frac{1}{2}\cdot\frac{6}{11}}$ 2 $=\frac{21}{43}$ 1 $\overline{2}$ SECTION - D Q. Nos. 33 to 36 carry 6 marks each. 33 Find the vector and Cartesian equations of the line which is perpendicular to the lines with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and passes through the point (1, 1, 1). Also find the angle between the given lines. Answer: 1 Let equation of required line is $\frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{a}$(i) $\overline{2}$ Since this line is perpendicular to $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, a+2b+4c=0(ii) 2a+3b+4c=0(iii) 1(iii) Solving (ii) and (iii) , $\frac{a}{-4} = \frac{b}{4} = \frac{c}{-1}$ \therefore DR's of line in cartesian form is : -4, 4, -1 1 Equation of line in Cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$ 1 Vector form of line is $\vec{r} = (\hat{i} + j + k) + \lambda(-4\hat{i} + 4j - k)$ 1 Let θ be the angle between given lines. $\cos\theta = \frac{1(2) + 2(3) + 4(4)}{\sqrt{1 + 4 + 16}\sqrt{4 + 9 + 16}} = \frac{24}{\sqrt{21}\sqrt{29}} \qquad \therefore \theta = \cos^{-1}\left(\frac{24}{\sqrt{21}\sqrt{29}}\right)$ $1 + \frac{1}{2}$

34 Using integration find the area of the region bounded between the two circles
$$x^2 + y^2 = 9$$
 and $(x-3)^2 + y^2 = 9$.
Answer: Correct Figure 1
Point of intersection of, $x^2 + y^2 = 9; (x-3)^2 + y^2 = 9 \Rightarrow (x-3)^2 - x^2 = 0 \Rightarrow x = \frac{y}{2}$ 1
 $y = \frac{1}{\sqrt{y}} =$

	$\therefore \text{ minimum value } = a \sqrt{\frac{b}{a}} . c + b . \frac{c^2}{c} \sqrt{\frac{a}{b}} = 2\sqrt{ab}.c$	1
36	If a, b, c are p th , q th , and r th terms respectively of a G.P, then prove that $\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$ Answer:	1
	$a = AR^{p-1}, \ b = AR^{q-1}, \ c = AR^{r-1}$ $\therefore \Delta = \begin{vmatrix} \log A + (p-1)\log R & p & 1 \\ \log A + (q-1)\log R & q & 1 \\ \log A + (r-1)\log R & r & 1 \end{vmatrix} = \log A \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \end{vmatrix} + \log R \begin{vmatrix} p & p & 1 \\ q & q & 1 \\ r & r & 1 \end{vmatrix} - \log R \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \end{vmatrix}$	1-2 1+1+1+1
	=0+0+0=0	$\frac{1}{2}$
	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find A^{-1} . Using A^{-1} , solve the following system of equations: 2x - 3y + 5z = 11 3x + 2y - 4z = -5 x + y - 2z = -3	
	Answer: A = 2(0) + 3(-2) + 5(1) = -1	1
	$\Rightarrow A^{-1} = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} (1 \text{ mark for any 4 correct co-factors})$	2
	Given equations can be written as $AX = B$, where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$	1
	$\therefore X = A^{-1}B = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1
	$\Rightarrow x=1, y=2, z=3$	1

Strictly Confidential - (For Internal and Restricted Use Only)

Senior School Certificate Examination-2020 Marking Scheme - MATHEMATICS Subject Code: 041 Paper Code: 65/5/2

General instructions:-

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- **6.** If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0 80 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- **15.** Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- **16.** The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

1

XII MATHEMATICS

QUESTION PAPER CODE 65/5/2

EXPECTED ANSWER/VALUE POINTS

Q. No	VALUE POINTS	Marks
110.	SECTION – A	
Oue	stion Numbers 1 to 20 carry 1 mark each.	
Q. N	os. 1 to 10 are multiple choice questions of 1 mark each. Select the correct option:	
1	If $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$, then x equals	
	(a) 0 (b) -2 (c) -1 (d) 2 Answer: (d) 2	1
2	$\int 4^x 3^x dx$ equals	
	(a) $\frac{12^x}{\log 12} + C$ (b) $\frac{4^x}{\log 4} + C$ (c) $\left(\frac{4^x \cdot 3^x}{\log 4 \cdot \log 3}\right) + C$ (d) $\frac{3^x}{\log 3} + C$	
	Answer: (a) $\frac{12^x}{\log 12} + C$	1
3	A number is chosen randomly from numbers 1 to 60. The probability that the chosen number is a multiple of 2 or 5 is	
	$\frac{(a) \frac{2}{5}}{(b) \frac{3}{5}}$ (b) $\frac{3}{5}$ (c) $\frac{7}{10}$ (d) $\frac{9}{10}$	
	Answer: (b) $\frac{3}{5}$	1
4	ABCD is a rhombus whose diagonals intersect at E. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$	
	equals	
	(a) $\vec{0}$ (b) \overrightarrow{AD} (c) $2\overrightarrow{BC}$ (d) $2\overrightarrow{AD}$	
	Answer: (a) 0	1
5	If A is a square matrix of order 3, such that $A(adjA) = 10I$, then $ adjA $ is equal to	
	(a) 1 (b) 10 (c) 100 (d) 101	1
	Answer: (c) 100	1
6	A card is picked at random from a pack of 52 playing cards. Given that the picked card is a queen, the probability of this card to be a card of spade is	
	(a) $\frac{1}{3}$ (b) $\frac{4}{13}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$	
	Answer: (c) $\frac{1}{4}$	1

7	If $\hat{i}, \hat{j}, \hat{k}$ are unit vectors along three mutually perpendicular directions, then				
	(a) $\hat{i} \cdot \hat{j} = 1$ (b) $\hat{i} \times \hat{j} = 1$ (c) $\hat{i} \cdot \hat{k} = 0$ (d) $\hat{i} \times \hat{k} = 0$				
	Answer: (c) $\hat{i}.\hat{k}=0$	1			
8	The graph of the inequality $2x+3y > 6$ is				
	(a) half plane that contains the origin				
	(b) half plane that neither contains the origin nor the points of the line $2x+3y=6$ (c) whole XOX-plane excluding the points on the line $2x+3y=6$				
	(d) entire XOY-plane (d) $(d) = 0$				
	Answer: (b) half plane that neither contains the origin nor the points of the line				
	2x+3y=6	1			
9	x-2 $y-3$ $4-7$ $x-1$ $y-4$ $7-5$				
	The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{x-3}{k}$ and $\frac{x-1}{k} = \frac{y-3}{2} = \frac{x-3}{-2}$ are mutually perpendicular if				
	the value of k is				
	(a) $-\frac{2}{2}$ (b) $\frac{2}{2}$ (c) -2 (d) 2				
	$\begin{bmatrix} (a) & 3 \\ 3 \\ \hline & 2 \end{bmatrix} = \begin{bmatrix} (b) & 3 \\ 3 \\ \hline & (b) & 2 \end{bmatrix} $				
	Answer: (a) $-\frac{2}{3}$	1			
10	$\frac{1}{16} y = A a^{5x} + B a^{-5x}, \text{ then } d^2 y \text{ is equal to}$				
	If $y = Ae^{-x} + Be^{-x}$ then $\frac{1}{dx^2}$ is equal to				
	(a) $25y$ (b) $5y$ (c) $-25y$ (d) $15y$ Answer: (a) $25y$	1			
In Q	Nos. 11 to 15, fill in the blanks with correct word/sentence:				
11	A relation R on a set A is called, if $(a_1, a_2) \in R$ and $(a_2, a_3) \in R$ implies				
	that $(a_1, a_3) \in R$, for $a_1, a_2, a_3 \in A$.				
12	Answer: transitive	1			
12	The integrating factor of the differential equation $x\frac{dy}{dx} + 2y = x^2$ is				
	Answer: x^2	1			
	$ OR (dx)^2$				
	The degree of the differential equation $1 + \left(\frac{dy}{dx}\right) = x$ is				
10	Answer: 2	1			
13	The vector equation of a line which passes through the points $(3, 4, -7)$ and $(1, -1, 6)$ is				
	Answer: $\vec{r} = (3\vec{i} + 4\vec{j} - 7k) + \lambda(-2\vec{i} - 5\vec{j} + 13k)$	1			
	Or, $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(2\hat{i} + 5\hat{j} - 13\hat{k})$				
	OR The line of shortest distance between two skew lines is to both the				
	lines.				
	Answer: perpendicular	1			
1					

14		
	If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A - 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then $A = $	
	Answer: $\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$	1
15	The least value of the function $f(x) = ax + \frac{b}{x}$ $(a > 0, b > 0, x > 0)$ is	
	Answer: $2\sqrt{ab}$	1
Q. 1	6 to 20 are very short answer questions.	
16	Evaluate: $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$.	
	Answer:	
	$\sin\left[\frac{\pi}{3} + \frac{\pi}{6}\right] = 1$	$\frac{1}{2} + \frac{1}{2}$
17	Using differential, find the approximate value of $\sqrt{36.6}$ up to 2 decimal places.	
	Answer:	
	$\sqrt{36.6} \simeq \sqrt{36} + \frac{1}{2\sqrt{36}} (0.6) = 6.05$	$\frac{1}{2} + \frac{1}{2}$
	OR	
	Find the slope of tangent to the curve $y = 2\cos^2(3x)$ at $x = \frac{\pi}{6}$.	
	Answer:	
	$\frac{dy}{dt} = -6\sin 6x$	1
	dx π	2
	\therefore slope of tangent at $x = \frac{\pi}{6}$ is 0.	$\frac{1}{2}$
18	Find the value of $\int_{1}^{4} x-5 dx$.	
	Answer:	
	$\int_{1}^{4} x-5 dx = \int_{1}^{4} (5-x) dx$	1/2
	$=\frac{15}{2}$	1/2
19	If the function f defined as $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ k & x = 3 \end{cases}$ is continuous at $x = 3$, find the value $x = 3$, find the value $x = 3$.	
	of <i>k</i> .	

	Answer:	1 1
	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6, \therefore k = 6$	$\frac{1}{2}^{+}$ $\frac{1}{2}$
20	For $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, write A^{-1} .	
	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	
	A = 1	1/2
	$A^{-1} = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$	1/2
	SECTION – B	
Q. N	os. 21 to 26 carry 2 marks each.	
21	Find $\int \frac{x+1}{x(1-2x)} dx$.	
	Answer:	
	$\int \frac{x+1}{x(1-2x)} dx = \int \left(\frac{1}{x} + \frac{3}{1-2x}\right) dx$	1
	$= \log x - \frac{3}{2} \log 1 - 2x + C$	1
22	Evaluate $\int \frac{x \sin^{-1}(x^2)}{dx} dx$	
	$\int \sqrt{1-x^4} dx$	
	Answer: $\cdot -1(2)$	
	$\int \frac{x \sin^{-1}(x^{2})}{\sqrt{1-x^{4}}} dx = \frac{1}{2} \int t dt, \text{ where } \sin^{-1}(x^{2}) = t$	1
	$=\frac{t^2}{4} + C = \frac{1}{4} \left(\sin^{-1} x^2 \right)^2 + C$	$\frac{1}{2} + \frac{1}{2}$
23	Find the value of $\int_{0}^{1} x(1-x)^n dx$.	
	Answer:	
	$\int_{0}^{1} x(1-x)^{n} dx = \int_{0}^{1} (1-x)(1-1+x)^{n} dx = \int_{0}^{1} (x^{n}-x^{n+1}) dx$	1
	$-\left[\frac{x^{n+1}}{x^{n+1}} - \frac{x^{n+2}}{x^{n+2}}\right]^{1} - \frac{1}{x^{n+1}} - \frac{1}{x^$	1 1
	$\begin{bmatrix} n+1 & n+2 \end{bmatrix}_0^n n+1 & n+2 \text{ (}n+1\text{)}(n+2\text{)}$	$\frac{1}{2}^{+}\frac{1}{2}$
24	If $x = a\cos\theta$; $y = b\sin\theta$, then find $\frac{d^2y}{dx^2}$.	
	Answer:	
	$\frac{dx}{d\theta} = -a\sin\theta, \frac{dy}{d\theta} = b\cos\theta \Longrightarrow \frac{dy}{dx} = -\frac{b}{a}\cot\theta$	$\frac{1}{2} + \frac{1}{2}$
	$\frac{d^2 y}{dx^2} = \frac{b}{a} \cos ec^2 \theta \left(\frac{-1}{a \sin \theta}\right) = -\frac{b}{a^2} \cos ec^3 \theta$	$\frac{2}{\frac{1}{2}} + \frac{1}{2}$
	OR	
	Find the differential of $\sin^2 x$ w.r.t. $e^{\cos x}$.	

	Answer:			
	Let $y = \sin^2 x$ and $z = e^{\cos x}$. $\frac{dy}{dx} = 2\sin x \cos x$ and $\frac{dz}{dx} = -\sin x \cdot e^{\cos x}$	$\frac{1}{2} + \frac{1}{2}$		
	$\frac{dy}{dx} = \frac{2\sin x \cos x}{\sin x \cos x} = \frac{-2\cos x}{\cos x} \text{ or } -2\cos x \text{ e}^{-\cos x}$	$\frac{1}{-+-}$		
	$dz - \sin x e^{\cos x} e^{\cos x} e^{\cos x}$	2 2		
25	Given two independent events A and B such that $P(A) = 0.3$ and $P(B) = 0.6$, find			
	$P(A \mid B)$.			
	Answer: $P(A' \cap P') = P(A') P(P')$	_		
	$P(A \mid B) = P(A)P(B)$	1		
26	=(0.7)(0.4)=0.28	1		
26	If $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$, then show that $(fof)(x) = x$, for all $x \neq \frac{2}{3}$. Also, write inverse of			
	Answer: $(4x+3)$			
	$4\left(\frac{1}{6x-4}\right)^{+3} 34x$	1		
	$(Joj)(x) = J\left(\frac{1}{6x-4}\right) = \frac{1}{6}\left(\frac{4x+3}{6x-4}\right) - 4 = \frac{1}{34} = x$	$1\frac{1}{2}$		
	$\left(6x-4\right)$			
	Now, $(fof)(x) = x \Rightarrow f^{-1} = f \text{ or } f^{-1}(x) = \frac{4x+3}{x-1}$	$\frac{1}{2}$		
	6x-4	2		
	Check if the relation R in the set \mathbf{R} of real numbers defined as defined as			
	$R = \{(a,b): a < b\}$ is (i) symmetric, (ii) transitive.			
	Answer:			
	$(i)-1, 2 \in \mathbb{R}$ such that $ -1 < 2 \Longrightarrow (-1, 2) \in R$,	_		
	but since $ 2 $ is not less than $-1 \Rightarrow (2, -1) \notin R$.	1		
	Hence <i>R</i> is not symmetric.			
	(ii) Let $(a,b) \in R$ and $(b,c) \in R, \therefore a < b$ and $ b < c$	4		
	$\Rightarrow a < c \Rightarrow (a,c) \in R \therefore R \text{ is transitive.}$	1		
	Remark:			
	Since in Hindi version of this question, $R = \{(a,b): a < b\}$ is given, so full marks may be			
	awarded to the student who solved it using $a < b$.			
	SECTION – C			
	as 27 to 32 garmy A marks good			
Q. Nos. 27 to 52 carry 4 marks each.				
27	Prove that $\tan \left[2 \tan^{-1} \left(\frac{1}{2} \right) - \cot^{-1} 3 \right] = \frac{9}{13}$.			

	Answer:	
	LHS = $\tan\left[\tan^{-1}\left(\frac{2\cdot\frac{1}{2}}{1-\frac{1}{4}}\right) - \tan^{-1}\frac{1}{3}\right]$	$1\frac{1}{2}$
	$= \tan\left[\tan^{-1}\left(\frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \cdot \frac{1}{3}}\right)\right]$	$1\frac{1}{2}$
	$= \tan\left(\tan^{-1}\frac{9}{13}\right) = \frac{9}{13} = \text{RHS}$	1
28	If $y = (\cos x)^x + \tan^{-1} \sqrt{x}$, find $\frac{dy}{dx}$.	
	Answer:	
	$y = (\cos x)^x + \tan^{-1}\sqrt{x} = u + v, \therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$	1
	$\log u = x \log(\cos x) \Longrightarrow \frac{du}{dx} = (\cos x)^x \left[-x \tan x + \log(\cos x) \right]$	$1\frac{1}{2}$
	and $\frac{dv}{dx} = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}}$	1
	$\therefore \frac{dy}{dx} = (\cos x)^x \left[-x \tan x + \log(\cos x) \right] + \frac{1}{2\sqrt{1-(1+x)}}$	$\frac{1}{2}$
20	$\frac{dx}{2\sqrt{x}} = \frac{2}{1+x}$	
29	If $\vec{a} = i + 2j + 3k$ and $b = 2i + 4j - 5k$ represent two adjacent sides of a parallelogram, find	
	unit vectors parallel to the diagonals of the parallelogram.	
	Answer: Diagonal vectors are $\vec{a} + \vec{b} = 2\hat{i} + 6\hat{j} + 2\hat{k}$ and $\vec{a} = \hat{b} = -\hat{i} + 2\hat{i} + 8\hat{k}$ (or $\vec{b} = \vec{a} - \hat{i} + 2\hat{j} + 8\hat{k}$)	
	Diagonal vectors are $u + b = 5i + 6j - 2k$ and $u - b = -i - 2j + 6k$ (or $b - u = i + 2j - 6k$).	1+1
	: unit vectors are $\frac{(a+b)}{ \vec{a}+\vec{b} } = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k}$ and $\frac{(a+b)}{ \vec{a}-\vec{b} } = -\frac{1}{\sqrt{69}}\hat{i} - \frac{2}{\sqrt{69}}\hat{j} + \frac{8}{\sqrt{69}}\hat{k}$	1+1
	OR	
	Using vectors, find the area of the triangle ABC with vertices A $(1, 2, 3)$, B $(2, -1, 4)$ and	
	C(4, 5, -1).	
	Answer:	
	area of $\Delta ABC = \frac{1}{2} $ cross product of any two side vectors	1
	$\overrightarrow{AB} = \hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{BC} = 2\hat{i} + 6\hat{j} - 5\hat{k}$	$\frac{1}{2} + \frac{1}{2}$
	$\overrightarrow{AB} \times \overrightarrow{BC} = 9\hat{i} + 7\hat{j} + 12\hat{k}$	2 2
	: area of $\triangle ABC = \frac{1}{2}\sqrt{81+49+144} = \frac{1}{2}\sqrt{274}$	1

30	A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A requires 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. Given that total time for cutting is 3 hours 20 minutes and for assembling 4 hours. The profit for type A souvenir is ₹100 each and for type B souvenir, profit is ₹120 each. How many souvenirs of each type should the company manufacture in order to maximize the profit? Formulate the problem as an LPP and solve it graphically.	
	Let the company manufacture ' x ' number of souvenirs of Type A	
	And, 'y' number of souvenirs of Type B	1
	\therefore LPP is: Maximise $P = 100x + 120y$	$\frac{1}{2}$
	(0,25) A 20 (8,20) subject to $5x + 8y \le 200$	2
	$10x + 8y \le 240$	1
	$x \ge 0, y \ge 0$	1
	0 10 20 30 40 X	1 ¹
	P(A) = ₹ 3 000	$\frac{1}{2}$
	P(B) = ₹ 3,200 (Max.)	
	P(C) =₹2,400	
	• For Maximum profit, No. of souvenirs of Type $A = 8$ No. of souvenirs of Type $B = 20$	1
31	Three rotten apples are mixed with seven fresh apples. Find the probability distribution of	1
	the number of rotten apples, if three apples are drawn one by one with replacement. Find	
	the mean of the number of rotten apples.	
	Let X represents the number of rotten apples drawn.	1
	X: 0 1 2 3	$\overline{2}$
	777 773 733 333 7	
	P(X): $\frac{7}{10} \cdot \frac{7}{10} \cdot \frac{7}{10} = 3 \cdot \frac{7}{10} \cdot \frac{3}{10} \cdot \frac{3}{10} = 3 \cdot \frac{7}{10} \cdot \frac{3}{10} \cdot \frac{3}{1$	
		2
	$-\frac{343}{-189}$ $-\frac{441}{-189}$ $-\frac{27}{-189}$	
	-1000 -1000 -1000 -1000	
	441 278 81	
	X.P(X): 0 $\frac{441}{1000}$ $\frac{578}{1000}$ $\frac{81}{1000}$	1
	$\sum x p(x) = 900 - 9$	1
	Mean = $\sum X P(X) = \frac{1000}{1000} = \frac{10}{10}$	$\frac{1}{2}$
		2
	OR	
	In a shop X, 30 tins of ghee of type A and 40 tins of ghee of type B which look alike, are	
	kept for sale. While in a shop Y, similar 50 tins of ghee of type A and 60 tins of ghee of	
	type B are there. One tin of ghee is purchased from one of the randomly selected shop	
	and is found to be of type B Find the probability that it is purchased from shop V	
	and is round to be of type D. I nid the probability that it is purchased from shop T.	

	Answer:	
	E_1 :selecting shop X	1
	E_2 :selecting shop Y	2
	A : purchased tin is of type B	
	$P(E_1) = P(E_2) = \frac{1}{2}$	1
	$P(A E_1) = \frac{4}{7}, P(A E_2) = \frac{6}{11}$	
	$P(E_{2} A) = \frac{P(E_{2})P(A E_{2})}{P(E_{1})P(A E_{1}) + P(E_{2})P(A E_{2})}$	
	$=\frac{\frac{1}{2}\cdot\frac{6}{11}}{\frac{1}{11}}$	2
	$\frac{1}{2} \cdot \frac{4}{7} + \frac{1}{2} \cdot \frac{6}{11}$	
	$=\frac{21}{43}$	$\frac{1}{2}$
32	Solve the differential equation: $x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\left(\frac{y}{x}\right) = 0$, given that	
	$x = 1$ when $y = \frac{\pi}{2}$.	
	Answer:	
	$v\sin\left(\frac{y}{y}\right) - x$	
	Given differential equation gives $\frac{dy}{dx} = \frac{y}{dx} + \frac{y}{dx}$	$\frac{1}{2}$
	$dx = x \sin\left(\frac{y}{x}\right)$	2
	$\frac{y}{x} = v \Longrightarrow y = vx \text{ and } \frac{dy}{dx} = v + x \frac{dv}{dx}$	$\frac{1}{2}$
	$\therefore v + x \frac{dv}{dx} = \frac{v \sin v - 1}{\sin v} \Longrightarrow x \frac{dv}{dx} = -\frac{1}{\sin v}$	1
	$\Rightarrow \int \sin v dv = -\int \frac{1}{x} dx$	$\frac{1}{2}$
	$\therefore \cos v = \log x + C \operatorname{or} \cos \left(\frac{y}{x}\right) = \log x + C$	1
	Given $x = 1$ when $y = \frac{\pi}{2} \Longrightarrow C = 0$	1
	$\therefore \cos\left(\frac{y}{x}\right) = \log x \text{ is the required solution.}$	$\frac{1}{2}$

SECTION – D		
Q. N	los. 33 to 36 carry 6 marks each.	
33	If a, b, c are p th , q th , and r th terms respectively of a G.P, then prove that $\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0$	
	Answer:	
	$a = AR^{p-1}, \ b = AR^{q-1}, \ c = AR^{r-1}$	$1\frac{1}{2}$
	$\therefore \Delta = \begin{vmatrix} \log A + (p-1)\log R & p & 1 \\ \log A + (q-1)\log R & q & 1 \\ \log A + (r-1)\log R & r & 1 \end{vmatrix} = \log A \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \end{vmatrix} + \log R \begin{vmatrix} p & p & 1 \\ q & q & 1 \\ r & r & 1 \end{vmatrix} - \log R \begin{vmatrix} 1 & p & 1 \\ 1 & q & 1 \\ 1 & r & 1 \end{vmatrix}$	1+1+1+1
	=0+0+0=0	$\frac{1}{2}$
	OR	
	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find A^{-1} . Using A^{-1} , solve the following system of equations: 2x - 3y + 5z = 11 3x + 2y - 4z = -5 x + y - 2z = -3	
	Answer: A = 2(0) + 3(-2) + 5(1) = -1	1
	$\Rightarrow A^{-1} = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} $ (1 Mark for any 4 correct co-factors)	2
	Given equations can be written as $AX = B$, where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$	1
	$\therefore X = A^{-1}B = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1
	$\Rightarrow x=1, y=2, z=3$	1

34	Find the vector and Cartesian equations of the line which is perpendicular to the lines	
	with equations $\frac{x+2}{1} = \frac{y-3}{2} = \frac{z+1}{4}$ and $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{4}$ and passes through the point	
	1 2 4 2 3 $4(1, 1, 1). Also find the angle between the given lines.$	
	Answer.	
	Answer: $x-1$ $y-1$ $z-1$	1
	Let equation of required line is $\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$ (1)	$\overline{2}$
	Since this line is perpendicular to $\frac{x+2}{y-3} = \frac{y-3}{z+1}$ and $\frac{x-1}{z-3} = \frac{y-2}{z-3}$.	
	1 2 4 2 3 4	
	a+2b+4c=0(ii) 2a+3b+4c=0(iii)	1
	Solving (ii) and (iii) $\frac{a}{b} = \frac{b}{c}$	1
	Solving (ii) and (iii) , $-4 - 4 - 1$	1
	\therefore DR s of line in cartesian form is : -4, 4, -1 x-1 $y-1$ $z-1$	1
	Equation of line in Cartesian form is: $\frac{x-1}{-4} = \frac{y-1}{4} = \frac{z-1}{-1}$	1
	Vector form of line is $\vec{r} = (\hat{i} + i + k) + \lambda(-4\hat{i} + 4i - k)$	
	Let θ be the angle between given lines.	
	$\cos \theta = \frac{1(2) + 2(3) + 4(4)}{24} = \frac{24}{24} = \frac{1}{24} = \cos^{-1} \left(\frac{24}{24} \right)$	$1 + \frac{1}{-}$
	$\cos \theta = \frac{1}{\sqrt{1+4+16}} \sqrt{4+9+16} = \frac{1}{\sqrt{21}} \sqrt{29} \qquad \dots \theta = \cos \left(\frac{1}{\sqrt{21}} \sqrt{29} \right)$	2
25	IT is interacting find the one of the main handed between the two sinds	
35	Using integration find the area of the region bounded between the two circles $x^2 + y^2 = 9$ and $(x - 3)^2 + y^2 = 9$	
	Answer:	
	Correct Figure	1
	Point of intersection of, $x^2 + y^2 = 9; (x-3)^2 + y^2 = 9 \Longrightarrow (x-3)^2 - x^2 = 0 \Longrightarrow x = \frac{3}{2}$	1
	Y↑ Γ ₃ -	
	Required area = $2 \left \int_{0}^{\frac{1}{2}} \sqrt{9 - (x - 3)^2} dx + \int_{\frac{3}{2}}^{\frac{3}{2}} \sqrt{9 - x^2} dx \right $	1
		$1\frac{1}{2}$
	x (0) $(3,0)$ $(6,0)$ $(6,0)$ $=4 \int_{\frac{3}{2}}^{3} \sqrt{9 - x^2} dx$	Z
	$(3/2,0)$ $(x \sqrt{2}, 9, -1, x)^3 (x \sqrt{2}, 9, -1, x)^3$	1
	$=4\left[\frac{2}{2}\sqrt{9-x}+\frac{2}{2}\sin\frac{\pi}{3}\right]_{\frac{3}{2}}=\left[\frac{6\pi-\pi}{2}\right]$	$1\frac{1}{2} + 1$
	2	
	OR	
	OR	
	OR Evaluate the following integral as the limit of sums $\int_{1}^{4} (x^2 - x) dx$.	
	OR Evaluate the following integral as the limit of sums $\int_{1}^{4} (x^2 - x) dx$.	

Strictly Confidential - (For Internal and Restricted Use Only)

Senior School Certificate Examination-2020 Marking Scheme - MATHEMATICS Subject Code: 041 Paper Code: 65/5/3

General instructions:-

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer 'X"be marked. Evaluators will not put right kind of mark while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- 5. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- **6.** If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- 7. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 8. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0 80 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
- 11. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on a reply
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
- 12. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
- 13. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 14. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- **15.** Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- **16.** The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

XII MATHEMATICS

QUESTION PAPER CODE 65/5/3

EXPECTED ANSWER/VALUE POINTS

Q. No	VALUE POINTS	Marks
110.	SECTION – A	
Que	stion Numbers 1 to 20 carry 1 mark each.	
Q. N	os. 1 to 10 are multiple choice questions of 1 mark each. Select the correct option:	1
1	If A is a skew symmetric matrix of order 3, then the value of $ A $ is	
	(a) 3 (b) 0 (c) 9 (d) 27 Answer: (b) 0	1
2	If \hat{i} , \hat{j} , \hat{k} are unit vectors along three mutually perpendicular directions, then	
	(a) $\hat{i}.\hat{j}=1$ (b) $\hat{i}\times\hat{j}=1$ (c) $\hat{i}.\hat{k}=0$ (d) $\hat{i}\times\hat{k}=0$ Answer: (c) $\hat{i}.\hat{k}=0$	1
3	A card is picked at random from a pack of 52 playing cards. Given that the picked card is a queen, the probability of this card to be a card of spade is	
	(a) $\frac{1}{3}$ (b) $\frac{4}{13}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$	
	Answer: (c) $\frac{1}{4}$	1
4	If A is a 3 x 3 matrix such that $ A = 8$, then $ 3A $ equals.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		1
5	$\int x^2 e^{x^3} dx$ equals	
	(a) $\frac{1}{3}e^{x^3} + C$ (b) $\frac{1}{3}e^{x^4} + C$ (c) $\frac{1}{2}e^{x^3} + C$ (d) $\frac{1}{2}e^{x^2} + C$	
	Answer: (a) $\frac{1}{3}e^{x^3} + C$	1
6	If $y = \log_e\left(\frac{x^2}{e^2}\right)$, then $\frac{d^2y}{dx^2}$ equals:	
	(a) $-\frac{1}{x}$ (b) $-\frac{1}{x^2}$ (c) $\frac{2}{x^2}$ (d) $-\frac{2}{x^2}$	
	Answer: (d) $-\frac{2}{x^2}$	1

7	A die is thrown once. Let A be the event that the number obtained is greater than 3. Let B	
	the event that the number obtained is less than 5. Then $P(A \cup B)$ is	
	(a) $\frac{2}{5}$ (b) $\frac{3}{5}$ (c) 0 (d) 1	
	Answer: (d) 1	1
8	ABCD is a rhombus whose diagonals intersect at E. Then $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED}$	
	equals	
	(a) $\vec{0}$ (b) \overrightarrow{AD} (c) $2\overrightarrow{BC}$ (d) $2\overrightarrow{AD}$ Answer: (a) $\vec{0}$	1
9	The distance of the origin (0, 0, 0) from the plane $-2x+6y-3z = -7$ is	
	(a) 1 unit (b) $\sqrt{2}$ units (c) $2\sqrt{2}$ units (d) 3 units	
	Answer: (a) 1 unit	1
10	The graph of the inequality $2x+3y > 6$ is (a) half plane that contains the origin	
	(b) half plane that neither contains the origin nor the points of the line $2x+3y=6$	
	(c) whole XOY-plane excluding the points on the line $2x+3y=6$ (d) entire XOY-plane	
	Answer: (b) half plane that neither contains the origin nor the points of	
	the line $2x+3y=6$	1
In Q	0. Nos. 11 to 15, fill in the blanks with correct word/sentence:	
11		
11	If A and B are square matrices each of order 3 and $ A = 5$, $ B = 3$, then the value of $ 3AB $	
	is	
	Answer: 405	1
12	The least value of the function $f(x) = ax + \frac{b}{a}$ $(a > 0, b > 0, x > 0)$ is .	
	Answer: $2\sqrt{ab}$	1
13	The vector equation of a line which passes through the points $(3, 4, -7)$ and $(1, -1, 6)$ is	
	Answer: $\vec{r} = (3\hat{i} + 4\hat{j} - 7k) + \lambda(-2\hat{i} - 5\hat{j} + 13k)$	1
	Or, $\vec{r} = (3\hat{i} + 4\hat{j} - 7\hat{k}) + \lambda(2\hat{i} + 5\hat{j} - 13\hat{k})$	
	The line of shortest distance between two skew lines is to both the	
	lines. Answer: perpendicular	1
		1

14	The integrating factor of the differential equation $x\frac{dy}{dx} + 2y = x^2$ is	
	Answer: x^2	1
	\mathbf{OR}	1
	The degree of the differential equation $1 + \left(\frac{dy}{dx}\right) = x$ is	
	Answer: 2	1
15	A relation in a set A is called relation, if each element of A is related to itself.	
	Answer: reflexive	1
Q. 1	6 to 20 are very short answer questions.	I
16	Find the cofactors of all the elements of $\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix}$.	¹ / ₂ for any two correct
	Answer: $A_{11} = 3, A_{12} = -4, A_{21} = 2, A_{22} = 1$	1
17	Let $f(x) = x x $, for all $x \in R$ check its differentiability at $x = 0$.	
	Answer	
	$f(x) = \begin{cases} -x^2, & x < 0 \\ x^2, & x \ge 0, \end{cases}$, differentiable at $x = 0$.	$\frac{1}{2} + \frac{1}{2}$
18	Find the value of $\sin^{-1}\left[\sin\left(-\frac{17\pi}{8}\right)\right]$.	
	Answer: $\begin{bmatrix} (17\pi) \end{bmatrix} \begin{bmatrix} (\pi) \end{bmatrix}$	1
	$\left[\sin^{-1}\left[\sin\left(-\frac{1\pi}{8}\right)\right] = -\sin^{-1}\left[\sin\left(2\pi + \frac{\pi}{8}\right)\right]$	$\frac{1}{2}$
	$=-\frac{\pi}{2}$	$\frac{1}{2}$
	8	2
19	Find the value of $\int_{-1}^{4} x-5 dx$.	
	Answer:	
	$\int_{-\infty}^{4} x-5 dx = \int_{-\infty}^{4} (5-x) dx$	$\frac{1}{2}$
	1 15	2 1
	$=\frac{1}{2}$	$\overline{2}$
20	If $f(x) = x^4 - 10$, then find the approximate value of $f(2.1)$.	
	Answer: $(2, 1) = (2, 1) = (1, 2)$	
	$\int (2.1) \approx f(2) + (0.1) f'(2)$ =9.2	$\frac{1}{2}$
		1/2

	OR	
	Find the slope of the tangent to the curve $y = 2\sin^2(3x)$ at $x = \frac{\pi}{6}$.	
	Answer: 6	
	$\frac{dy}{dt} = 6\sin 6x$	1/2
	dx : slope of tangent = 0	1/2
	SECTION – B	1/2
	ing 21 to 26 gamme 2 manks gash	
Q. N	os. 21 to 20 carry 2 marks each.	
21	$\operatorname{Find} \int \frac{x+1}{(x+2)(x+3)} dx$	
	Answer:	
	$\int \frac{x+1}{(x+2)(x+3)} dx = \int \left(-\frac{1}{x+2} + \frac{2}{x+3} \right) dx$	1
	$= -\log x+2 + 2\log x+3 + C$	1
22	If $f(x) = \frac{4x+3}{x+2}$, $x \neq \frac{2}{x+3}$, then show that $(fof)(x) = x$ for all $x \neq \frac{2}{x+3}$. Also, write inverse of	
	$\prod_{x \neq -1}^{n} f(x) = \frac{1}{6x-4}, x \neq -\frac{1}{3}, \text{ then show that } (fof)(x) = x, \text{ for all } x \neq -\frac{1}{3}. \text{ Also, while inverse of } $	
	J · Answer:	
	$4\left(\frac{4x+3}{2}\right)+3$	
	$(fof)(x) = f\left(\frac{4x+3}{6x-4}\right) = \frac{4(6x-4)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{34x}{34} = x$	$1\frac{1}{2}$
	Now, $(fof)(x) = x \Rightarrow f^{-1} = f \text{ or } f^{-1}(x) = \frac{4x+3}{6x-4}$	$\frac{1}{2}$
	Check if the relation R in the set \mathbf{R} of real numbers defined as defined as	
	$R = \{(a,b): a < b\}$ is (i) symmetric, (ii) transitive.	
	Answer: (i) $1 \ge C \mathbb{D}$ such that $1 \le 2 \Rightarrow (1, 2) \le R$	
	(l) 1, $2 \in \mathbb{R}$ such that $1 < 2 \Rightarrow (1, 2) \in \mathbb{R}$, but since 2 is not less then $1 \Rightarrow (2, 1) \notin \mathbb{R}$	1
	But since 2 is not less than $1 \rightarrow (2,1) \notin \mathbb{R}$. Hence <i>R</i> is not symmetric	
	(ii) Let $(a, b) \in R$ and $(b, c) \in R$, $a < b$ and $b < c$	
	$\Rightarrow a < c \Rightarrow (a, c) \in R \therefore R \text{ is transitive.}$	1
23	Given two independent events A and B such that $P(A) = 0.3$ and $P(B) = 0.6$, find $P(A = 0.3)$	
	$ \begin{array}{c} P(A \mid B). \end{array} $	
	Answer: $P(A' \cap B') = P(A')P(B')$	1
	=(0.7)(0.4)=0.28	1

0.4		
24	Evaluate $\int_{1}^{2} \left \frac{1}{x} - \frac{1}{2x^2} \right e^{2x} dx$	
	Answer:	
	$\operatorname{Put} 2x = t, \therefore dx = \frac{1}{2}dt$	$\frac{1}{2}$
	$\therefore I = \int_{1}^{2} \left[\frac{1}{x} - \frac{1}{2x^{2}} \right] e^{2x} dx = \int_{2}^{4} \left[\frac{1}{t} - \frac{1}{t^{2}} \right] e^{t} dt$	$\frac{1}{2}$
	$= \left[\frac{1}{t}e^{t}\right]_{2}^{4} = \frac{e^{4}}{4} - \frac{e^{2}}{2}$	$\frac{1}{2} + \frac{1}{2}$
25	If $x = a\cos\theta$; $y = b\sin\theta$, then find $\frac{d^2y}{dx^2}$.	
	Answer:	
	$\frac{dx}{d\theta} = -a\sin\theta, \frac{dy}{d\theta} = b\cos\theta \Longrightarrow \frac{dy}{dx} = -\frac{b}{a}\cot\theta$	$\frac{1}{2} + \frac{1}{2}$
	$\frac{d^2 y}{d^2 z} = \frac{b}{cos} ec^2 \theta \left(\frac{-1}{1 + cos} \right) = -\frac{b}{2} cos ec^3 \theta$	$\frac{2}{1}$ $\frac{2}{1}$
	$dx^2 = a = (a\sin\theta) = a^2$	$\overline{2}^{+}\overline{2}$
	ŬŔ.	
	Find the differential of $\sin^2 x$ w.r.t. $e^{\cos x}$.	
	Answer:	
	Let $y = \sin^2 x$ and $z = e^{\cos x}$. $\frac{dy}{dx} = 2\sin x \cos x$ and $\frac{dz}{dx} = -\sin x \cdot e^{\cos x}$	$\frac{1}{-+-}$
	$\therefore \frac{dy}{dx} = \frac{2\sin x \cos x}{\sin x \cos x} = \frac{-2\cos x}{\cos x} \text{ or } -2\cos x e^{-\cos x}$	2^{2} 2
	$dz - \sin x e^{\cos x} e^{\cos x}$	$\frac{1}{2} + \frac{1}{2}$
26	Find the value of $\int_{0}^{1} \tan^{-1} \left(\frac{1-2x}{1+x-x^2} \right) dx.$	
	Answer:	
	$\int_{0}^{1} \tan^{-1} \left(\frac{1 - 2x}{1 + x - x^{2}} \right) dx = \int_{0}^{1} \tan^{-1} \left(\frac{(1 - x) - x}{1 + (1 - x)x} \right) dx = \int_{0}^{1} \tan^{-1} (1 - x) dx - \int_{0}^{1} \tan^{-1} x dx$	1
	$= 0 \text{ as } \int_{0}^{1} \tan^{-1} x dx = \int_{0}^{1} \tan^{-1} \left(1 - x \right) dx$	1
	SECTION – C	
O. N	os. 27 to 32 carry 4 marks each.	
27	$= \frac{1}{12} + \frac{1}{12$	
	Solve the equation for $x: \sin\left(\frac{-x}{x}\right) + \sin\left(\frac{-x}{x}\right) = \frac{-2}{2}$ $(x \neq 0)$	
	Answer:	
	Given equation can be written as $(12) \pi (5) (12) (5)$	
	$\sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{3}{x}\right) \Longrightarrow \sin^{-1}\left(\frac{12}{x}\right) = \cos^{-1}\left(\frac{3}{x}\right)$	1

	$\therefore \sin^{-1}\left(\frac{12}{x}\right) = \sin^{-1}\left(\frac{\sqrt{x^2 - 25}}{x}\right)$	1
	$\Rightarrow \frac{12}{x} = \frac{\sqrt{x^2 - 25}}{x}$ $\Rightarrow x^2 - 25 = 144 \Rightarrow x = \pm 13,$	$1\frac{1}{2}$
	since $x = -13$ does not satisfy the given equation, \therefore required solution is $x = 13$.	$\frac{1}{2}$
28	Find the general solution of the differential equation $ye^{\frac{x}{y}}dx = \left(xe^{\frac{x}{y}} + y^2\right)dy$, $y \neq 0$.	
	Answer: Given differential equation can be written as	
	$\frac{dx}{dy} = \frac{xe^{\frac{x}{y}} + y^2}{ye^{\frac{x}{y}}}$	$\frac{1}{2}$
	Put $\frac{x}{y} = v \implies \frac{dx}{dy} = v + y \frac{dv}{dy}$	1
	$\Rightarrow v + y \frac{dv}{dy} = \frac{v e^v + y}{e^v} \Rightarrow y \frac{dv}{dy} = \frac{y}{e^v}$	1
	$\therefore \int e^{v} dv = \int dy \qquad \Rightarrow e^{v} = y + C$	1
	$\Rightarrow e^{\frac{x}{y}} = y + C$, which is the required solution.	$\frac{1}{2}$
29	If $y = (\log x)^x + x^{\log x}$, then find $\frac{dy}{dx}$.	
	Answer: $y = (\log x)^x + x^{\log x} + y + y \rightarrow dy - du + dv$	1
	$y = (\log x) + x^{-1} = u + v \Longrightarrow \frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{dx}$	1
	$\therefore \log u = x \log(\log x) \text{ and } \log v = (\log x)^{-1}$	$\overline{2}$
	$\frac{du}{dx} = \left(\log x\right)^{x} \left[\frac{1}{\log x} + \log\left(\log x\right)\right] \text{ and } \frac{dv}{dx} = x^{\log x} \cdot \frac{2\log x}{x}$	1+1
	$\Rightarrow \frac{dy}{dx} = (\log x)^{x} \left[\frac{1}{\log x} + \log(\log x) \right] + x^{\log x} \cdot \frac{2\log x}{x}$	$\frac{1}{2}$
30	Three rotten apples are mixed with seven fresh apples. Find the probability distribution of the number of rotten apples, if three apples are drawn one by one with replacement. Find the mean of the number of rotten apples.	
	Answer:Let X represents the number of rotten apples drawn.X :0123	$\frac{1}{2}$

P (x):
$$\frac{7}{10}$$
, $\frac{7}{10}$, $\frac{7}{10}$, $\frac{3}{10}$, $\frac{7}{10}$, $\frac{3}{10}$, $\frac{3}{10}$, $\frac{7}{10}$, $\frac{3}{10}$, $\frac{1}{10}$

	Answer:	
	Equation of the line passing through $A(3, -4, -5)$ and $B(2, -3, 1)$ is	
	x-3 $y+4$ $z+5$	$1\frac{1}{2}$
	$\frac{1}{1} = \frac{3}{-1} = \frac{3}{-6} \qquad \dots (1)$	2
	Any point on the line (i) is $Q(\lambda + 3, -\lambda - 4, -6\lambda - 5)$.	1
	Since the point Q lies on the given plane $2x + y + z = 7$,	1
	$\therefore 2(\lambda+3) + (-\lambda-4) + (-6\lambda-5) = 7 \implies \lambda = -2$	1^{1}_{-}
		2
	Then Q is $(1, -2, 7)$.	1
	$PO = \sqrt{(2)^2 + (6)^2 + (-3)^2} = 7$ units	1
	$T \mathcal{Q} = \sqrt{(2)^{-1}(0)^{-1}(-1)^{-1}(-1)^{-1}}$ differ	1
24		
54	Find the minimum value of $(ax + by)$, where $xy = c^2$.	
	Answer: $a^2 = ba^2$	
	Let $S = ax + by$, where $y = \frac{c}{r}$ \therefore $S = ax + \frac{bc}{r}$	1
	$dS = bc^2$	
	$\frac{1}{dx} = a - \frac{1}{x^2}$	1
	$\frac{dS}{ds} = 0 \Rightarrow x^2 = \frac{bc^2}{c^2} \text{ or } x = \sqrt{\frac{b}{c^2}} \text{ or } x$,1
	dx a \sqrt{a}	$1\frac{1}{2}$
	d^2S $2bc^2$ $\left[\left[a 1 \right]^3 \right]$	
	$\left \frac{a}{dx^2}\right _{\overline{b}} = \frac{2bc}{x^3} = 2bc^2 \left \sqrt{\frac{a}{b}} \frac{1}{c}\right > 0 \text{ for } a, b, c > 0 \text{ and } x = \sqrt{\frac{b}{a}}.c$	$1\frac{1}{2}$
	$1x = \sqrt{\frac{-c}{a}}$	2
	\overline{h} $c^2 \sqrt{a}$	
	$\therefore \text{ minimum value } = a \sqrt{\frac{b}{a}} \cdot c + b \cdot \frac{b}{c} \sqrt{\frac{a}{b}} = 2\sqrt{ab.c}$	1
35	$ \log a p 1 $	
	If a b c are p th a th and r th terms respectively of a G P then prove that $\log b = a + 1 = 0$	
	In u, b, c are p, q , and r terms respectively of $u \in I$, then prove that $\log c = q + 1$	
	Answer:	
	$a = A B^{p-1}$ $b = A B^{q-1}$ $a = A B^{r-1}$	11
	$u = AR^{\circ}$, $b = AR^{\circ}$, $c = AR$	$\frac{1}{2}$
	$\log A + (p-1)\log R p 1 p n p 1 p $	
	$ \therefore \Lambda = \log A + (a-1)\log R a 1 = \log A \left[1 a 1 \right] + \log R \left[a a 1 \right] - \log R \left[1 a 1 \right] $	1+1+1+1
	$\begin{vmatrix} 0 & 0 & 0 & 0 \\ \log A + (r-1)\log R & r & 1 \\ 1 & 1 & 1 \\ \log A + (r-1)\log R & r & 1 \\ \log A + (r-1)\log R$	
		1
	= 0 + 0 + 0 = 0	2

	OR	
	If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, then find A^{-1} .	
	Using A^{-1} , solve the following system of equations: 2x-3y+5z=11 3x+2y-4z=-5 x+y-2z=-3	
	Answer: 4 - 2(0) + 3(-2) + 5(1) = -1	1
	$\Rightarrow A^{-1} = -\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} $ (1 mark for any 4 correct co-factors)	2
	Given equations can be written as $AX = B$, where $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$	1
	$\therefore X = A^{-1}B = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	1
	$\Rightarrow x=1, y=2, z=3$	1
36	Using integration find the area of the region bounded between the two circles $x^2 + y^2 = 9$ and $(x-3)^2 + y^2 = 9$.	
	Answer: Correct Figure	1
	Point of intersection of, $x^2 + y^2 = 9; (x-3)^2 + y^2 = 9 \Longrightarrow (x-3)^2 - x^2 = 0 \Longrightarrow x = \frac{3}{2}$	1
	Required area = $2\left[\int_{0}^{\frac{3}{2}}\sqrt{9-(x-3)^{2}} dx + \int_{\frac{3}{2}}^{3}\sqrt{9-x^{2}} dx\right]$ = $4\left[\int_{\frac{3}{2}}^{3}\sqrt{9-x^{2}} dx\right]$	$1\frac{1}{2}$
	(i) (ii) (3/2,0) $=4\left[\frac{x}{2}\sqrt{9-x^2} + \frac{9}{2}\sin^{-1}\frac{x}{3}\right]_{\frac{3}{2}}^3 = \left(6\pi - \frac{9\sqrt{3}}{2}\right)$	$1\frac{1}{2} + 1$

OR

 Evaluate the following integral as the limit of sums
$$\int_{1}^{4} (x^{2} - x) dx$$
.

 Answer:

 $\int_{1}^{4} (x^{2} - x) dx = \lim_{h \to 0} h \Big[f(1) + f(1+h) + f(1+2h) + \dots + f(1+n-1h) \Big]$

 where $f(x) = (x^{2} - x)$ and $nh = 3$
 $\therefore \int_{1}^{4} (x^{2} - x) dx =$
 $\lim_{h \to 0} h \Big[(1-1) + (1+h^{2} + 2h - h - 1) + (1+4h^{2} + 4h - 2h - 1) + \dots + (1+(n-1)^{2}h^{2} + 2(n-1)h - (n-1)h - 1) \Big]$
 2
 $\lim_{h \to 0} h \Big[h^{2} (1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2}) + h(1+2+3+\dots + (n-1)) \Big]$
 1
 $= \lim_{h \to 0} h \Big[h^{2} (1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2}) + h(1+2+3+\dots + (n-1)) \Big]$
 1
 1