Permutation & Combination Formulas

Permutation Formulas

★ When repetition is not allowed: P is a permutation or arrangement of r things from a set of n things without replacement. We define P as:

$$nP_r = \frac{n!}{(n-r)!}$$

★ When repetition is allowed: P is a permutation or arrangement of r things from a set of n things when repetition is allowed. We define P as:

$$nPr = n^r$$

Derivation of Permutation Formula:

Let us assume that there are r boxes and each of them can hold one thing. There will be as many permutations as there are ways of filling in r vacant boxes by n objects.

- No. of ways the first box can be filled: n
- No. of ways the second box can be filled: (n 1)
- No. of ways the third box can be filled: (n-2)
- No. of ways the fourth box can be filled: (n 3)
- No. of ways r^{th} box can be filled: [n (r 1)]

The number of permutations of n different objects taken r at a time, where $0 < r \le n$ and the objects do not repeat is: $n(n-1)(n-2)(n-3)\dots(n-r+1)$

$$\Rightarrow$$
 $nP_r = n(n-1)(n-2)(n-3)...(n-r+1)$

Multiplying and dividing by $(n-r)(n-r-1) \dots 3 \times 2 \times 1$, we get:

$$nP_r = \frac{[n(n-1)(n-2)(n-3)...(n-r+1)(n-r)(n-r-1)..3\times 2\times 1]}{(n-r)(n-r-1)..3\times 2\times 1} = \frac{n!}{(n-r)!}$$

$$nP_r = rac{n!}{(n-r)!}$$

Combination Formulas

★ When repetition is not allowed: C is a combination of n distinct things taking r at a time (order is not important). We define C as:

$$nC_r = rac{nP_r}{r!} = rac{n!}{(n-r)!r!}$$

★ When repetition is allowed: C is a combination of n distinct things taking r at a time (order is not important) with repetition. We define C as:

$$nCr = (n + r - 1)!/[r!(n - 1)!]$$

Derivation of Combination Formula:

Let us assume that there are r boxes and each of them can hold one thing.

- No. of ways to select the first object from n distinct objects: n
- No. of ways to select the second object from (n-1) distinct objects: (n-1)
- No. of ways to select the third object from (n-2) distinct objects: (n-2)
- No. of ways to select r^{th} object from [n-(r-1)] distinct objects: [n-(r-1)]

Completing the selection of r things from the original set of n things creates an ordered subset of r elements.

 \therefore The number of ways to make a selection of r elements of the original set of n elements is: $n (n-1) (n-2) (n-3) \dots (n-(r-1))$ or $n (n-1) (n-2) \dots (n-r+1)$.

Let us consider the ordered subset of *r* elements and all its permutations. The total number of all permutations of this subset is equal to r! because *r* objects in every combination can be rearranged in *r*! ways.

Hence, the total number of permutations of n different things taken r at a time is $(nC_r \times r!)$. It is nothing but nP_r .

$$nP_r = nC_r \times r!$$

$$nC_r=rac{nP_r}{r!}=rac{n!}{(n-r)!r!}$$