Chapter 1

11076CHOT

( SETS )

**In these days of conflict between ancient and modern studies; there
must surely be something to be said for a study which did not
begin with Pythagoras and will not end with Einstein; but
is the oldest and the youngest. — G.H. HARDY *®

1.1 Introduction

The concept of set serves as a fundamental part of the
present day mathematics. Today this concept is being used
in almost every branch of mathematics. Sets are used to
define the concepts of relations and functions. The study of
geometry, sequences, probability, etc. requires the knowledge
of sets.

The theory of sets was developed by German
mathematician Georg Cantor (1845-1918). He first
encountered sets while working on “problems on trigonometric
series”. In this Chapter, we discuss some basic definitions
and operations involving sets.

Georg Cantor
(1845-1918)

1.2 Sets and their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as,
a pack of cards, a crowd of people, a cricket team, etc. In mathematics also, we come
across collections, for example, of natural numbers, points, prime numbers, etc. More
specially, we examine the following collections:
(1) 0Odd natural numbers less than 10,1i.e.,1,3,5,7,9

@ii)) The rivers of India

@iii)) The vowels in the English alphabet, namely, a, ¢, i, o, u

(iv) Various kinds of triangles

(v) Prime factors of 210, namely, 2,3,5 and 7

(vi) The solution of the equation: x*— 5x + 6 =0, viz, 2 and 3.

We note that each of the above example is a well-defined collection of objects in
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2 MATHEMATICS

the sense that we can definitely decide whether a given particular object belongs to a
given collection or not. For example, we can say that the river Nile does not belong to
the collection of rivers of India. On the other hand, the river Ganga does belong to this
colleciton.

We give below a few more examples of sets used particularly in mathematics, viz.

N : the set of all natural numbers

Z : the set of all integers

Q : the set of all rational numbers

R : the set of real numbers

Z* : the set of positive integers

Q* : the set of positive rational numbers, and

R* : the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout
this text.

Again the collection of five most renowned mathematicians of the world is not
well-defined, because the criterion for determining a mathematician as most renowned
may vary from person to person. Thus, it is not a well-defined collection.

We shall say that a set is a well-defined collection of objects.

The following points may be noted :

(i) Objects, elements and members of a set are synonymous terms.
(i) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
@iii) The elements of a set are represented by small letters a, b, c, x, y, z, etc.

If a is an element of a set A, we say that ““ a belongs to A” the Greek symbol €
(epsilon) is used to denote the phrase ‘belongs to’. Thus, we write a € A. If ‘b’ is not
an element of a set A, we write b ¢ A and read “b does not belong to A”.

Thus, in the set V of vowels in the English alphabet, a € V but b ¢ V. In the set
P of prime factors of 30,3 € Pbut 15 ¢ P.

There are two methods of representing a set :
(1) Roster or tabular form
(i) Set-builder form.

(1) Inroster form, all the elements of a set are listed, the elements are being separated
by commas and are enclosed within braces { }. For example, the set of all even
positive integers less than 7 is described in roster form as {2, 4, 6}. Some more
examples of representing a set in roster form are given below :

(a) The set of all natural numbers which divide 42 is {1, 2, 3, 6,7, 14,21, 42}.
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SETS 3

In roster form, the order in which the elements are listed is immaterial.
Thus, the above set can also be represented as {1, 3, 7, 21, 2, 6, 14, 42}.

(b) The set of all vowels in the English alphabet is {a, ¢, i, o, u}.
(c¢) The set of odd natural numbers is represented by {1, 3, 5, .. .}. The dots
tell us that the list of odd numbers continue indefinitely.

It may be noted that while writing the set in roster form an element is not

generally repeated, i.e., all the elements are taken as distinct. For example, the set
of letters forming the word ‘SCHOOL’ is { S, C, H, O, L} or {H, O, L, C, S}. Here,
the order of listing elements has no relevance.

(i) In set-builder form, all the elements of a set possess a single common property

which is not possessed by any element outside the set. For example, in the set

{a, e, i, 0, u}, all the elements possess a common property, namely, each of them

is a vowel in the English alphabet, and no other letter possess this property. Denoting

this set by V, we write

V = {x: xis a vowel in English alphabet}

It may be observed that we describe the element of the set by using a symbol x
(any other symbol like the letters y, z, etc. could be used) which is followed by a colon
“: 7. After the sign of colon, we write the characteristic property possessed by the
elements of the set and then enclose the whole description within braces. The above
description of the set V is read as “the set of all x such that x is a vowel of the English
alphabet”. In this description the braces stand for “the set of all”, the colon stands for
“such that”. For example, the set

A = {x: xis anatural number and 3 < x < 10} is read as “the set of all x such that

x 1s a natural number and x lies between 3 and 10.” Hence, the numbers 4, 5, 6,

7, 8 and 9 are the elements of the set A.

If we denote the sets described in (a), (b) and (c) above in roster form by A, B,
C, respectively, then A, B, C can also be represented in set-builder form as follows:

A= {x: xis a natural number which divides 42}

B={y:yis avowel in the English alphabet}

C= {z: zis an odd natural number}

Example 1 Write the solution set of the equation x>+ x — 2 = 0 in roster form.

Solution The given equation can be written as
x-1) x+2)=0,i.e, x=1,-2
Therefore, the solution set of the given equation can be written in roster form as {1, —2}.

Example 2 Write the set {x : x is a positive integer and x> < 40} in the roster form.
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4 MATHEMATICS

Solution The required numbers are 1, 2, 3, 4, 5, 6. So, the given set in the roster form
is{1,2,3,4,5,6}.

Example 3 Write the set A= {1,4,9, 16, 25, ... }in set-builder form.

Solution We may write the set A as
A = {x: x is the square of a natural number}
Alternatively, we can write
A = {x:x=n% where n € N}
E le 4 Write th t{123456}' the set-builder f
xample rite the set 15,27 5> o> -1 in the set-builder form.
Solution We see that each member in the given set has the numerator one less than
the denominator. Also, the numerator begin from 1 and do not exceed 6. Hence, in the
set-builder form the given set is

n )
{x IXx= ,where nis a natural number and 1 <n < 6}
n+

Example 5 Match each of the set on the left described in the roster form with the
same set on the right described in the set-builder form :
@ {P,R,LN,C,A,L} (a){x:xisapositive integer and is a divisor of 18}

@@ {0} (b) { x: xis an integer and x*— 9 = 0}
@) {1,2,3,6,9,18} (c) {x:x1is an integer and x + 1=1}
@iv) {3,-3} (d) {x: x is a letter of the word PRINCIPAL}

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I
are repeated, so (i) matches (d). Similarly, (ii) matches (c) as x + 1 = 1 implies
x=0.Also, 1,2 .,3,6,9, 18 are all divisors of 18 and so (iii) matches (a). Finally, x>~ 9 =0
implies x = 3, =3 and so (iv) matches (b).

|EXERCISE 1.1|

1. Which of the following are sets ? Justify your answer.
(1) The collection of all the months of a year beginning with the letter J.
(ii)) The collection of ten most talented writers of India.
(i) A team of eleven best-cricket batsmen of the world.
(iv) 'The collection of all boys in your class.
(v) The collection of all natural numbers less than 100.
(vi) A collection of novels written by the writer Munshi Prem Chand.
(vii) The collection of all even integers.

2020-21



SETS 5

(viii) The collection of questions in this Chapter.
(ix) A collection of most dangerous animals of the world.
Let A= {1, 2, 3,4,5, 6}. Insert the appropriate symbol € or ¢ in the blank

spaces:
i 5...A Gi) 8...A Gi) 0...A
(v) 4...A V) 2...A (vi) 10...A

Write the following sets in roster form:
(1) A={x:xisanintegerand -3 <x<7}
(i) B = {x:x1is a natural number less than 6}
@) C={x:xis atwo-digit natural number such that the sum of its digits is 8 }
(iv) D= {x:xis aprime number which is divisor of 60}
(v) E =The set of all letters in the word TRIGONOMETRY
(vi) F =The set of all letters in the word BETTER
Write the following sets in the set-builder form :
@ (3,6,9,12} 1) {24.8,16,32} @) {5,25,125,625}
i) {2.,4,6,...} v) {14,9,...,100}
List all the elements of the following sets :
(1) A ={x:xisan odd natural number}

(i) B = {x:xis an integer, —% <x< %}

(i) C={x:xisaninteger, x**’< 4}

(iv) D = {x:xis aletter in the word “LOYAL”}

(v) E={x:xis amonth of a year not having 31 days}

(vi) F={x:xisaconsonant in the English alphabet which precedes k }.
Match each of the set on the left in the roster form with the same set on the right

described in set-builder form:

1 {1,2,3,6} (a) {x:xisaprime number and a divisor of 6}
@@ {2,3} (b) {x:xisan odd natural number less than 10}
@) {M,ATHEILC,S} (¢) {x:xisnatural number and divisor of 6}
Gv) {1,3,5,7,9} (d) {x:xis a letter of the word MATHEMATICS}.

1.3 The Empty Set

Consider the set

A = { x:xis astudent of Class XI presently studying in a school }
We can go to the school and count the number of students presently studying in

Class XI in the school. Thus, the set A contains a finite number of elements.

‘We now write another set B as follows:
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6 MATHEMATICS

B = { x: xis a student presently studying in both Classes X and XI }
We observe that a student cannot study simultaneously in both Classes X and XI.
Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the
null set or the void set.
According to this definition, B is an empty set while A is not an empty set. The
empty set is denoted by the symbol ¢ or { }.
We give below a few examples of empty sets.
(1) LetA={x:1<x<2,xis anatural number}. Then A is the empty set,
because there is no natural number between 1 and 2.
(i) B ={x:x*-2=0and xis rational number}. Then B is the empty set because
the equation x*— 2 = 0 is not satisfied by any rational value of x.
@iii) C={x:xisaneven prime number greater than 2}.Then C is the empty set,
because 2 is the only even prime number.
(iv) D={x:x*=4,xisodd }. Then D is the empty set, because the equation
x*= 4 is not satisfied by any odd value of x.

1.4 Finite and Infinite Sets

Let A={1,2,3,4,5}, B=1{a b c d e g}

and C = { men living presently in different parts of the world}

We observe that A contains 5 elements and B contains 6 elements. How many elements
does C contain? As it is, we do not know the number of elements in C, but it is some
natural number which may be quite a big number. By number of elements of a set S,
we mean the number of distinct elements of the set and we denote it by n (S). If n (S)
is a natural number, then S is non-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this
set is not finite since there are infinite number of natural numbers. We say that the set
of natural numbers is an infinite set. The sets A, B and C given above are finite sets
and n(A) = 5, n(B) = 6 and n(C) = some finite number.

Definition 2 A set which is empty or consists of a definite number of elements is
called finite otherwise, the set is called infinite.
Consider some examples :
(1) Let W be the set of the days of the week. Then W is finite.
(i) Let S be the set of solutions of the equation x*~16 = 0. Then S is finite.
@iii) Let G be the set of points on a line. Then G is infinite.
When we represent a set in the roster form, we write all the elements of the set
within braces { }. It is not possible to write all the elements of an infinite set within
braces { } because the numbers of elements of such a set is not finite. So, we represent
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SETS 7

some infinite set in the roster form by writing a few elements which clearly indicate the
structure of the set followed ( or preceded ) by three dots.

For example, {1, 2, 3 ...} is the set of natural numbers, {1, 3, 5,7, ...} is the set
of odd natural numbers, {...,-3,-2,-1,0,1,2 .3, ...} is the set of integers. All these
sets are infinite.

‘@ Note |All infinite sets cannot be described in the roster form. For example, the

set of real numbers cannot be described in this form, because the elements of this
set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite :
1 {x:xeNand (x-1)(x-2)=0}
(i) {x:xe Nandx*=4}
@) {x:xe Nand2x-1=0}
(iv) {x:xe Nandx is prime}
(v) {x:xe Nanduxisodd}
Solution (i) Givenset= {1, 2}. Hence, it is finite.
(i) Given set = {2}. Hence, it s finite.
(iii) Given set = ¢. Hence, it is finite.
(iv)  The given set is the set of all prime numbers and since set of prime
numbers is infinite. Hence the given set is infinite
(v) Since there are infinite number of odd numbers, hence, the given set is
infinite.
1.5 Equal Sets

Given two sets A and B, if every element of A is also an element of B and if every
element of B is also an element of A, then the sets A and B are said to be equal.
Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same
elements and we write A = B. Otherwise, the sets are said to be unequal and we write
A # B.
We consider the following examples :
(1 LetA={1,2,3,4}and B={3,1,4,2}. Then A=B.
(i) Let A be the set of prime numbers less than 6 and P the set of prime factors
of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of
30 and also these are less than 6.

A set does not change if one or more elements of the set are repeated.
For example, the sets A = {1, 2, 3} and B = {2, 2, 1, 3, 3} are equal, since each
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8 MATHEMATICS

element of A is in B and vice-versa. That is why we generally do not repeat any
element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:
A ={0}, B={x:x>15and x <5},
C={x:x-5=01}, D = {x: x¥*= 25},
E = {x: x is an integral positive root of the equation x* — 2x —15 = 0}.

Solution Since 0 € A and 0 does not belong to any of the sets B, C, D and E, it
follows that, A#B,A#C, A#D, A#E.

Since B = ¢ but none of the other sets are empty. Therefore B # C, B # D
and B # E. Also C = {5} but -5 € D, hence C # D.

Since E = {5}, C =E. Further, D={-5,5} and E = {5}, we find that, D #E.
Thus, the only pair of equal sets is C and E.

Example 8 Which of the following pairs of sets are equal? Justify your answer.
(1) X, the set of letters in “ALLOY” and B, the set of letters in “LOYAL”.
@) A= {n:neZandn’<4}and B={x:xe Rand x>~ 3x +2 =0}.

Solution (i) We have, X = {A,L,L, O, Y},B={L, O, Y, A, L}. Then X and B are

equal sets as repetition of elements in a set do not change a set. Thus,
X={A,L,0,Y} =B

({)A={-2,-1,0,1,2}, B={1,2}.Since 0 € Aand 0 ¢ B, A and B are not equal sets.

|[EXERCISE1.2]

1. Which of the following are examples of the null set
(1) Set of odd natural numbers divisible by 2
(i) Set of even prime numbers
(i) { x : x1is a natural numbers, x <5 and x> 7 }
@iv) {y:y isapoint common to any two parallel lines}
2. Which of the following sets are finite or infinite
(1) The set of months of a year
@ {1,2,3,...}
@y {1,2,3,...99,100}
(iv) The set of positive integers greater than 100
(v) The set of prime numbers less than 99
3. State whether each of the following set is finite or infinite:
(1) The set of lines which are parallel to the x-axis
(i) The set of letters in the English alphabet
(@iii)) The set of numbers which are multiple of 5
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(iv) The set of animals living on the earth
(v) The set of circles passing through the origin (0,0)
4.  Inthe following, state whether A =B or not:
1 A={ab,cd} B ={dcbal
i A={4,8,12,16} B = {8,4,16,18}
@) A={2,4,6,8,10} B = {x:xispositive even integer and x < 10}
@iv) A={x:x isamultiple of 10}, B = {10,15,20,25,30,...}
5. Are the following pair of sets equal ? Give reasons.
(1 A={2,3}, B= {x:xissolution of x> + 5x + 6 = 0}
(i) A ={x:xis aletter in the word FOLLOW }
B ={ y: yisaletter in the word WOLF}
6.  From the sets given below, select equal sets :
A=1{2,4,812}, B={1,2,3,4}, C={4,8,12,14}, D
E={-1,1}, F={0,a}, G={1,-1}, H=

1.6 Subsets
Consider the sets : X = set of all students in your school, Y = set of all students in your
class.

We note that every element of Y is also an element of X; we say that Y is a subset
of X. The fact that Y is subset of X is expressed in symbols as Y < X. The symbol c
stands for ‘is a subset of” or ‘is contained in’.

Definition 4 A set A is said to be a subset of a set B if every element of A is also an
element of B.

In other words, A < B if whenever a € A, then a € B. It is often convenient to
use the symbol “=" which means implies. Using this symbol, we can write the definiton
of subset as follows:

AcBifae A=ae B

We read the above statement as “A is a subset of B if a is an element of A
implies that a is also an element of B”. If A is not a subset of B, we write A ¢ B.

We may note that for A to be a subset of B, all that is needed is that every
element of A is in B. It is possible that every element of B may or may not be in A. If
it so happens that every element of B is also in A, then we shall also have B c A. In this
case, A and B are the same sets so that we have Ac B and B ¢ A < A =B, where
“&” is a symbol for two way implications, and is usually read as if and only if (briefly
written as “iff”).

It follows from the above definition that every set A is a subset of itself, i.e.,
A c A. Since the empty set ¢ has no elements, we agree to say that ¢ is a subset of
every set. We now consider some examples :
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10 MATHEMATICS

(i) The set Q of rational numbers is a subset of the set R of real numbes, and
we write Q < R.
(i) IfAisthe setof all divisors of 56 and B the set of all prime divisors of 56,
then B is a subset of A and we write B C A.
(i) LetA={1,3,5}andB = {x . xis an odd natural number less than 6}. Then
A c B and B c A and hence A = B.
(iv) LetA={a, e i 0 u}and B={aq, b, ¢, d}. Then A is not a subset of B,
also B is not a subset of A.
Let A and B be two sets. [f A c B and A # B, then A is called a proper subset
of B and B is called superset of A. For example,
A ={1,2,3}is aproper subset of B = {1, 2, 3,4}.
If a set A has only one element, we call it a singleton set. Thus,{ a } is a
singleton set.

Example 9 Consider the sets
0,A={1,3}, B={L59}, C={1,3,579}.
Insert the symbol < or & between each of the following pair of sets:

» ¢...B (i)A...B (i) A...C iv)B...C

Solution (1) ¢ < B as ¢ is a subset of every set.
(i) AzBas3eAand3¢ B
@) AcCasl,3 e AalsobelongstoC
(iv) B < C as each element of B is also an element of C.

Example 10 LetA={a, ¢ i, 0, u} and B={ q, b, ¢, d}. Is A a subset of B ? No.
(Why?). Is B a subset of A? No. (Why?)

Example 11 Let A, B and C be three sets. If A € B and B < C, is it true that
A < C?. If not, give an example.

Solution No.LetA={1},B ={{1},2}andC={{1},2,3}. Here Ae BasA= {1}
and BcC.ButAzCasle Aand 1 ¢ C.
Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers

As noted in Section 1.6, there are many important subsets of R. We give below the

names of some of these subsets.
The set of natural numbers N =
The set of integers y/

1,2,3,4,5,...}
{...,-3,-2,-1,0,1,2,3,...}

The set of rational numbers Q = { x: x = g ,p»q€ Zand q+#0}
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D
which is read “ Q is the set of all numbers x such that x equals the quotient ; , where

p and g are integers and ¢ is not zero”. Members of Q include -5 (which can be

11

1
expressed as _T) , 7, 35 (which can be expressed as 5) and —?.

The set of irrational numbers, denoted by T, is composed of all other real numbers.
Thus T ={x: xe Rand x ¢ Q}, i.e., all real numbers that are not rational.

Members of T include /2 , /5 and =.

Some of the obvious relations among these subsets are:
NcZcQQcR TcR NgT.

1.6.2 Intervals as subsets of R Leta, b € R and a < b. Then the set of real numbers
{ y:a<y<b}iscalled an open interval and is denoted by (a, b). All the points
between a and b belong to the open interval (a, b) but a, b themselves do not belong to
this interval.

The interval which contains the end points also is called closed interval and is
denoted by [ a, b ]. Thus

[a, b]l={x:a<x<Db}
We can also have intervals closed at one end and open at the other, i.e.,

[a b)={x:a<x<b}isanopen interval from a to b, including a but excluding b.

(a,b]l={x:a<x< b}isanopen interval from a to b including b but excluding a.

These notations provide an alternative way of designating the subsets of set of
real numbers. For example , if A= (-3, 5) and B =[-7, 9], then A < B. The set [ 0, o)
defines the set of non-negative real numbers, while set ( — oo, 0 ) defines the set of
negative real numbers. The set (— oo, o0') describes the set of real numbers in relation
to a line extending from — oo to oo.

On real number line, various types of intervals described above as subsets of R,
are shown in the Fig 1.1.

(a,b) [a,b] [a,b) (a,b)

O O @ @ @ O O @

a b a b a b a b
Fig 1.1

Here, we note that an interval contains infinitely many points.

For example, the set {x : x € R, -5 < x <7}, written in set-builder form, can be
written in the form of interval as (=5, 7] and the interval [-3, 5) can be written in set-
builder form as {x: -3 <x < 5}.
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12 MATHEMATICS

The number (b — a) is called the length of any of the intervals (a, b), [a, b],
[a, b) or (a, b].

1.7 Power Set

Consider the set {1, 2}. Let us write down all the subsets of the set {1, 2}. We
know that ¢ is a subset of every set . So, ¢ is a subset of {1, 2}. We see that {1}
and { 2 }are also subsets of {1, 2}. Also, we know that every set is a subset of
itself. So, { 1, 2 } is a subset of {1, 2}. Thus, the set { 1, 2 } has, in all, four
subsets, viz. 0, { 1 }, { 2 } and { 1, 2 }. The set of all these subsets is called the
power setof { 1,2 }.

Definition 5 The collection of all subsets of a set A is called the power set of A. It is
denoted by P(A). In P(A), every element is a set.
Thus, as in above, if A= { 1, 2 }, then
P(A)={o{1}, {2} {L2}}
Also, note that n [ P (A) ] =4 =22
In general, if A is a set with n(A) = m, then it can be shown that
n [ P(A)] = 2"

1.8 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a
basic set which is relevant to that particular context. For example, while studying the
system of numbers, we are interested in the set of natural numbers and its subsets such
as the set of all prime numbers, the set of all even numbers, and so forth. This basic set
is called the “Universal Set”. The universal set is usually denoted by U, and all its
subsets by the letters A, B, C, etc.

For example, for the set of all integers, the universal set can be the set of rational
numbers or, for that matter, the set R of real numbers. For another example, in human
population studies, the universal set consists of all the people in the world.

|EXERCISE 1.3|

1. Make correct statements by filling in the symbols c or & in the blank spaces :
@» {2,3,4}...{1,2,3,45} (G){ab,c}...{b,c,d}
@) {x:xisastudent of Class XI of your school}. . .{x : x student of your school}
(iv) {x:xisacircle in the plane} .. .{x : x is a circle in the same plane with
radius 1 unit}

(v) {x:xisatriangle in a plane} ... {x : x is a rectangle in the plane}
(vi) {x:xisanequilateral triangleinaplane} ... {x:xisatriangle in the same plane}
(vil) {x:xis an even natural number} ... {x:xis an integer}
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Examine whether the following statements are true or false:

@O {ab}yz{bcal

(i) {a e} c{x:xisavowelin the English alphabet}

@) {1,2,3}c{1,35}

i) {a}lc {a b c}

V) {ale {ab c}

(vi) { x:xisaneven natural number less than 6} < { x: x is a natural number

which divides 36}
Let A={1,2,{3,4},5}. Which of the following statements are incorrect and why?
1 {3,4}c A @ {3,4}e A @) {{3,4}}c A
@iv) 1e A v) 1cA i) {1,2,5}c A
(i) {1,2,5}€e A (vii) {1,2,3} c A ix) ¢ A
x 0c A xi) {0} c A
Write down all the subsets of the following sets
@ {a} i {a, b} () {1,2,3} iv) o

How many elements has P(A), if A = ¢?
Write the following as intervals :

1 {x:xeR,-4<x<6} @@ {x:xeR,-12<x<-10}
@) {x:xe R, 0<x<7} iv) {x:xe R,3<x<4}
Write the following intervals in set-builder form :

® 3,0 @@ [6,12] (i) (6, 12] av) [-23,5)
What universal set(s) would you propose for each of the following :

(1) The set of right triangles. (i) The set of isosceles triangles.
Given the sets A= {1,3,5},B={2,4,6} and C = {0, 2, 4, 6, 8}, which of the
following may be considered as universal set (s) for all the three sets A, B and C

@ {0,1,2,3,4,5,6}

(i) ¢
@) {0,1,2,3,4,5,6,7,8,9,10}
av) {1,2,34,5,6,7,8}

1.9 Venn Diagrams

Most of the relationships between sets can be
represented by means of diagrams which are known
as Venn diagrams. Venn diagrams are named after
the English logician, John Venn (1834-1883). These
diagrams consist of rectangles and closed curves
usually circles. The universal set is represented
usually by a rectangle and its subsets by circles.
In Venn diagrams, the elements of the sets

are written in their respective circles (Figs 1.2 and 1.3)
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14 MATHEMATICS

Hlustration 1 InFig 1.2, U= {1,2,3, ..., 10} is the U
universal set of which
A=1{2,4,6,8,10} is a subset. el

Ilustration 2 In Fig 1.3, U= {1,2,3, ..., 10} is the
universal set of which

A=1{2,4,6,8,10} and B = {4, 6} are subsets, *9
and also B C A. Fig 1.3

The reader will see an extensive use of the
Venn diagrams when we discuss the union, intersection and difference of sets.

1.10 Operations on Sets

In earlier classes, we have learnt how to perform the operations of addition, subtraction,
multiplication and division on numbers. Each one of these operations was performed
on a pair of numbers to get another number. For example, when we perform the
operation of addition on the pair of numbers 5 and 13, we get the number 18. Again,
performing the operation of multiplication on the pair of numbers 5 and 13, we get 65.
Similarly, there are some operations which when performed on two sets give rise to
another set. We will now define certain operations on sets and examine their properties.
Henceforth, we will refer all our sets as subsets of some universal set.

1.10.1 Union of sets Let A and B be any two sets. The union of A and B is the set
which consists of all the elements of A and all the elements of B, the common elements
being taken only once. The symbol ‘U’ is used to denote the union. Symbolically, we
write A U B and usually read as ‘A union B’.

Example 12 LetA={2,4,6,8} and B={ 6, 8, 10, 12}. Find A U B.

Solution We have AuUB ={2,4,6,8, 10, 12}
Note that the common elements 6 and 8 have been taken only once while writing
AUB.

Example 13 LetA={qa e i,0,u}andB={aqa,i u}. Showthat AUB =A
Solution We have, AUB={a,e 1,0, u}=A.

This example illustrates that union of sets A and its subset B is the set A
itself, i.e., if Bc A, then AU B = A.

Example 14 Let X = {Ram, Geeta, Akbar} be the set of students of Class XI, who are
in school hockey team. Let Y = {Geeta, David, Ashok} be the set of students from
Class XI who are in the school football team. Find X U Y and interpret the set.

Solution We have, X UY = {Ram, Geeta, Akbar, David, Ashok}. This is the set of
students from Class XI who are in the hockey team or the football team or both.
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Thus, we can define the union of two sets as follows:

Definition 6 The union of two sets A and B is the set C which consists of all those
elements which are either in A or in B (including
those which are in both). In symbols, we write. |U
AUB ={x:xeAorxeB}

The union of two sets can be represented by a A
Venn diagram as shown in Fig 1.4.

The shaded portion in Fig 1.4 represents AU B. B

Some Properties of the Operation of Union AUB
1) AuB =B uUA (Commutative law) Fig 1.4
i@ (AuB)uC=Au(BUC)
(Associative law )

i) Auo=A (Law of identity element, ¢ is the identity of L)

iv) AUA =A (Idempotent law)

v) UuA =U (Law of U)
1.10.2 Intersection of sets The intersection of sets A and B is the set of all elements
which are common to both A and B. The symbol ‘"’ is used to denote the infersection.
The intersection of two sets A and B is the set of all those elements which belong to
both A and B. Symbolically, we writte AN B = {x: x€ Aand x € B}.
Example 15 Consider the sets A and B of Example 12. Find A n B.
Solution We see that 6, 8 are the only elements which are common to both A and B.
Hence AnB={6,8}.
Example 16 Consider the sets X and Y of Example 14. Find X N Y.

Solution We see that element ‘Geeta’ is the only element common to both. Hence,
XNY = {Geeta}.

Example 17 LetA={1,2,3,4,5,6,7,8,9,10} and B={2,3,5,7 }. Find A N B and
hence show that Am B = B.

Solution We have AnB={2,3,5,7}=B. We
note that B — A and that AN B = B. U
Definition 7 The intersection of two sets A and B
is the set of all those elements which belong to both A
A and B. Symbolically, we write

ANnB={x:xe Aandx € B} B
ANB

The shaded portion in Fig 1.5 indicates the
intersection of A and B. Fig 1.5
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16 MATHEMATICS

If A and B are two sets such that Am B = ¢, then
A and B are called disjoint sets.

For example, letA={ 2,4, 6,8 } and
B={1,3,5,7 }. Then A and B are disjoint sets,
because there are no elements which are common to
A and B. The disjoint sets can be represented by
means of Venn diagram as shown in the Fig 1.6
In the above diagram, A and B are disjoint sets.
Some Properties of Operation of Intersection

Fig 1.6

(Associative law).
(Law of ¢ and U).
(Idempotent law)

i) AnB =BnA (Commutative law).
@ (AnB)NnC=An(BnNC)

i) ¢NA=0,UNnA=A

iv) AnA=A

v) An(Bu(C)

M distributes over U

= (ANnB)uU (AnC) (Distributive law ) i. e.,

This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

(R N
(o ®
®  (BUC) (i) (ANB)
N &
(o ®,
i) AN(BUC) iv) (ANC)

(v) (AnB)uU (ANC)

Figs 1.7 (i) to (v)
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1.10.3 Difference of sets The difference of the sets A and B in this order is the set
of elements which belong to A but not to B. Symbolically, we write A — B and read as
“ A minus B”.

Example 18 LetA={1,2,3,4,5,6), B={2,4,6,8 ). Find A—Band B —A.

Solution We have, A— B ={ 1, 3, 5 }, since the elements 1, 3, 5 belong to A but
not to B and B — A= { 8 }, since the element 8 belongs to B and not to A.
We note that A— B #B — A.

Example 19 LetV={aq, ¢ i, 0, u } and
B={a ik u}.FindV-Band B-V

U
Solution We have, V-B={ ¢, 0 }, since the elements
e, obelong to V butnotto Band B—V = { k }, since ‘
the element k belongs to B but not to V.
We note that V— B # B — V. Using the set- | 4 p
builder notation, we can rewrite the definition of
difference as
A-B={x:xe Aandx¢ B }
The difference of two sets A and B can be
represented by Venn diagram as shown in Fig 1.8.
The shaded portion represents the difference of

the two sets A and B.

Remark The sets A — B, AN B and B — A are |A-B
mutually disjoint sets, i.e., the intersection of any of
these two sets is the null set as shown in Fig 1.9.

Fig 1.8

(ANB)
Fig 1.9

|EXERCISE 1.4|

1. Find the union of each of the following pairs of sets :
1 X={1,3,5} Y={1,23}
i) A=1la e i o0 u} B={a b c}

@iii) A = {x:xis anatural number and multiple of 3}
B = {x: x is a natural number less than 6}

(iv) A ={x:xisanatural number and 1 <x <6 }
B = {x: xis a natural number and 6 < x < 10 }

(v) A={

2. LetA={a b},B= {a b, c}.IsAcB?WhatisAUB?

If A and B are two sets such that A < B, then whatis A U B ?

4. IfA={1,2,3,4},B={3,4,5,6},C={5,6,7,8 }andD={7,8,9, 10 }; find

w9
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10.

11.

12.

MATHEMATICS

i AuB i@ AucC @) BucC ivyBuD
vy AuBuUC (vij AuBUD (vi) BuCuD

Find the intersection of each pair of sets of question 1 above.
IfA={3,57,9,11},B={7,9,11,13},C={11,13,15}and D = {15, 17}; find

i AnB @@ BnNC @) ANCnD
iav) AnC vy BnD vi) AnBuUO)
(vii AnD (vii) AnBuD) @(x) (AnB)n(BuC(C)

x) (AuD)Nn(BuUO)
If A= {x:x1is anatural number }, B = {x: x is an even natural number}
C = {x: xis an odd natural number}andD = {x : x is a prime number }, find
i AnNB i AnC @) AnND
iv) BnC v) BnD (vi) CnD
Which of the following pairs of sets are disjoint
1 {I1,2,3,4} and {x: x is a natural number and 4 <x <6 }
) {aeiouland{c def}
@) {x:xisaneven integer } and {x : x is an odd integer}
IfA={3,6,9,12,15,18,21},B={4,8,12,16,20 },
C={2,4,6,8,10,12,14,16 }, D= {5, 10, 15, 20 }; find

G A-B (i) A-C (i) A-D (iv) B—A
(v) C—A vi) D-A (vii) B-C (vii) B-D
(ix) C—-B x) D-B xi) C-D i) D-C
IfX={abcd}andY={fb d g} find

() X-Y (i) Y-X (i) XNY

If R is the set of real numbers and Q is the set of rational numbers, then what is

R -Q?

State whether each of the following statement is true or false. Justify your answer.
@ {2,3,4,5}and {3, 6} are disjoint sets.

@) {aeio u}and{a b c d}are disjoint sets.

@) {2,6,10,14 }and { 3,7, 11, 15} are disjoint sets.

@iv) {2,6,10}and { 3,7, 11} are disjoint sets.

1.11 Complement of a Set

Let U be the universal set which consists of all prime numbers and A be the subset of

U which consists of all those prime numbers that are not divisors of 42. Thus,

A=

{x:xe Uand xisnotadivisor of 42 }. We see that 2 € U but 2 ¢ A, because

2 is divisor of 42. Similarly,3€ Ubut3 ¢ A,and 7€ Ubut7 ¢ A.Now 2,3 and 7 are
the only elements of U which do not belong to A. The set of these three prime numbers,
i.e., the set {2, 3, 7} is called the Complement of A with respect to U, and is denoted by
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A’. So we have A’ = {2, 3,7}. Thus, we see that
A’ ={x:xe Uand x ¢ A }. This leads to the following definition.

Definition 8 Let U be the universal set and A a subset of U. Then the complement of
A is the set of all elements of U which are not the elements of A. Symbolically, we
write A” to denote the complement of A with respect to U. Thus,
A’={x:xe Uandx ¢ A }. Obviously A’=U - A
We note that the complement of a set A can be looked upon, alternatively, as the
difference between a universal set U and the set A.

Example 20LetU= {1,2,3,4,5,6,7,8,9,10} and A={1,3,5,7,9}. Find A".

Solution We note that 2, 4, 6, 8, 10 are the only elements of U which do not belong to
A. Hence A'={2,4,6,810}.

Example 21 Let U be universal set of all the students of Class XI of a coeducational
school and A be the set of all girls in Class XI. Find A”.

Solution Since A is the set of all girls, A” is clearly the set of all boys in the class.

If A is a subset of the universal set U, then its complement A" is also a
subset of U.
Again in Example 20 above, we have A" ={2,4,6,8,10 }
Hence (A’Y={x:xe Uandx ¢ A’}
={1,3,5,7,9} =A
Itis clear from the definition of the complement that for any subset of the universal
set U, we have (A') =A

Now, we want to find the results for (A U B )' and A” N B’ in the followng
example.
Example 22 Let U= {1,2,3,4,5,6},A={2,3} and B = {3, 4, 5}.
Find A", B", A” n B’, AU B and hence show that ( AUB ) =A’n B".

Solution Clearly A" = {1,4,5,6},B’={1,2,6 }. Hence A n B’ ={ 1,6 }
AlsoAUB ={2,3,4,5},sothat AUB) ={1,6}
(AUB) ={1,6}=A" "B

It can be shown that the above result is true in general. If A and B are any two
subsets of the universal set U, then

(AUB ) =A"NB. Similarly,(ANnB )" = A” UB’. These two results are stated
in words as follows :
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The complement of the union of two sets is U
the intersection of their complements and the
complement of the intersection of two sets is the
union of their complements. These are called De
Morgan’s laws. These are named after the
mathematician De Morgan.

The complement A” of a set A can be represented
by a Venn diagram as shown in Fig 1.10. Fig 1.10
The shaded portion represents the complement of the set A.

Some Properties of Complement Sets
1. Complement laws: HAUA" =U (i)ANA =0
2. De Morgan’s law: (A UB) =A'"NnB ({)(ANnB)Y =A"UB’
3. Law of double complementation : (A")" = A

4. Laws of empty set and universal set ¢’ = U and U" = ¢.
These laws can be verified by using Venn diagrams.

|EXERCISE 1.5 |

1. LetU={1,2,3,4,5,6,7,8,9},A={1,2,3,4},B={2, 4,6,8 } and
C=1{3,4,5,6}. Find (i) A (ii)) B” (iii)) (AW C)" (iv) (AU B)" (v) (A"

(vi) B - CY

2. IfU={a b cd e f g h}, find the complements of the following sets :
1) A={a b, c} )B={d e f g}
(i) C={a, ¢ ¢ g} vy D={f g h, a}

3. Taking the set of natural numbers as the universal set, write down the complements
of the following sets:

(1) {x:xis an even natural number} (i1) { x:xisan odd natural number }
(i) {x:xisapositive multiple of 3} @iv) { x : x is a prime number }
(v) {x:xis anatural number divisible by 3 and 5}
(vi) { x:xis a perfect square } (vii) { x : x is a perfect cube}
(vii)) { x:x+5=8} x){x:2x+5=9}
x) {x:x=27} xi){x:xe Nand2x+1>10}
4. IfU={1,2,3,4,5,6,7,8,9},A={2,4,6,8}and B={2, 3,5, 7}. Verify that
A AUBY=A"NnB (i) (ANnBY=A"UB’
5. Draw appropriate Venn diagram for each of the following :
(i) (A U BY, (i) A" N B’, (i) (ANBY, (v)A"UB’

6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at
least one angle different from 60°, what is A"?
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7.  Fill in the blanks to make each of the following a true statement :
i AUA'=... (i) ONA=...
(i) ANnA'=... @iv) UnA=...

1.12 Practical Problems on Union and
Intersection of Two Sets
In earlier Section, we have learnt union, intersection Q

U

and difference of two sets. In this Section, we will
go through some practical problems related to our
daily life.The formulae derived in this Section will

also be used in subsequent Chapter on Probability (ANB)

(Chapter 16). Fig 1.11
Let A and B be finite sets. If A B = ¢, then
Wn(AuB)=n(A)+n(B) .. (1)

The elements in A U B are either in A or in B but not in both as AN B = ¢. So, (1)
follows immediately.

In general, if A and B are finite sets, then

Mn(AuB)=n(A)+n(B)-n(AnNnB) .. 2)

Note that the sets A—B, A mn B and B — A are disjoint and their union is A U B
(Fig 1.11). Therefore
n(AuB)=n(A-B)+n(A NnB)+n(B-A)
=n(A-B)+ n(AnB)+n(B-A)+n(A nB)-n(A NnB)
=n(A)+n(B)-n(A nB), which verifies (2)
(ii1) If A, B and C are finite sets, then
n(AuBuUC)=n(A)+n(B)+n(C)-n(A nB)-n(B nC)
-n(AnNnC)+n(AnBnNnC) ... 3)
In fact, we have
n(AuBuUC)=nA)+n(BuC)-n[ANn(BuC)] [ by (2) ]
=nA)+n(B)+n(C)-n(B nC)-n[AnNn(BuC)] [by (2)]
SinceA N(BuUC)=(A nNnB)u(A nC), we get
n[AN(BuC)l=n(AnB)+n(AnC)-n[(AnNnB)n(A nO)]
=n(AnB)+n(AnNnC)-n(AnBnNO
Therefore
n(AuBUC) =nA)+n(B)+n(C)-n(A NnB)-n(B nO)
-n(A NmnC)+n(A NmnB nC)
This proves (3).

Example 23 If X and Y are two sets such that X U Y has 50 elements, X has
28 elements and Y has 32 elements, how many elements does X N'Y have ?
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Solution Given that U

n(XuY)=50,n(X)=28, n(Y)=32,
nXNY)=?
By using the formula Q
n(XuY)=n(X)+n(Y)-n(XnNnY),
we find that (XNY)
n(XNY)=n(X)+n(Y)-n(XuUY)
=28+32-50=10 Fig 1.12
Alternatively, suppose n ( X N'Y ) = k, then
n(X-Y)=28-k,n(Y-X)=32-k(by Venn diagram in Fig 1.12)
ThisgivesS0=n(XuY)=nX-Y)+n X nY)+n(Y-X)

=(28—k)+k+(32-k)
Hence k =10.

Example 24 In a school there are 20 teachers who teach mathematics or physics. Of
these, 12 teach mathematics and 4 teach both physics and mathematics. How many
teach physics ?

Solution Let M denote the set of teachers who teach mathematics and P denote the
set of teachers who teach physics. In the statement of the problem, the word ‘or’ gives
us a clue of union and the word ‘and’ gives us a clue of intersection. We, therefore,
have
n(MuP)=20,n(M)=12andn(MnNP)=4
We wish to determine n ( P).
Using the result
n(MuUP)=n(M)+n(P)-n (MnNnP),
we obtain
20=12+n(P)-4
Thus n(P)=12
Hence 12 teachers teach physics.

Example 25 In a class of 35 students, 24 like to play cricket and 16 like to play
football. Also, each student likes to play at least one of the two games. How many
students like to play both cricket and football ?

Solution Let X be the set of students who like to play cricket and Y be the set of

students who like to play football. Then X U'Y is the set of students who like to play

at least one game, and X N'Y is the set of students who like to play both games.

Given n(X)=24,n(Y)=16,n(XuY)=35nXNnY)=7?

Using the formulan (XUuY)=n(X)+n(Y)-n (XNY), we get
35=24+16-n(XNY)
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Thus, nXNY)=5
ie., 5 students like to play both games.

Example 26 In a survey of 400 students in a school, 100 were listed as taking apple
juice, 150 as taking orange juice and 75 were listed as taking both apple as well as
orange juice. Find how many students were taking neither apple juice nor orange juice.

Solution Let U denote the set of surveyed students and A denote the set of students
taking apple juice and B denote the set of students taking orange juice. Then

n (U) =400, n (A) =100, n (B) =150 and n (A N B) =75.
Now n(A'nB’) =n(AuUB)Y
=n(U)-n(AuUB)
=n(U)-nA)—-n(B)+n(AnB)
=400 - 100 - 150 + 75 =225
Hence 225 students were taking neither apple juice nor orange juice.

Example 27 There are 200 individuals with a skin disorder, 120 had been exposed to
the chemical C , 50 to chemical C,, and 30 to both the chemicals C, and C,. Find the
number of individuals exposed to

(i)  Chemical C, but not chemical C, (i) Chemical C, but not chemical C,
(i) Chemical C, or chemical C,

Solution Let U denote the universal set consisting of individuals suffering from the
skin disorder, A denote the set of individuals exposed to the chemical C, and B denote
the set of individuals exposed to the chemical C,.

Here n(U)=200,n(A)=120,n(B)=50andn (AN B)=30

(1) From the Venn diagram given in Fig 1.13, we have
A=(A-B)u(AnB).
n(A)=n(A-B)+n(AnB) (Since A-B) and A N B are disjoint.)
orn(A-B)=n(A)-n(AnB)=120-30=90

Hence, the number of individuals exposed to

chemical C, but not to chemical C, is 90. U
(i1) From the Fig 1.13, we have
B=(B-A)uU(AnB). Q
andso, n(B)=n(B-A)+n(ANB)
(Since B — A and A nB are disjoint.)
oo n(B-A)=n(B)-n(ANB) (ANB)
=50-30= 20 Fig 1.13
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Thus, the number of individuals exposed to chemical C, and not to chemical C, is 20.
(i) The number of individuals exposed either to chemical C, or to chemical C, i.e.,
n(AuB)=n(A)+n(B)-n(AnB)
=120 + 50 — 30 = 140.

|EXERCISE 1.6|

1. IfXandY aretwosetssuchthatn (X )=17,n(Y)=23andn (X uUY )=38,
findn(XNY).

2. If Xand Y are two sets such that X U Y has 18 elements, X has 8 elements and
Y has 15 elements ; how many elements does X N'Y have?

3. Ina group of 400 people, 250 can speak Hindi and 200 can speak English. How
many people can speak both Hindi and English?

4. If S and T are two sets such that S has 21 elements, T has 32 elements, and S N T
has 11 elements, how many elements does S U T have?

5. If X and Y are two sets such that X has 40 elements, X U Y has 60 elements and
X MY has 10 elements, how many elements does Y have?

6. Ina group of 70 people, 37 like coffee, 52 like tea and each person likes at least
one of the two drinks. How many people like both coffee and tea?

7. Inagroup of 65 people, 40 like cricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?

8. In a committee, 50 people speak French, 20 speak Spanish and 10 speak both
Spanish and French. How many speak at least one of these two languages?

Miscellaneous Examples

Example 28 Show that the set of letters needed to spell “ CATARACT ” and the
set of letters needed to spell *“ TRACT” are equal.

Solution Let X be the set of letters in “CATARACT”. Then
X={C,A TR}

Let Y be the set of letters in “ TRACT”. Then
Y={T,RACT}={T,R,A,C}

Since every element in X is in Y and every element in Y is in X. It follows that X =Y.

Example 29 List all the subsets of the set { -1, 0, 1 }.

Solution Let A= {-1,0,1 }. The subset of A having no element is the empty
set 0. The subsets of A having one elementare { —1 }, { 0 }, { 1 }. The subsets of
A having two elements are {-1, 0}, {-1, 1} ,{0, 1}. The subset of A having three
elements of A is Aitself. So, all the subsets of Aare ¢, {1}, {0}, {1}, {-1,0}, {-1, 1},
{0,1} and {-1,0, 1}.
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Example 30 Show that Au B = AN B implies A=B

Solution Leta € A.Thenae AUB.SinccAUB=A "nB,ae A nB.Soae B.
Therefore, A B. Similarly, if b € B, then b€ A U B. Since
AUB=ANB,be AnB. So, b € A. Therefore, Bc A. Thus, A=B

Example 31 For any sets A and B, show that
P(AnB)=P(A)nP( B).

Solution Let X € P(A N B ). Then X ©¢ AN B. So, X © A and X c B. Therefore,
X e P(A)and X € P (B ) which implies X € P(A) N P (B). This givesP(ANB)
cP(A)nP(B).LetYe P(A)nP(B). ThenYe P(A)andY € P(B). So,
Yc AandY c B. Therefore, Y € A N B, whichimplies Y € P(A m B ). This gives
P(A)nP(B)cP(ANB)

Hence P(ANB)=P(A)nP(B).

Example 32 A market research group conducted a survey of 1000 consumers and
reported that 720 consumers like product A and 450 consumers like product B, what is
the least number that must have liked both products?

Solution Let U be the set of consumers questioned, S be the set of consumers who
liked the product A and T be the set of consumers who like the product B. Given that
n(U)=1000,n(S)=720,n( T)=450
So n(SuT)=n(S)+n(T)-n(SNT)
=720+450-n(SNT)=1170-n(SNT)

Therefore, n ( S U T ) is maximum when n ( S N T ) is least. But S U T < U implies
n(SUT) <n(U)=1000. So, maximum values of n (S U T ) is 1000. Thus, the least
value of n (S N T ) is 170. Hence, the least number of consumers who liked both products
is 170.

Example 33 Out of 500 car owners investigated, 400 owned car A and 200 owned
car B, 50 owned both A and B cars. Is this data correct?

Solution Let U be the set of car owners investigated, M be the set of persons who
owned car A and S be the set of persons who owned car B.

Given that n(U) =500,n(M)=400,n(S)=200andn (S "M ) =50.
Then n(SuUM)=n(S)+n(M)-n(SNnM) =200+ 400 - 50 =550
ButSUM < Uimpliesn (SUM)<n(U).

This is a contradiction. So, the given data is incorrect.

Example 34 A college awarded 38 medals in football, 15 in basketball and 20 in
cricket. If these medals went to a total of 58 men and only three men got medals in all
the three sports, how many received medals in exactly two of the three sports ?
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Solution Let F, B and C denote the set of men who U

received medals in football, basketball and cricket,

respectively. a

Thenn (F)=38,n(B)=15n(C)=20 9@7&
n(FuUBuUC)=58andn (FNBNC)=3

Therefore, n(FuUBUC)=n(F)+n(B) C

+n(C)-n(FNnB)-n(FNC)-n(BNC)+

n(FABAN C), Fig 1.14

givesn (FNB)+n(FNC)+n(BnNnC)=18

Consider the Venn diagram as given in Fig 1.14

Here, a denotes the number of men who got medals in football and basketball only, b

denotes the number of men who got medals in football and cricket only, ¢ denotes the

number of men who got medals in basket ball and cricket only and d denotes the

number of men who got medal in all the three. Thus,d=n (FNB N C) =3 and

a+d+b+d+c+d=18

Therefore a+b+c=09,

which is the number of people who got medals in exactly two of the three sports.

Miscellaneous Exercise on Chapter 1

1. Decide, among the following sets, which sets are subsets of one and another:
A={x:xe R and xsatisfy x> —8x+ 12 = 0 },
B={2,46}, C={2,4,6,8,...},D={6}.

2.  Ineach of the following, determine whether the statement is true or false. If itis
true, prove it. If it is false, give an example.

i) Ifxe AandAe B,thenxe B
(@) IfA cBandBe C,thenAe C
@) IfAcBandBcC,thenAcC
ivy fAgBandBz C,thenA ¢ C
(v) Ifxe Aand Az B ,thenxe B
(vij fAcBandx¢ B,thenx¢g A

3. LetA, B, and C be the sets suchthat AuB=AuCand AN B =AnNC. Show
that B = C.
4. Show that the following four conditions are equivalent :

i)AcB@l)A-B=¢ (@(i)AuUuB=B (iviAnB=A
5. Show thatif Ac B,thenC-B c C - A.
Assume that P(A) =P (B ). Show that A=B

7. Isittrue that for any sets Aand B,P(A) UP (B )=P (A u B )? Justify your
answer.

=)
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Show that for any sets A and B,

A=(An B) U(A-B)andAu(B-A)= (AuUB)

Using properties of sets, show that

HDAU(A NB)=A (i) An(AuB)=A.

Show that Am B = A mn C need not imply B =C.

Let Aand Bbesets. fFA NmX=BNnX=¢and Au X =B U X for some set
X, show that A = B.

(Hints A=An(AuX),B=Bn(BuX) and use Distributive law )
Find sets A, B and C such that A N B, B m C and A n C are non-empty
setsand AN B N C=¢.

In a survey of 600 students in a school, 150 students were found to be taking tea
and 225 taking coffee, 100 were taking both tea and coffee. Find how many
students were taking neither tea nor coffee?

In a group of students, 100 students know Hindi, 50 know English and 25 know
both. Each of the students knows either Hindi or English. How many students
are there in the group?

In a survey of 60 people, it was found that 25 people read newspaper H, 26 read
newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T,
8 read both T and I, 3 read all three newspapers. Find:

(i) the number of people who read at least one of the newspapers.

(i1) the number of people who read exactly one newspaper.

In a survey it was found that 21 people liked product A, 26 liked product B and
29 liked product C. If 14 people liked products A and B, 12 people liked products
C and A, 14 people liked products B and C and 8 liked all the three products.
Find how many liked product C only.

Summary

This chapter deals with some basic definitions and operations involving sets. These

are summarised below:

@ A setis a well-defined collection of objects.

# A set which does not contain any element is called empty set.

@ A set which consists of a definite number of elements is called finite set,
otherwise, the set is called infinite set.

# Two sets A and B are said to be equal if they have exactly the same elements.

€ AsetAis said to be subset of a set B, if every element of A is also an element
of B. Intervals are subsets of R.

@ A power set of a set A is collection of all subsets of A. It is denoted by P(A).
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# The union of two sets A and B is the set of all those elements which are either
in A or in B.

@ The intersection of two sets A and B is the set of all elements which are
common. The difference of two sets A and B in this order is the set of elements
which belong to A but not to B.

4 The complement of a subset A of universal set U is the set of all elements of U
which are not the elements of A.

# For any two sets Aand B, AUB)=A"nB’and (ANB) =A"UB’

¢ If A and B are finite sets such that A n B = ¢, then
n(AuB)=n(A)+n(B).

IfA N B # 0, then
n(AuB)=n(A)+n B)-n(AnNB)

Historical Note

The modern theory of sets is considered to have been originated largely by the
German mathematician Georg Cantor (1845-1918). His papers on set theory
appeared sometimes during 1874 to 1897. His study of set theory came when he
was studying trigonometric series of the form a, sin x + a, sin 2x + a, sin 3x + ...
He published in a paper in 1874 that the set of real numbers could not be put into
one-to-one correspondence wih the integers. From 1879 onwards, he publishd
several papers showing various properties of abstract sets.

Cantor’s work was well received by another famous mathematician Richard
Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding
infinite set the same way as finite sets. Another German mathematician Gottlob
Frege, at the turn of the century, presented the set theory as principles of logic.
Till then the entire set theory was based on the assumption of the existence of the
set of all sets. It was the famous Englih Philosopher Bertand Russell (1872-
1970 ) who showed in 1902 that the assumption of existence of a set of all sets
leads to a contradiction. This led to the famous Russell’s Paradox. Paul R.Halmos
writes about it in his book ‘Naive Set Theory’ that “nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory.
Many paradoxes were produced later by several mathematicians and logicians.
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As a consequence of all these paradoxes, the first axiomatisation of set theory
was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham
Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of
regularity. Later in 1937 Paul Bernays gave a set of more satisfactory
axiomatisation. A modification of these axioms was done by Kurt Godel in his
monograph in 1940. This was known as Von Neumann-Bernays (VNB) or Godel-
Bernays (GB) set theory.

Despite all these difficulties, Cantor’s set theory is used in present day
mathematics. In fact, these days most of the concepts and results in mathematics
are expressed in the set theoretic language.

g
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Chapter 2

11076CHO2

(RELATIONS AND FUNCTIONS )

* Mathematics is the indispensable instrument o
p f
all physical research. - BERTHELOT **

2.1 Introduction

Much of mathematics is about finding a pattern — a
recognisable link between quantities that change. In our
daily life, we come across many patterns that characterise
relations such as brother and sister, father and son, teacher
and student. In mathematics also, we come across many
relations such as number m is less than number 7, line /s
parallel to line m, set A is a subset of set B. In all these, we
notice that a relation involves pairs of objects in certain
order. In this Chapter, we will learn how to link pairs of
objects from two sets and then introduce relations between
the two objects in the pair. Finally, we will learn about G.W. Leibnitz
special relations which will qualify to be functions. The (1646-1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.

2.2 Cartesian Products of Sets

Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
A = {red, blue}and B = {b, ¢, 5},

where b, ¢ and s represent a particular bag, coat and shirt, respectively.

How many pairs of coloured objects can be made from these two sets?

s
Proceeding in a very orderly manner, we can see that there will be 6
distinct pairs as given below:

(red, b), (red, ¢), (red, s), (blue, b), (blue, ¢), (blue, s). b
. e . . [ ] [ )
Thus, we get 6 distinct oth?cts (Fig 2.1). red  blue
Let us recall from our earlier classes that an ordered pair of elements Fig 2.1

taken from any two sets P and Q is a pair of elements written in small
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brackets and grouped together in a particular order, i.e., (p,q), p € Pand g € Q. This
leads to the following definition:

Definition 1 Given two non-empty sets P and Q. The cartesian product P X Q is the
set of all ordered pairs of elements from P and Q, i.e.,

PXxQ={(pqg:p €PgeQ}
If either P or Q is the null set, then P X Q will also be empty set, i.e., PXQ =0

From the illustration given above we note that

A X B = {(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.

Again, consider the two sets:

A = {DL, MP, KA}, where DL, MP, KA represent Delhi,

Madhya Pradesh and Karnataka, respectively and B = {01,02, 03
03 }representing codes for the licence plates of vehicles issued 02
by DL, MP and KA . 01

If the three states, Delhi, Madhya Pradesh and Karnataka !
were making codes for the licence plates of vehicles, withthe DL MP KA
restriction that the code begins with an element from set A,
which are the pairs available from these sets and how many such
pairs will there be (Fig 2.2)?

The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
A X B = {(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03), (KA,01), (KA,02),

(KA,03)}.

It can easily be seen that there will be 9 such pairs in the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elements are paired is crucial. For example, the code
(DL, 01) will not be the same as the code (01, DL).

As a final illustration, consider the two sets A= {a, a,} and b,

B={b,b, b, b,} (Fig23). b,

AXB ={(a,b), (a, b,), (a, b)), (a,, b), (a,, b)), (a, b)), b,

(a,, by, (a,, b)}. b,
The 8 ordered pairs thus formed can represent the position of points in )
the plane if A and B are subsets of the set of real numbers and it is  a, a,
obvious that the point in the position (a,, b,) will be distinct from the point Fig 2.3
in the position (b,, a,).

Fig 2.2

Remarks
(1) Two ordered pairs are equal, if and only if the corresponding first elements
are equal and the second elements are also equal.
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(i) If there are p elements in A and ¢ elements in B, then there will be pg
elements in A X B, i.e., if n(A) = p and n(B) = ¢, then n(A X B) = pgq.

(iii) If A and B are non-empty sets and either A or B is an infinite set, then so is
A X B.

iv) AxAxA={(a,b,c):a,b,ce A}.Here (a, b, c) is called an ordered
triplet.

Example 1 If (x+ 1, y—-2)=(3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x+1=3 andy-2=1.
Solving we get x=2andy=3.

Example 2 If P= {a, b, ¢} and Q = {r}, form the sets P X Q and Q X P.
Are these two products equal?

Solution By the definition of the cartesian product,
PxQ= {(a, 1), (b, r),(c,r)}and QX P= {(r, a), (r, b), (1, )}
Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair
(r, a), we conclude that P x Q # Q x P.
However, the number of elements in each set will be the same.

Example 3 Let A= {1,2,3}, B={3,4} and C = {4,5,6}. Find
i AxBNO i) (AxB)Nn(AxQC)
i) Ax@BuUO @iv) (AxB)U(AxCO)
Solution (i) By the definition of the intersection of two sets, (B M C) = {4}.
Therefore, Ax (BN C) ={(1,4), (2,4), (3,4)}.
(1) Now (AxB)={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}
and (AXC)={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}
Therefore, (AXB)MN(AXC) ={(1,4),(2,4),(3,4)}.
(i) Since, (B W C)={3,4,5, 6}, we have
AX (B UOC) ={(1,3),(14), (1,5, (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3.4),(3,5),(3,6)}.

(iv) Using the sets A X B and A X C from part (ii) above, we obtain
(AXB)U(AXC)={(1,3),(1,4),(1,5),(1,6),(2,3), (2,4), (2,5), (2,6),
(3,3),(3,4),(3,5),(3,6)}.
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Example 4 If P= {1, 2}, form the set PX P X P.

Solution We have, PXPXP= {(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1), (2,1,2), (2,2,1),
(2,2,2)}.

Example 5 If R is the set of all real numbers, what do the cartesian products R x R

and R X R X R represent?

Solution The Cartesian product R X R represents the set R x R={(x, y) : x, y € R}

which represents the coordinates of all the points in two dimensional space and the

cartesian product R X R X R represents the set RX RX R ={(x,y 2) :x, y,z€ R}
which represents the coordinates of all the points in three-dimensional space.

Example 6 If AX B ={(p, 9),(p, 1), (m, q), (in, r)}, find A and B.

Solution A = set of first elements = {p, m}
B = set of second elements = {q, r}.

| EXERCISE 2.1 |

1. If [ﬁ"‘l’y—zj:[é’lj find the values of x and y
’ 3 3 33/ ;

2. 1If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of
elements in (AXB).

3. fG={7,8}andH={5,4,2},find GXHand HXG.

4. State whether each of the following statements are true or false. If the statement
is false, rewrite the given statement correctly.

1) IfP={m,n}and Q ={ n, m}, then P X Q = {(m, n),(n, m)}.

(i) If A and B are non-empty sets, then A X B is a non-empty set of ordered

pairs (x, y) such that x € Aand y € B.
i) IfA={1,2},B={3,4},then AX (B M) =4¢.
5. IfA={-1, 1}, find AXAXA.
IfAXB={(a, x),a,y), (b, x), (b,y)}. Find A and B.
7. LetA={1,2},B={1,2,3,4},C={5,6}and D = {5, 6,7, 8}. Verify that
HAX(BNC)=(AXB) N (AXC). (ii)) AX Cis a subset of B X D.
8. LetA={1,2}and B={3,4}. Write A X B. How many subsets will A X B have?

List them.
9. Let A and B be two sets such that n(A) =3 and n(B) = 2. If (x, 1), (v, 2), (z, 1)

are in A X B, find A and B, where x, y and z are distinct elements.

=)
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10. The Cartesian product A X A has 9 elements among which are found (-1, 0) and
(0,1). Find the set A and the remaining elements of A X A.

2.3 Relations
Consider the two sets P= {a, b, c} and Q = {Ali, Bhanu, Binoy, Chandra, Divya}.
The cartesian product of P Q
P and Q has 15 ordered pairs which
can be listed as P x Q = {(a, Ali),
(a,Bhanu), (a, Binoy), ..., (¢, Divya)}.
We can now obtain a subset of
P x Q by introducing a relation R
between the first element x and the
second element y of each ordered pair
(x, y) as
R= { (x,y): x is the first letter of the name y, x € P, y € Q}.
Then R = {(a, Ali), (b, Bhanu), (b, Binoy), (¢, Chandra)}
A visual representation of this relation R (called an arrow diagram) is shown
inFig2.4.

o Ali
eBhanu
eBinoy

eChandra
eDivya

Definition 2 A relation R from a non-empty set A to a non-empty set B is a subset of
the cartesian product A X B. The subset is derived by describing a relationship between
the first element and the second element of the ordered pairs in A X B. The second
element is called the image of the first element.

Definition 3 The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.

Definition 4 The set of all second elements in a relation R from a set A to a set B is
called the range of the relation R. The whole set B is called the codomain of the
relation R. Note that range © codomain.

Remarks (i) A relation may be represented algebraically either by the Roster
method or by the Set-builder method.
(i) An arrow diagram is a visual representation of a relation.

Example 7Let A= {1, 2, 3,4, 5, 6}. Define a relation R from A to A by
R=A{(,y):y=x+1}
(1) Depict this relation using an arrow diagram.
(i) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,
R={(1,2),(2,3),(3.4), (4,5, (5,6) }.
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The corresponding arrow diagram is
shown in Fig 2.5.

(i) We can see that the
domain={1,2, 3,4,5,}

Similarly, the range = {2, 3, 4, 5, 6}
and the codomain = {1, 2, 3,4, 5, 6}.

Fig 2.5

Example 8 The Fig 2.6 shows a relation
between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form.

What is its domain and range? P Q
Solution It is obvious that the relation R is 9 :g
[13 M 29 ~ .2
X 18 tl.le square o.f y’. o4 > 1
(1) In set-builder form, R = {(x, y): x )
is the square of y, x € P,y € Q} 025 S F 3
(i) In roster form, R = {(9, 3), =

(9’ _3)7 (4a 2)’ (49 _2)a (25, 5)7 (25, _5)} Fig 2'6

The domain of this relation is {4, 9, 25}.
The range of this relation is {-2, 2, -3, 3, -5, 5}.
Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

he total number of relations that can be defined from a set A to a set B
is the number of possible subsets of A X B. If n(A ) = p and n(B) = ¢, then
n (A X B) = pg and the total number of relations is 274.

Example 9 Let A= {1, 2} and B = {3, 4}. Find the number of relations from A to B.
Solution We have,
AXB={(L,3),(1,4),(2,3),(2,4)}.

Since n (AXB ) = 4, the number of subsets of AXB is 2% Therefore, the number of
relations from A into B will be 2%,

Remark A relation R from A to A is also stated as a relation on A.

| EXERCISE 2.2 |

1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by
R={(x,y):3x—y=0, where x, ye A}. Write down its domain, codomain and
range.
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2.  Define a relation R on the set N of natural numbers by R = {(x, y) : y= x + 5,

x is a natural number less than 4; x, y € N}. Depict this relationship using roster
form. Write down the domain and the range.

3. A={1,2,3,5} and B = {4, 6, 9}. Define a relation R from A to B by
R = {(x, y): the difference between x and y is odd; x € A, y € B}. Write R in
roster form.

4. The Fig2.7 shows a relationship

between the sets P and Q. Write this >

relation

(1) in set-builder form (ii) roster form. >

What is its domain and range? ~
L

5. LetA={1,2 3,4, 6). Let R be the
relation on A defined by Fig 2.7
{(a,b):a,beA,bisexactly divisible by a}.

(1) Write R in roster form
(i) Find the domain of R

(iii) Find the range of R.

6. Determine the domain and range of the relation R defined by
R={(xx +5):x€{0,1,2,3,4,5}}.

7. Write the relation R = {(x, x*) : x is a prime number less than 10} in roster form.

LetA={x, y,z} and B = {1, 2}. Find the number of relations from A to B.

9. LetR be the relation on Z defined by R = {(a,b): a, b € Z, a— b is an integer}.
Find the domain and range of R.

R

2.4 Functions

In this Section, we study a special type of relation called function. It is one of the most
important concepts in mathematics. We can, visualise a function as a rule, which produces
new elements out of some given elements. There are many terms such as ‘map’ or
‘mapping’ used to denote a function.

Definition 5 A relation f from a set A to a set B is said to be a function if every
element of set A has one and only one image in set B.

In other words, a function f'is a relation from a non-empty set A to a non-empty
set B such that the domain of fis A and no two distinct ordered pairs in f have the
same first element.

If fis a function from A to B and (a, b) € f, then f(a) = b, where b is called the
image of a under f and a is called the preimage of b under f.
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The function f from A to B is denoted by f: A = B.
Looking at the previous examples, we can easily see that the relation in Example 7 is
not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the
domain are connected to more than one images. Similarly, the relation in Example 9 is
also not a function. (Why?) In the examples given below, we will see many more
relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on
N such that R = {(x,y): y=2x, x, y e N}.
What is the domain, codomain and range of R? Is this relation a function?

Solution The domain of R is the set of natural numbers N. The codomain is also N.
The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a
function.

Example 11 Examine each of the following relations given below and state in each
case, giving reasons whether it is a function or not?
@® R={21.,3.1),(42)}, () R={(2,2),2.4),(3,3), (4.4)}
@) R={(1,2),2,3),(3.4),(4.5).(5,6), (6,1}

Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images,

this relation R is a function.

(i) Since the same first element 2 corresponds to two different images 2
and 4, this relation is not a function.
(i) Since every element has one and only one image, this relation is a

function.

Definition 6 A function which has either R or one of its subsets as its range is called
a real valued function. Further, if its domain is also either R or a subset of R, it is
called a real function.

Example 12 Let N be the set of natural numbers. Define a real valued function

f:N=> N by f(x)=2x+ 1. Using this definition, complete the table given below.

X 1 2 3 4 5 6 7

YIfWD=|fQ=.fQ=..[f@D=.|fO)=..1fO)=.|fT)=..
Solution The completed table is given by

X 1 2 3 4 5 6 7

v | r=3] r@=5|r®=7| r@=9|re=11|r©) =13 (1 =15
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2.4.1 Some functions and their graphs

(1)  Identity function Let R be the set of real numbers. Define the real valued
function f: R - R by y = fix) = x for each x € R. Such a function is called the
identity function. Here the domain and range of fare R. The graph is a straight line as
shown in Fig 2.8. It passes through the origin.

Y

Y!
Sx)=x
Fig 2.8
(i) Constant function Define the function f: R - R by y = f(x) = ¢, x € R where

¢ is a constant and each x € R. Here domain of fis R and its range is {c}.

Y
N

8
6--
4
2

N
v

N<E—t+—4—4+—F+—+—+F+—+4+—>X
8 -6-4-2 |02 4 6 8

Fig 2.9
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The graph is a line parallel to x-axis. For example, if f(x)=3 for each xe R, then its
graph will be a line as shown in the Fig 2.9.

(iii) Polynomial function A function f: R — R is said to be polynomial function if
foreachxin R,y = f(x)=a,+ax +ax’+..+a X', where n is a non-negative
integer and a, a, a,,....a €ER.

The functions defined by f{x) = x* — x>+ 2, and g(x) = x* + /2 x are some examples

2
of polynomial functions, whereas the function 4 defined by A(x) = x* + 2x is not a
polynomial function.(Why?)

Example 13 Define the function : R — R by y = fix) = x%, x € R. Complete the
Table given below by using this definition. What is the domain and range of this function?
Draw the graph of f.

X -4 -31]-2 [-1 0] 1 2 4] 4

y=f) =

wn

olution The completed Table is given below:

X -4 13| -2|-1] 0f{|'1 2 3 4
y=fx)=x*| 16 9 4 1] 0] 1 4 9 16

Domain of f = {x : xeR}. Range of f = {xZ: x € R}. The graph of fis given
by Fig2.10

Y

fo)=x? Fig 2.10

2020-21



40 MATHEMATICS

Example 14 Draw the graph of the function f :R — R defined by f (x) = x°, xeR.

Solution We have
f0) =0, /(1) =1, f(-1) =-1, 2) = 8, A(-2) =8, f(3) =27; (-3) =-27, etc.
Therefore, f= {(x,X’): xe R}. Y

The graph of fis given in Fig 2.11.

Y!
fix)=x3

Fig 2.11

f &) , where f(x) and g(x) are
(%)

(iv) Rational functions are functions of the type
polynomial functions of x defined in a domain, where g(x) # 0.

1
Example 15 Define the real valued function f: R — {0} — R defined by f(x)=—,
X

x € R-{0}. Complete the Table given below using this definition. What is the domain
and range of this function?

X 2| -15]-1[-05]025(05( 1 1.5 2
1
X

y:

Solution The completed Table is given by
X -2 -1.5 | -1{ -0.5] 025| 05 |1 1.5 2

-05]-067 -1 -2 | 4 2 1| 067 ] 05

<
Il
==
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The domain is all real numbers except 0 and its range is also all real numbers

except 0. The graph of fis given in Fig 2.12.
Y

Fig 2.12

(v) The Modulus function The function
f: R—R defined by f(x) = Ixl for each
x € R is called modulus function. For each
non-negative value of x, f(x) is equal to x.
But for negative values of x, the value of
f(x) is the negative of the value of x, i.e.,

x,x20

-x,x<0

f)= {
The graph of the modulus function is given

in Fig 2.13.

(vi) Signum function The function
J:R—R defined by

Lif x>0
fx)=40,if x=0
-1,if x<0

2020-21



42 MATHEMATICS

is called the signum function. The domain of the signum function is R and the range is
the set {—1, 0, 1}. The graph of the signum function is given by the Fig 2.14.

Y
1 y=1
X' € 5 > X
y=- -1
Y!
o
f(x)=7,x 0OandOforx=10
Fig 2.14
(vii) Greatest integer function X
The function f: R — R defined
by fix) = [x], x € R assumes the +3 —0
value of the greatest integer, less 4 o
than or equal to x. Such a function
is called the greatest integer 3 -2 -1 T! 1 2 3 4 5
function. X'€ g +—+—+—+—>X
From the definition of [x], we —0 -1
can see that —0 +-2
= — 1<
[x] lfor-1<x<0 3
[x]= Ofor0<x<1
[x]= 1for1<x<2 v
Y!
x]= 2for2<x<3and
1l fx) = 1]
SO on.
Fig 2.15

The graph of the function is
shown in Fig 2.15.

2.4.2 Algebra of real functions In this Section, we shall learn how to add two real
functions, subtract a real function from another, multiply a real function by a scalar
(here by a scalar we mean a real number), multiply two real functions and divide one

real function by another.

@

Addition of two real functions Let f: X — Rand g : X — R be any two real

functions, where X < R. Then, we define (f+ g): X — R by
f+8) @) =f)+gx),forallxe X.
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(i) Subtraction of a real function from another Let f: X — Rand g: X — Rbe
any two real functions, where X CR. Then, we define (f — g) : X—=R by

(f-g) (x) = fix) —g(x), for all x € X.

(i) Multiplication by a scalar Let f: X—R be a real valued function and & be a
scalar. Here by scalar, we mean a real number. Then the product o fis a function from
X to R defined by (0L f) (x) = A f(x), x € X.

(iv) Multiplication of two real functions The product (or multiplication) of two real
functions f:X—R and g:X—R is a function fg:X—R defined by
(fo) (x) = fix) g(x), for all x € X.

This is also called pointwise multiplication.

(v) Quotient of two real functions Let f and g be two real functions defined from

f
X—R, where X CR. The quotient of f by g denoted by E is a function defined by ,

[ﬁ ](x) =% , provided g(x) #0,x € X

Example 16 Let fix) = xzand g(x) = 2x + 1 be two real functions.Find

f
f+ 2 @, (f-g) ), (f8) (X),[E](x).

Solution We have, , ,
F+e@=x +2x+1, f-g )= x —2x-1,
2
2 3 2 S X 1
_ _ = |(x) = __
fo)(x)=x 2x+1)=2x +x, [g]( ) = IR # 5

Example 17 Let f(x) = \/; and g(x) = x be two functions defined over the set of non-

negative real numbers. Find (f + g) (x), (f— g) (x), (fg) (x) and [g] (x).

Solution We have

F+g) = Jx+x (f-g @ =Jx —-x,

3 1
(fo)x = Vx(x)=x" and [ﬁ]@c) S 0
X
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| EXERCISE 2.3 |
1. Which of the following relations are functions? Give reasons. If it is a function,
determine its domain and range.
@ {2,1),65,1),8,1),(11,1),(14,1),(17,1)}
@) {(2,1),(4.2),(6,3),(8:4),(10,5),(12,6), (14,7)}
@) {(1,3),(1,5),(2,5)}.
2.  Find the domain and range of the following real functions:
i) f) = - |o i) S0 = o— .
3. A function fis defined by f{x) = 2x —5. Write down the values of
® £, Gy f(7), @) f(3).

4. The function ‘" which maps temperature in degree Celsius into temperature in

9C
degree Fahrenheit is defined by #(C) = 5 + 32.

Find () #0) (i) #28) (i) #(=10) (iv) The value of C, when #C) = 212.
5.  Find the range of each of the following functions.
1 fx) =2-3x,xe R x>0.
() f(x) =x*+ 2, xis areal number.
@) f(x) =x, xis areal number.

Miscellaneous Examples

Example 18 Let R be the set of real numbers.

Define the real function }{\
- R=Rby flx)=x+10

and sketch the graph of this function. (0.10)
Solution Here f(0) =10, (1) =11, f(2) =12, ...,
f(10) = 20, etc., and

f-1)=9.f(-2)=8, .. f-10) =0 and soon. 100 -

Therefore, shape of the graph of the given X V (0] -
function assumes the form as shown in Fig 2.16.
Remark The function f defined by fix) = mx + ¢, ;{"
x € R, is called linear function, where m and c are f(x)=x+10
constants. Above function is an example of a linear

Fig 2.16

function.
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Example 19 Let R be a relation from Q to Q defined by R = {(a,b): a,b € Q and
a—b e Z}. Show that
(1) (a,a) e Rforallae Q
(i) (a,b) € R implies that (b, a) € R
(i) (a,b) € R and (b,c) € R implies that (a,c) eR

Solution (i) Since,a —a =0 € Z, if follows that (a, a) € R.
(i) (a,b) € R implies that a — b € Z. So, b — a € Z. Therefore,
(b, a) e R
(iii) (a, b) and (b, c) € Rimpliesthata—-be Z.b—c e Z. So,
a—-c=(a->b)+ (b-c)e Z. Therefore, (a,c) € R
Example 20 Letf= {(1,1), (2,3), (0,-1), (=1, -3)} be a linear function from Z into Z.
Find f(x).
Solution Since fis a linear function, f (x) = mx + c. Also, since (1, 1), (0, - 1) € R,

f()=m+c=1andf(0)=c=-1. This gives m = 2 and f(x) = 2x — 1.

x> +3x+5

Example 21 Find the domain of the function f (x) =—;
x —5x+4

Solution Since x2 —Sx+4=(x—-4) (x-1), the function fis defined for all real numbers
except at x =4 and x = 1. Hence the domain of fis R— {1, 4}.

Example 22 The function fis defined by
1-x, x<0

1 ,x=0
x+1, x>0

f)=

Draw the graph of f (x).
Solution Here, fix)=1-x,x <0, this gives
f=4) =1-(=4)=5;
f=3) =1-(=3)=4,

-2
f=2) =1-(=2)=3 3
=D =1-(1) =2;etc, -
and f(1) =2,f(2)=3,f3)=4 \p
f(4) =5andsoonfor fix)=x+1,x>0. Y’
Thus, the graph of fis as shown in Fig 2.17 Fig 2.17
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Miscellaneous Exercise on Chapter 2

The relation fis defined by f (¥) ¥, 02153
t —
e relation fis defined by 3x3<2<10
2
) x”,0<xL2
. . . )=
The relation g is defined by § 3x.2<x<10
Show that fis a function and g is not a function.
1.)-fq
I £ (x) =, find LLD =S D
(1.1-1
2
) . . x +2x+1
Find the domain of the function f(x) =—————.
x —8x+12

Find the domain and the range of the real function f defined by f (x) = \/(x-1) .

Find the domain and the range of the real function f defined by f (x) = |x - 1| .

2
X
Let f = {[x, 1+ 22 } X € R} be a function from R into R. Determine the range

of f.
Let f, g : R—>R be defined, respectively by fix) = x + 1, g(x) = 2x — 3. Find

L
f+g f-gan g

Let f = {(1,1), (2,3), (0,~1), (=1, =3)} be a function from Z to Z defined by
flx) = ax + b, for some integers a, b. Determine a, b.

Let R be a relation from N to N defined by R = {(a,b) : a,beNand a = bz}. Are
the following true?
(i) (a,a)e R,forallae N @i) (a,b) € R, implies (b,a) € R
@) (a,b) € R, (b,c) € R implies (a,c) € R.
Justify your answer in each case.
LetA={1,23,4},B={1,5,9,11,15,16} and f={(1,5),(2,9), (3,1), (4,5), (2,11)}
Are the following true?
(1) fis arelation from A to B (i) f is a function from A to B.
Justify your answer in each case.
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Let f be the subset of Z x Z defined by f = {(ab, a + b) : a, b € Z}.1Is f a
function from Z to Z? Justify your answer.

Let A={9,10,11,12,13} and let f: A—N be defined by f (n) = the highest prime
factor of n. Find the range of f.

Summary

In this Chapter, we studied about relations and functions.The main features of
this Chapter are as follows:
@ Ordered pair A pair of elements grouped together in a particular order.
@ Cartesian product A x B of two sets A and B is given by
AxB= {(a b):ae A,be B}
In particular R x R = {(x, y): x, y € R}
and RxR xR =(x,y,2):x,y,z€ R}
¢ If (a, b) = (x, y), then a = x and b = y.
@ If n(A) = p and n(B) = ¢, then n(A x B) = pq.
CAXO=0
@ In general, Ax B #B x A.

@ Relation A relation R from a set A to a set B is a subset of the cartesian
product A x B obtained by describing a relationship between the first element
x and the second element y of the ordered pairs in A x B.

¢ The image of an element x under a relation R is given by y, where (x, y) € R,

¢ The domain of R is the set of all first elements of the ordered pairs in a
relation R.

¢ The range of the relation R is the set of all second elements of the ordered
pairs in a relation R.

¢ Function A function f from a set A to a set B is a specific type of relation for
which every element x of set A has one and only one image y in set B.

We write f: A—B, where fx) = y.

¢ A is the domain and B is the codomain of f.
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# The range of the function is the set of images.

@ A real function has the set of real numbers or one of its subsets both as its
domain and as its range.

® Algebra of functions For functions f: X — R and g : X — R, we have
F+e=f)+gk),xe X
f-89 @W=f-gx,xe X
e 0 =f g0, xeX
(k) (x) =k (f(x) ), x e X, where k is a real number.

f S ()
[EJ(X) = 20 ¥ € X g =0

Historical Note

The word FUNCTION first appears in a Latin manuscript “Methodus
tangentium inversa, seu de fuctionibus’ written by Gottfried Wilhelm Leibnitz
(1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He
considered a function in terms of “mathematical job” — the “employee” being
just a curve.

On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time
deliberately assigned a specialised use of the term function in the analytical
sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers’ Cyclopaedia: “The
term function is used in algebra, for an analytical expression any way compounded
of a variable quantity, and of numbers, or constant quantities”.

4

> —
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(TRIGONOMETRIC FUNCTIONS )

**A mathematician knows how to solve a problem,
he can not solve it. - MILNE *®

3.1 Introduction

The word ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘measuring the sides of
a triangle’. The subject was originally developed to solve
geometric problems involving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.

In earlier classes, we have studied the trigonometric Arya Bhatt
ratios of acute angles as the ratio of the sides of a right (476-550)
angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, we will generalise the concept of trigonometric ratios to trigonometric functions
and study their properties.

3.2 Angles

Angle is a measure of rotation of a given ray about its initial point. The original ray is

B Velteg Initial side

Vertex Initial side

(i)Positive angle Fig 3.1 (ii) Negative angle
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called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotation is anticlockwise, the angle is said to be positive and if the direction of rotation
is clockwise, then the angle is negative (Fig 3.1).

The measure of an angle is the amount of Initial side \A
rotation performed to get the terminal side from . . -
Terminal Side B

the initial side. There are several units for
measuring angles. The definition of an angle Fig 3.2

suggests a unit, viz. one complete revolution from the position of the initial side as
indicated in Fig 3.2.

This is often convenient for large angles. For example, we can say that a rapidly
spinning wheel is making an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

th
3.2.1 Degree measure 1If arotation from the initial side to terminal side is (%j of

arevolution, the angle is said to have a measure of one degree, written as 1°. A degree is
divided into 60 minutes, and a minute is divided into 60 seconds . One sixtieth of a degree is
called a minute, written as 1, and one sixtieth of a minute is called a second, written as 1”.
Thus, 1° =60/, 1" =60

Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
shown in Fig 3.3.

(o] (o]
360 A O 270
@ S5 B< 180 v >A A
B

(0]

(o]
420 o A A
A NZ_30° > _ 420"
B
Fig 3.3 B
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3.2.2 Radian measure There is another unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unit in a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig

3.4(i) to (iv), OA is the initial side and OB is the terminal side. The figures show the

1 1
angles whose measures are 1 radian, —1 radian, 15 radian and —1 5 radian.
B‘\
1
\

(i) (1)

(iii)

@iv)
Fig 3.4 (i) to (iv)

We know that the circumference of a circle of radius 1 unit is 27. Thus, one
complete revolution of the initial side subtends an angle of 27 radian.

More generally, in a circle of radius r, an arc of length r will subtend an angle of
1 radian. It is well-known that equal arcs of a circle subtend equal angle at the centre.
Since in a circle of radius r, an arc of length r subtends an angle whose measure is 1
radian, an arc of length / will subtend an angle whose measure is L radian. Thus, if in

r
acircle of radius r, an arc of length / subtends an angle 6 radian at the centre, we have

l
O =—orl =r0.
r
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3.2.3 Relation between radian and real numbers N
Consider the unit circle with centre O. Let A be any point 1
on the circle. Consider OA as initial side of an angle.
Then the length of an arc of the circle will give the radian 11
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0
real number zero, AP represents positive real number and
AQ represents negative real numbers (Fig 3.5). If we
rope the line AP in the anticlockwise direction along the
circle, and AQ in the clockwise direction, then every real
number will correspond to a radian measure and {122

conversely. Thus, radian measures and real numbers can Fig 3.5 v, Q
be considered as one and the same.

3.2.4 Relation between degree and radian Since a circle subtends at the centre
an angle whose radian measure is 27 and its degree measure is 360°, it follows that

2rw radian = 360° or mwradian = 180°

The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

22

of w as 7, we have

o

1 radian = =57° 16" approximately.
T
Also 1°= 130 radian = 0.01746 radian approximately.

The relation between degree measures and radian measure of some common angles
are given in the following table:

Degree | 30° 45° 60° 90° 180° | 2700 | 360°
et | = | = | x| = 3n
adan ¢ 4 3 2 m 2 2
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Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measure is 6 and
whenever we write angle 3, we mean the angle whose radian measure is f3.

Note that when an angle is expressed in radians, the word ‘radian’ is frequently

. o T o . . . T
omitted. Thus, ©=180° and e 45° are written with the understanding that 7w and 2

are radian measures. Thus, we can say that

T
Radian measure = @ x Degree measure
180 .
Degree measure = —— X Radian measure
T

Example 1 Convert 40° 20" into radian measure.

Solution We know that 180° = 7 radian.

: 1 n 121 121w .
Hence 40° 20" =40 3 degree = 130 XT radian = 540 radian.
, 121n .
Therefore 40° 20" = 540 radian.

Example 2 Convert 6 radians into degree measure.

Solution We know that 7 radian = 180°.

H 6 radi 8 S 1080x7 q
= WA X = -
ence radians . egree 5, degree
7 7%x60
=343—degree =343°+ minute [as 1° = 60]
11 11
2
=343° + 38" + ﬁ minute [as 17 = 607]
=343° +38 +10.9” =343°38’ 11” approximately.
Hence 6 radians = 343° 38" 11” approximately.

Example 3 Find the radius of the circle in which a central angle of 60° intercepts an

arc of length 37.4 cm (use @ =7).
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. 60 . 1
Solution Here [ =37.4 cm and 6 = 60° = 180 radian = 3

Hence, by r= 6 , we have
37.4x3  37.4%x3x7
r= = =357 cm
T 22

Example 4 The minute hand of a watch is 1.5 cm long. How far does its tip move in
40 minutes? (Use 7 = 3.14).

Solution In 60 minutes, the minute hand of a watch completes one revolution. Therefore,

2
in 40 minutes, the minute hand turns through — of arevolution. Therefore, 0 = 3 x 360°

3
T
or ? radian. Hence, the required distance travelled is given by
4n
l=r0 =15 ><?cm=2ﬂ:cm=2><3.14cm=6.280m.

Example 5 If the arcs of the same lengths in two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Let r . and r, be the radii of the two circles. Given that

e _ 650 _ LX 65 13_7T d
T T80 T 36
T 221 )

and 0, =110°= @XUO = gradlan
Let [ be the length of each of the arc. Then [ = rle1 = r262, which gives

36 11T 3¢ XMarlen =0
Hence roir,=22:13.

| EXERCISE 3.1 |

1.  Find the radian measures corresponding to the following degree measures:
(1) 25° (ii) —47°30 (iii) 240° (iv) 520°
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2. Find the degree measures corresponding to the following radian measures

2
(Use —7).
1 S 5 _n
® 16 i - (i) 3 (iv) 5

3. A wheel makes 360 revolutions in one minute. Through how many radians does
it turn in one second?
4. Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use T = 7).

5. Inacircle of diameter 40 cm, the length of a chord is 20 cm. Find the length of
minor arc of the chord.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find the ratio of their radii.
7.  Find the angle in radian through which a pendulum swings if its length is 75 cm
and th e tip describes an arc of length
1 10cm (i) 15cm @@i) 21 cm

3.3 Trigonometric Functions

In earlier classes, we have studied trigonometric ratios for acute angles as the ratio of
sides of a right angled triangle. We will now extend the definition of trigonometric
ratios to any angle in terms of radian measure and study them as trigonometric functions.

Consider a unit circle with centre %
at origin of the coordinate axes. Let '\
P (a, b) be any point on the circle with
angle AOP = x radian, i.e., length of arc ODIB _ p 5
AP = x (Fig 3.6).
We define cos x=a and sinx = b 1 b ¥
Since AOMP is aright triangle, we have c1,0C X \, (1,0)
OM2 + MP? = OP?or a® + > = 1 ~ oleam Ja X
Thus, for every point on the unit circle,
we have
aZ. + b’=1 or cos’x + sin’*x = .1 N
Since one complete revolution
subtends an angle of 2x radian at the ;{f,
centre of the circle, ZAOB = % , Fig 3.6

2020-21



56 MATHEMATICS

3n I
ZAOC=mand ZAOD = o All angles which are integral multiples of 5 are called

quadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1, 0), (0, 1), (-1, 0) and (0, —1). Therefore, for quadrantal angles, we have

cos0°=1 sin 0° =0,
Z =0 in— =1

cos 5 = sin 5 =
cost=—1 sint =0
O
cos ;= sin 5 ="
cos 2w =1 sin2wt =0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we also observe that if x increases (or decreases) by any integral
multiple of 27, the values of sine and cosine functions do not change. Thus,

sin 2nm + x) =sinxsne Z, cos 2nt+x)=cosx-ne Z
Further, sin x=0, if x =0, + &, + 2%, + 37, ..., i.e., when x is an integral multiple of &

3 Sn

+ — ,+ —, ..1ie., cos x vanishes when x is an odd

T
d =0,if x =+ —,
and cos x 1 ) ’ )

I
multiple of 5 Thus
sin x = 0 implies x = nT, where 7 is any integer

T
cos x = 0 implies x = 2n + 1) 2 where 7 is any integer.

We now define other trigonometric functions in terms of sine and cosine functions:

1
cosec x = ——, x # nm, where n is any integer.
sin x
Tc . .
secx = ,X#(2n+ 1) =, where n is any integer.
cosx 2
sin x T _ )
tanx = ,X# (2n +1)—, where n is any integer.
cosx 2
COs X _ )
cotx = —,Xx#nT, wheren is any integer.
sin x
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We have shown that for all real x, sin’x + cos’x =1
It follows that
1 + tan’x = sec’x (why?)

1 + cot’x = cosec’x (why?)

In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°,45°,60° and 90°. The values of trigonometric functions for these angles are same
as that of trigonometric ratios studied in earlier classes. Thus, we have the following
table:

e | * | ® T | = 3
6 4 3 2 " 2 o
. 5 1] L SO X 0 1 0
Sin 9 \/5 2 a
R
coSs 1 7 \/5 ) 0 =1 0 1
Ry not not
tan 0 NE) 1 V3 defined L defined 0

The values of cosec x, sec x and cot x

Y
are the reciprocal of the values of sin x, N
cos x and tan x, respectively.
ODIB p (a, b)
3.3.1 Sign of trigonometric functions ‘\
Let P (a, b) be a point on the unit circle 1
with centre at the origin such that  (-1,0)C X | b \/(1, 0)
ZAOP = x. If ZAOQ = — x, then the ~ < o\ fA >X
coordinates of the point Q will be (a, —b) X
(Fig 3.7). Therefore | /
cos (—x) = cos x 0,1 [p Q(a-b)
and sin (—x)=-sinx
4
Since for every point P (a, b) on Y’
the unit circle, — 1 < a <1 and Fig 3.7
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- 1< b<1,wehave—1<cosx<1and-1<sinx<1 forall x. We have learnt in

T
previous classes that in the first quadrant (0 < x < B ) a and b are both positive, in the
second quadrant (5 < x <T) a is negative and b is positive, in the third quadrant

3n 3n
(T<x< 7 ) a and b are both negative and in the fourth quadrant (7 <x<2m) ais

positive and b is negative. Therefore, sin x is positive for 0 < x < 7, and negative for

T T 3n
T < x< 2m. Similarly, cos x is positive for 0 <x < 3 negative for 3 <x< > and also

3n
positive for o < x < 2x. Likewise, we can find the signs of other trigonometric

functions in different quadrants. In fact, we have the following table.

I II I1I v
sin x + - - _
coS X + - - +
tan x + = 4L _
COsec x + + - -
sec x + - - +
cot x 5 = aF —

3.3.2 Domain and range of trigonometric functions From the definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each real number x,

—1<sinx<land —1<cosx<1

Thus, domain of y = sin x and y = cos x is the set of all real numbers and range

is the interval [-1, 1],1.e., - 1 <y < 1.
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Since cosec x = sinx° the domain of y = cosec x is the set { x : x € R and

x#nn,ne Z} andrangeistheset {y:ye R,y 21 ory <-1}. Similarly, the domain

T
ofy=secxistheset {x:xe Randx# 2n + 1) E,ne Z} and range is the set

{y:y € Rjy <—1lory=1}. The domain of y = tan x is the set {x : x € R and

T
x#@2n+ 1) E’ n € Z} and range is the set of all real numbers. The domain of

y=cotxistheset {x:x € Rand x#n 7, n e Z} and the range is the set of all real
numbers.

b
We further observe that in the first quadrant, as x increases from 0 to E , sin x
. . T .
increases from O to 1, as x increases from E to T, sin x decreases from 1 to 0. In the
. . 3n . .
third quadrant, as x increases from T t07 , sin x decreases from 0 to —1and finally, in

02
207'5.

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
have the following table:

the fourth quadrant, sin x increases from —1 to O as x increases from

I quadrant II quadrant III quadrant IV quadrant

sin

increases from O to 1

decreases from 1 to 0

decreases from 0 to —1

increases from —1 to O

COos

decreases from 1 to 0

decreases from 0 to — 1

increases from —1 to 0

increases from O to 1

tan

increases from 0 to oo

increases from —ooto 0

increases from 0 to oo

increases from —ooto 0

cot

decreases from oo to 0

decreases from 0 to—oo

decreases from oo to 0

decreases from 0to —oo

secC

increases from 1 to oo

increases from —ooto—1

decreases from —1to—oo

decreases from oo to 1

cosec

decreases from oo to 1

increases from 1 to oo

increases from —ooto—1

decreases from—1to—oo

Remark In the above table, the statement tan x increases from 0 to oo (infinity) for

T T
O<x< 5 simply means that tan x increases as x increases for 0 < x < 5 and
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T
assumes arbitraily large positive values as x approaches to 5 Similarly, to say that

cosec x decreases from —1 to — oo (minus infinity) in the fourth quadrant means that

3n
cosec x decreases for x € (? , 21) and assumes arbitrarily large negative values as

x approaches to 27. The symbols oo and — oo simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin x and cos x repeats after an interval of

2n. Hence, values of cosec x and sec x will also repeat after an interval of 2. We

Y
A

LN N o\ N\ a

X’/ T ¢ ¢ T T T T T
dn N\ T AR o mN\_ T
2
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L} Y L] L}
2t/ ;
IR G
- Y
’/: 1 L ® 1 P
X'<€ — o 'L 3 X
2,-17 2 )
el B ;
Yl
y=secx y = cosec x
Fig 3.12 Fig 3.13

shall see in the next section that tan (7 + x) = tan x. Hence, values of tan x will repeat
after an interval of 7. Since cot x is reciprocal of tan x, its values will also repeat after
an interval of 7. Using this knowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

Example 6 If cosx= - é , x lies in the third quadrant, find the values of other five
5

trigonometric functions.
L . 5
Solution Since cos x = —g , we have sec x = —g
Now sin’x + cos?x = 1, i.e., sin’x = 1 — cos’x

. 9 16
or sinfx=1-— = —

25 25

Hence sinx =+ —

Since x lies in third quadrant, sin x is negative. Therefore

. 4
sinx=- _

5
which also gives

Bl

CoseC X = —
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Further, we have

sinx 4 cosx 3
tan x = = — and cotx=—; = —.
cosx 3 sinx 4
5 o ! .
Example 7 If cot x = — E’ x lies in second quadrant, find the values of other five
trigonometric functions.
. . 5 12
Solution Since cotx = — —, we have tanx =— —
12 5
N Zx=1+tan’x=1+ & = @
ow sec’x = an’x = 5 = 25
13
Hence sec x =% ?

Since x lies in second quadrant, sec x will be negative. Therefore

13
sec x =— 5
which also gives
COS X = ——
13
Further, we have
~~ o5 1
sinx = tan x cos x = (- 5 ) x (= 13) =13
q 1 13
an cosec x == .
sinx 12
. o 3lIn
Example 8 Find the value of sin T .

Solution We know that values of sin x repeats after an interval of 2x. Therefore

ol

1L .
sin 3 = sin ( 71:+3)—s1n3—

2020-21



TRIGONOMETRIC FUNCTIONS 63

Example 9 Find the value of cos (=1710°).

Solution We know that values of cos x repeats after an interval of 27 or 360°.
Therefore, cos (—1710°) =cos (=1710° + 5 x360°)
=cos (-1710° + 1800°) = cos 90° = 0.

|EXERCISE 3.2 |

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. cosx=-—_, xlies in third quadrant.

2
3

2. sinx= g, x lies in second quadrant.

3
3. cotx= AR lies in third quadrant.

13
4. secx= ?, x lies in fourth quadrant.
5. tanx=-— E’ x lies in second quadrant.
Find the values of the trigonometric functions in Exercises 6 to 10.
6. sin765° 7. cosec (— 1410°)
o g 10 o n T
. tan 3 . sin (— 3

15n
10. cot (- T)

3.4 Trigonometric Functions of Sum and Difference of Two Angles

In this Section, we shall derive expressions for trigonometric functions of the sum and
difference of two numbers (angles) and related expressions. The basic results in this
connection are called trigonometric identities. We have seen that

1. sin (-x) =-sinx
2. ¢os (—x) =cos x

We shall now prove some more results:
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3. cos(x+y)=cosxcosy—sinxsiny

Consider the unit circle with centre at the origin. Letx be the angle P,OP and y be
the angle P OP,. Then (x + y) is the angle P,OP,. Also let (- y) be the angle P,OP..
Therefore, P, P,, P, and P, will have the coordinates P (cos x, sin x),
P, [cos (x + ), sin (x + y)], P, [cos (- y), sin (- y)] and P, (1, 0) (Fig 3.14).

Y
N

P, (cos x, sin x)

— <

e
X'<€

P, [cos(x + y), sin(x + y)]

P, [cos(-y), sin(-y)] ~——]

Fig 3.14

Consider the triangles P, OP, and P,OP,. They are congruent (Why?). Therefore,
P P, and P,P, are equal. By using distance formula, we get

P P.> =[cos x—cos (- y)]* + [sin x — sin(—y]?
= (cos x — cos y)? + (sin x + sin y)?
=co0s? x + cos> y — 2 cos x cos y + sin’x + sin*y + 2sin x sin y
=2 -2 (cos x cos y — sin x sin y) (Why?)
Also, PP? =[1-cos(x+y)]*+[0—sin(x+y)]
=1-2cos (x +y) +cos? (x +y) +sin? (x + y)

=2-2cos(x+y)
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Since P P, =PP, we have P1P32 = P2P42.
Therefore, 2 =2 (cos x cos y —sin x sin y) =2 — 2 cos (x + y).
Hence cos (x+y) =cos x cos y —sin x sin y

4. cos (x —y)=cosx cosy + sin x sin y
Replacing y by — y in identity 3, we get
cos (x + (—y)) = cos x cos (—y) — sin x sin (- y)
or cos(x—y)=cosxcosy+sinxsiny

T
5. cos (E—x) = sin x

I
If we replace x by 5 and y by x in Identity (4), we get

(n ) T T .
COS(-—X)=COS — COSX++SIn — SInx=SsIn x.
2 2 2

.oom
6. sm(E—x):cosx

Using the Identity 5, we have

_om r_(n_,
sm(E X) =cos 2 |2 = COS X.

7. sin (x +y) =sinx cosy + cos x sin y
We know that

sin (x + y) = cos [g—(x"‘)’)j = cos [(g—x)—YJ

n . Tc .
= Cos (E_x) cos y + sin (E_x) sin y

=sin x cos y + cos x sin y
8. sin(x —y)=sinx cosy - cos x siny
If we replace y by —y, in the Identity 7, we get the result.

9. By taking suitable values of x and y in the identities 3, 4, 7 and 8, we get the

following results:

T . R
cos (E+x) = -sin x sin (E+x) = coS X
cos (M —x) =—cos x sin (T —x) =sin x
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cos (T +x) =—cosx sin (T +x) =-sinx

cos (2T — x) = cos x sin (2% — x) = - sin x
Similar results for tan x, cot x, sec x and cosec x can be obtained from the results of sin
x and cos x.

T
10. If none of the angles x, y and (x + y) is an odd multiple of X then

tan x +tan y

tan (x +y) = 1-tanx tany

T
Since none of the x, y and (x + y) is an odd multiple of 5, it follows that cos x,
cos y and cos (x + y) are non-zero. Now

sin(x+y) sinxcosy+cosxsiny

tan (x +y) = = . -
cos(x+y) cosxcosy—sinxsiny

Dividing numerator and denominator by cos x cos y, we have

sin xXCos y 4 08 xsin y
COSXCOSYy COSXCOS Y

tan (x +y) = : 3
COSXCOs y  sinxsiny
COSXCOSY COSXCOS Yy
tanx+tany
= 1—tan xtany
tan x —tan y
11. tan (x —-y)=

1+tan x tan y
If we replace y by — y in Identity 10, we get
tan (x —y) =tan [x + (— y)]

tan x+tan (—y) tan x—tan y

I-tanxtan(—y) l+tanxtany
12. If none of the angles x, y and (x + y) is a multiple of &, then

cotxcoty—-1

cot (x +y) = cot y+cotx
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Since, none of the x, y and (x + y) is multiple of 7, we find that sin x sin y and
sin (x + y) are non-zero. Now,

cos(x+y) cosxcosy—sinxsiny
cot (x+y)=— = .
sin (x+y) sinxcos y+cos xsiny

Dividing numerator and denominator by sin x sin y, we have

cotxcoty—1
cot(x+y)=—""—
coty+cotx

cotxcoty+1
13. cot (x —y)= CORreoyr if none of angles x, y and x—y is a multiple of 7
coty —cotx

If we replace y by —y in identity 12, we get the result

) ) 1-tan® x
14. cos 2x =cos’x —sin*x=2cos’x—-1=1-2sin*x= ———>—
1+tan” x

‘We know that

cos (x + y) =cos x cosy—sin x sin y
Replacing y by x, we get
cos 2x = cos’x — sin®x

=cos’x — (1 —cos?x) =2 cos’x — 1
Again, cos 2x = cos? x — sin*x

=1-sin’x—sin>x=1-2 sin’x.
cos® x—sin®x
We have cos2x=cos’x—sin?x = — 5 5
cos” x+sin “ x

Dividing numerator and denominator by cos? x, we get

1—tan® x T . .
cos2x =", X#nm+—_ where nis an integer
I+tan” x 2
2tan x

T . .
15. sin 2x = 2 sinx cos x = X#nm +5, where n is an integer

1+tan® x
We have

sin (x + y) = sin x cos y + cos x sin y
Replacing y by x, we get sin 2x = 2 sin x cos x.

2sin xCcos x

Again sin 2x = . 5
g cos’ x+sin’ x
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Dividing each term by cos? x, we get
2tan x

sin 2x =
* 1+tan” x

2tan x

T
16. tan2x = if 2x#nmn +5, where n is an integer

1-tan’x
‘We know that

tanx +tany
tan (x +y) = 1—tanx tany
. 2 tan x
Replacing y by x , we get tan2x=1t—2
—tan” x

17. sin 3x =3 sin x — 4 sin’x
We have,
sin 3x = sin (2x + x)
=sin 2x cos x + cos 2x sin x
=2 sin x cos x cos x + (1 — 2sin?x) sin x
=2sinx (1 —sin?x) + sin x — 2 sin’x
=2sinx—2 sin*x + sin x — 2 sin®*x
=3sinx—4sin’x
18. cos 3x=4 cos’x — 3 cos x
We have,
cos 3x = cos (2x +x)
=co0s 2x cos x — sin 2x sin x
= (2cos*x — 1) cos x — 2sin x cos x sin x
= (2cos*x — 1) cos x — 2cos x (1 — cos?x)
=2c0s’x — cos x — 2cos x + 2 cos’x
=4cos*x — 3cos x.

3tan x —tan® x T .
19. tan3x =m if 3x;tnn+5, where n is an integer

We have tan 3x =tan (2x + x)
2tan x
tan 2x +tan x 1—tan? x

1-tan 2x tan x I—M
1—tan® x

+ tan x
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_ 2tan x + tan x — tan’x _ 3tan x — tan>x

1—tan’x — 2tan’x 1—3tan’x

X+ X -
yCOS 4

20. (i) cosx + cosy = 2cos

(ii) cos x — cos y = — 2sin 1Y in XY
2 2
(iii) sin x + sin y = 2sin Y cos%
(iv) sin x —siny = 2cos xry sin%
We know that
cos (x+y)=cosxcosy—sinxsiny .. (1)
and €os (x —y) = C0S x COs y + Sin x sin y .. (2)
Adding and subtracting (1) and (2), we get
cos (x +y) +cos(x—y)= 2cosxcosy ... 3)
and cos (x+y)—cos (x—y)=-—2sinxsiny . (4)
Further  sin (x + y) = sin x cos y + cos x sin y ... (5)
and sin (x — y) = sin x oS y — €OS X Sin y ... (6)
Adding and subtracting (5) and (6), we get
sin (x + y) + sin (x —y) = 2 sin x cos y .. (1)
sin (x + y) — sin (x — y) = 2cos x sin y ... (8)

Let x + y = 0 and x — y = ¢. Therefore

o2 (2]
2 2

Substituting the values of x and y in (3), (4), (7) and (8), we get

cos 0 + cos 0 =2 cos [GL;DJCOS [6_;(1))

cos O —cos ¢ =—2 sin [9+¢jsin[9—¢j
2 2

sin © +sin ¢ =2 sin [942-¢jcos [G—T(l)j
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sin  — sin ¢ =2 cos [e—kTq)jSin [9_;(1))

Since 0 and ¢ can take any real values, we can replace 6 by x and ¢ by y.
Thus, we get

Xy Xty X~y
; COS X —Ccos y =— 2 sin

COs

COS X + cos y =2 cos

Xty  X—y . . x+y . x=y
cos ; sinx —siny =2 cos sin

sin x + sin y = 2 sin

Remark As a part of identities given in 20, we can prove the following results:

21. (i) 2cosxcosy=cos (x +y)+ cos (x —y)
(ii) —2sinx siny =cos (x +y) — cos (x —y)
(iii) 2 sin x cos y = sin (x + y) + sin (x — y)
(iv) 2 cos x siny =sin (x + y) — sin (x - y).

Example 10 Prove that
3sin£sec£—4sin5—ncot5=1
6 3 6 4
Solution We have

L.H.S 3sinEseCE—4sinEcotE
T 6 3 6 4

3x = x2—dsin | T |x1=3—4sin =
_><2><—s1n 6><——sm6

1
=3-4x - =1=RHS.
2
Example 11 Find the value of sin 15°.

Solution We have
sin 15° = sin (45° - 30°)
= sin 45° cos 30° — cos 45° sin 30°

IR U NE !
NN N
131

Example 12 Find the value of tan EE

2020-21




TRIGONOMETRIC FUNCTIONS 71

Solution We have
131 . T otan| E-T
tan D = tan 12 = tan 12 4 6

T T
tan— —tan — 1-
4 6

& =) =
|
W
+
*

= p T =
1+tan—tan— 1+
4 6

Example 13 Prove that

sin(x+y) tanx+tany

sin(x—y) tanx—tany "
Solution We have

_sin(x+y) sinxcos y+cosxsiny

L.H.S. _Sin (x—y) sinxcosy—cosxsiny

Dividing the numerator and denominator by cos x cos y, we get

sin(x+y) tanx+tany

sin(x—y) tanx—tany °
Example 14 Show that
tan 3 x tan 2 x tan x = tan 3x —tan 2 x — tan x
Solution We know that 3x = 2x + x

Therefore, tan 3x =tan (2x + x)

tan 2 x+tan x
or tan3x=————

1—tan 2 xtan x
or tan 3x — tan 3x tan 2x tan x = tan 2x + tan x
or tan 3x — tan 2x — tan x = tan 3x tan 2x tan x
or tan 3x tan 2x tan x = tan 3x — tan 2x — tan x.

Example 15 Prove that
cos [§+ X J+cos [g—x j=\/§ cosx

Solution Using the Identity 20(i), we have
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T 1
=2COSZ cosx:2x$ cos x = /7 cos x = R.H.S.

cos 7x+cosSx _

Example 16 Prove that cot x

sin 7x —sin S5x
Solution Using the Identities 20 (i) and 20 (iv), we get

Tx+5x Tx—5x
cos

2cos
2 CcoS X

2
L.H.S. = = N =cotx = R.H.S.
2c08 Tx+5x sin Tx—5x sin x

2

sin5x—2sin3x+sinx _

Example 17 Prove that = tan x

cos5x—cosx
Solution We have

sinSx—2sin3x+sinx _sinSx+sinx—2sin3x

LHS. =
cos5x—cosx cos5x—cosx
~ 2sin3x cos2x—2sin3x B sin3x (cos2x—1)
—2sin3xsin 2x sin 3xsin 2x

_1—cos2x _ 2sin® x

: = = tanx = R.H.S.
sin 2x 2sin xcos x
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| EXERCISE 3.3 |
Prove that:
1. si » T , B t ) R__ 2 2 2-2E 2 _TCCOSZE—E
. sin 6+cos 3—an 4 > . sm6+cosec 5 )
.23 T
3. cotzE+coseCS—n+3tanZE=6 4. 2s1n2—n+200s25+2se02—=10
6 6 6 4 4 3
5. Find the value of:
(i) sin 75° (ii) tan 15°
Prove the following:
cos E—x oS r_ —sin E—x Sin e =sin(x+y)
6. 1 1 y 1 7, y y
tan E+x 2
4 (1+tanx] cos (m+x) cos(—x) 2
7. = 8. = cot'x
T 1—tan x . T
tan | ——x sin (T—x) cos | —+x
4 2
3n 3n
9. cos 7+x cos (2m+x) | cot 7—x +cot 2n+x)|=1
10. sin(n+ xsin (n+ 2)x + cos (n+ 1)x cos (n + 2)x = cos x
11. cos E+x —Cos E—x = —/2sin x
4 4
12. sin® 6x — sin®4x = sin 2x sin 10x 13. cos? 2x — cos? 6x = sin 4x sin 8x
14. sin2 x + 2 sin 4x + sin 6x = 4 cos? x sin 4x
15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x — sin 3x)
cos9x —cosSx sin2x sinSx + sin 3x
16. — - =- 17. ————— =tan4x
sin17x — sin3x cos10x cosSx + cos3x
sinx —siny xX—y sin x + sin 3x
18, = =tan 19, ——————— =tan2x
COSX+Cosy 2 cosx + cos3x
sin x — sin 3x i cos4x + cos3x+cos2x
20, —5 5 = 2sinx 21. — X - = cot3x
sin” x —cos” x sin4x + sin3x + sin2x
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22.

23.

25.

MATHEMATICS

cot x cot 2x — cot 2x cot 3x —cot 3x cot x = 1

4tan x (1—tan’x)

> - 24. cos 4x =1 — 8sin® x cos® x
1-6tan“x +tan x

tan 4x =

cos 6x = 32 cos® x — 48cos* x + 18 cos? x — 1

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
equations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 27 and the
values of tan x repeat after an interval of 7. The solutions of a trigonometric equation
for which 0 < x < 2w are called principal solutions. The expression involving integer
‘n’ which gives all solutions of a trigonometric equation is called the general solution.
We shall use ‘Z’ to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

NE

Example 18 Find the principal solutions of the equation sinx = —.

b 3
3 2

. 3 . 2T T .
Solution We know that, sm% = % and s ? = sin [n _Ej =sin—=——,

Therefore, principal solutions are x =§ and —.

T 2
3

1

Example 19 Find the principal solutions of the equation tanx = — ﬁ

1
Solution We know that, tang = L Thus, tan [n —%J= - tan% =——

NG g

d tan 21t—E ——tanE——L
an 6 6 NG
Thus tans—n:tan&:—i.
6 6 3
o . Sn 1lx
Therefore, principal solutions are " and o

We will now find the general solutions of trigonometric equations. We have already
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seen that:
sinx =0 gives x= nmn, where n € Z

s
cosx =0 gives x=(2n + 1)5 , where n € Z.

We shall now prove the following results:
Theorem 1 For any real numbers x and y,

sin x = sin y implies x = nmt + (-1)" y, where n € Z
Proof  If sin x = siny, then

x+ xX—
4 sin 4 =0
2

sinx—siny=0 or 2cos

L X+y L Xy
which gives cos =0 or sin =0
2 2
x+y Vi )
Therefore T =2n+ 1)5 or ) =nx, where n € Z
ie. x=02n+1)w—y orx=2nw+y, where neZ
Hence x=Q2n+ D+ (D**'yorx=2nn+(-1)"y, where n € Z.

Combining these two results, we get
x=nw+ (=1)"y, where n € Z.

Theorem 2 For any real numbers x and y, cos x = cos y, implies x= 2nmw * y,
where n € Z

Proof If cos x = cos y, then

Xty | x-y

cosx—cosy=0 1ie, -2sin sin , = 0

x+ X =

Thus sin Y =0 or sin Y =0
2 2
X—

Therefore =nm or =nn, where n € Z
ie. x=2nm—7y orx=2nw+y, where n € Z
Hence x=2nnty wherene Z

s
Theorem 3 Prove that if x and y are not odd mulitple of 3 then

tan x = tan y implies x =nm + y, where n € Z
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Proof If tanx=tany, then tanx—tany=0

Sinx cosy—Ccosx siny
or =

COSX COSYy
which gives sin(x—y)=0 (Why?)
Therefore X—y=nm,ie,x=nn+y, wheren € Z
: . . V3

Example 20 Find the solution of sinx =— 7

3 LT L . A4mn
Solution We have sinx =— 7 = —SIn— =sIn n+§ =sin ?

. . 4n ) )

Hence sin x = SIII? , which gives

, 4
x=nn+(-1) ?, where n € Z.

4n oy, 3
3 is one such value of x for which sin x = Y One may take any

3
other value of x for which sinx = — 7 The solutions obtained will be the same

although these may apparently look different.

Example 21 Solve cosx = —.

D= N

b
Solution We have, cOs x = — = COSE

T
Therefore X =2nn ig , where n € Z.

Example 22 Solve tan 2x = — cot[x +§j

Solution We have, tan 2x=—cot[x+£} = tan [g+x+§J
3
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5w
or tan2x = tan| x +?
5w
Therefore 2x=nn+x+ I where neZ
5w
or x:mH_F’ where ne Z.

Example 23 Solve sin 2x — sin 4x + sin 6x = 0.

Solution The equation can be written as
sin6x +sin2x —sin4x =0

or 2sin4xcos2x—sindx =0
ie. sin4dx(2cos2x—1) =0

) 1
Therefore sindx=0 or cos2x= v

) T
ie. sindx =0 or cos2x= COSE

T
Hence 4x=nm or 2x=12nm ig , where neZ
nm T

ie. x=7 or x =mtig, where ne Z.

Example 24 Solve 2 cos>x + 3 sinx =0
Solution The equation can be written as

2(1—sin2 x)+38inx =0

or 2sin” x—3sinx—2 =0
or (2sinx +1) (sinx—2) =0
. 1 .
Hence sin x = —5 or sinx=2
But sin x = 2 is not possible (Why?)
Therefi i L sin n
erefore sin x = )= 6
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Hence, the solution is given by

T
x=nn+(—1)"— where n e Z.

6

| EXERCISE 3.4
Find the principal and general solutions of the following equations:
1. tanx:ﬁ 2. secx=2
3. Cotx:_ﬁ 4. cosecx=-2
Find the general solution for each of the following equations:
5. cos4dx=cos2x 6. cos3x+cosx—cos2x=0
7.  sin2x+cosx=0 8. sec? 2x = - tan 2x

9. sinx+sin3x+sin5x=0

Miscellaneous Examples

12
Example 25 If sin x = g, cosy= —1—3, where x and y both lie in second quadrant,

find the value of sin (x + y).

Solution We know that

sin (x + y) = sin x cos y + cos x sin y .. (1)
. 9 16
Now cos? x=1-sinfx=1-—="—
25 25
4

Therefore cos x = ig.

Since x lies in second quadrant, cos x is negative.

4
Hence cos x=——

5
N 7 9 _1 2 _1 &_g
ow sin'y =1 — cos’y = ~ 169~ 169
. . 5
1.e. smy—_B.

5
Since y lies in second quadrant, hence sin y is positive. Therefore, sin y = 1—3 Substituting

the values of sin x, sin y, cos x and cos y in (1), we get
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: 3 { 12) (4)5 36 20 56
sin(x+y) = —X ——J+ ——Jx— = ===
5 5) 13 65 65 65

Example 26  Prove that
cos 2x cosf—cos 3x cos% =sin S5x sin 2 .
2 2 2
Solution  We have

1 X 9x
— — | 2cos 2x cos——2c0os — cos 3x
s - [rasareo- o o]

=l cosS 2x+£ +cos 2x—ﬁ —COoS %+3x —COoS 9—x—3x
2 2 2 2 2

1l 5x 3x 15x 3x| 1] 5x 15x |
= —|_COS— +COS—™ —COS—™— —COS— | = _|_COS—— COS_J
2 2 2 2 2172 2 2

5x  15x 5x 15x) ]
1 ER, PR
—| —2sin 2 2 sin 2 2
=2 2 2

. . 5x ) . . 5x
= —sin5x sin ——Jz sin5x sin— = R.H.S.
2 2
b
Example 27 Find the value of tan 3

T T
Solution Let x = Py Then 2x = e

2tan x
Now tan2x = ————
1—tan” x

2tanE

or tan— = Sn
1—tan’=

8

L ki3 Then 1 2y
et y =tan g enl = l—yz

2020-21
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or y+2y—-1=0

—2 1242
Therefore y= T\/_ = _1+2

T I
Since 3 lies in the first quadrant, y = tan 3 is positve. Hence

tangzﬁ—l_

3 3t X X X
Example 28 If tan x = Z, n<x< 7 , find the value of smz, cosz and tanz.

3n
Solution Since T<x< — > C0sx is negative.

3

50 272 4

X X
Therefore, sin 5 is positive and cos 5 1S negative.

9 25
Now sec’x=1+tan’x= 1+—=—
16 16
16 4
Therefore cos’x=— orcosx=—— (Why?)
25 5
L, X 4 9
Now 2sin" —=1- cosx =1+—=—.
2 5 5
Theref e >
erefore sin >=10
in— i Why?
or sm2 = \/ﬁ (Why?)
X | 4 1
; 2 2 =]1-—=-
Again 2cos )= 1+ cos x 5 5
X 1
Therefore cos? — = —
2 10
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x 1
= = ———= (Why?
. €08y =" o WY

Hence tan — = = X
X /
2 COS— 10 1

X
N EMJ 3

Example 29  Prove that cos?x + cos? [x + g j+ cos> [x _gj =

N | W

Solution We have

1+cos[2x+2n} l+cos[2x—2n}
LHS. = 1+0052x+ 3 " 3 ).

2 2 2

_ 1 3+ cos 2x+ cos [2x+2?n)+cos (2x—2?nﬂ

2
3+ cos 2x+ 2cos 2x cos ?n}

N | —

3+ cos 2x+ 2cos 2x cos [n—gﬂ

= N

34 cos 2x—2cos 2x cos %}

[3+cos 2x —cos 2x] = % =R.HS.

Miscellaneous Exercise on Chapter 3
Prove that:

T On 371 5w
1. 2cos— cos—+cos—+cos—=0
13 13 13 13

2. (sin 3x + sin x) sin x + (cos 3x —cos x) cos x =0
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3. (cos x + cos y)? + (sin x — sin y)*> = 4 cos?

-y
2
5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

. . . X
4. (cosx—cos y)? + (sinx— sin y)* = 4 sin’

(sin 7x + sin 5x) + (sin 9x + sin 3x)
(cos 7x + cos 5x) + (cos 9x + cos 3x)

= tan 6x

X 3x

7. sin 3x + sin 2x — sin x = 4sin x coOS E coS ?

X X
Find sin —, cos — and tan — in each of the following :

4
8. tanx = —g, x in quadrant II 9. cosx= —g, x in quadrant ITI

10. sinx = 1 x in quadrant II

Summary

¢ Ifin a circle of radius r, an arc of length / subtends an angle of 0 radians, then
=19

# Radian measure = X Degree measure

180

180
@ Degree measure = ——X Radian measure
T

@ cos®x +sin’x = 1

¢ 1 + tan’x = sec’x

& 1 + cot’x = cosec’x
@ cos (2nT + x) = cos x
¢ sin (2n7 + x) = sin x
@ sin (—x) =—sinx

@ cos (—x)=cos x
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@ cos (x +y) =cos x cos y—sin x sin y
®cos (x—y)=cosxcosy+sinxsiny

b
& cos (E—X) = sin x

s
¢ sin (E—x) =COS X

@ sin (x + y) = sin x cos y + cos x sin y

@ sin (x — y) = sin x coS y — COSs X sin y

@ cos [%"‘xj:—sinx sin [%"'XJ =CoS X
cos (T —Xx) =—cos x sin (T — x) = sin x
cos (T +x) =—cosx sin (T + x) = — sin x
cos (2T —x) = cos x sin (2T —x) =—sinx

b
¢ If none of the angles x, y and (x + y) is an odd multiple of E , then

tanx+tany
tan(x+y)=7T—"
1—tan x tany

tanx—tany

¢ tan (x - y) = 1+ tan xtan y

¢ If none of the angles x, y and (x + y) is a multiple of 7, then

cot xcot y—1

Bt (54 1) = coty+cotx

cotxcoty+1
# cot (x —y) = coty — cot x

1—tan’x

@®cos 2x =cos’x—sin*x=2cos?x—1=1-2sin’x =7 5
1+ tan“x
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2 tan x

@ sin 2x =2 sinX cos x = 5
1+tan“x

2tanx

tan 2x = T 5
* 1—tan’x

@ sin 3x = 3sinx —4sin’x
@ cos 3x = 4cos’x — 3cosXx

3tan x—tan’ x

{tam S = 1-3tan’ x

. 5 JEar
¢ (1) cosx+cosy=2cos ) )

(il) cos x —cos y =— 2sin

il . . Xty
(i) sinx+ sin y =2 sin

xX+y . XxX—
y S1n —y

(iv) sin x —sin y = 2cos
& (1) 2cosxcosy=cos (x+y)+cos(x—y)

(i) —2sin x siny = cos (x + y) — cos (x —y)

(iii) 2sin x cos y = sin (x + y) + sin (x — y)

(iv) 2 cos x siny =sin (x + y) — sin (x — y).

¢ sin x =0 gives x = nw, where n € Z.
T
®cosx=0givesx=2n+ 1) E,wherene Z.

¢ sin x =sin y implies x =nw + (— 1)* y, where n € Z.
@ cos x =cos y, implies x = 2nw = y, where n € Z.

¢ tan x =tan y implies x = n7 + y, where n € Z.
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Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara I (600) and
Bhaskara II (1114) got important results. All this knowledge first went from
India to middle-east and from there to Europe. The Greeks had also started the
study of trigonometry but their approach was so clumsy that when the Indian
approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents the main
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara I (about 600) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
(period) contains a proof for the expansion of sin (A + B). Exact expression for
sines or cosines of 18°, 36°, 54° 72°, etc., are given by
Bhaskara 1II.

The symbols sin™! x, cos™ x, etc., for arc sin x, arc cos x, etc., were
suggested by the astronomer Sir John E.W. Hersehel (1813) The names of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing the ratios:

H
— =— =tan (sun’s altitude)
S (s

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

4

@ ——

o,
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Chapter

11076CH04

PRINCIPLE OF
MATHEMATICAL INDUCTION

**Analysis and natural philosophy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for his theorem of the binomial and the principle of
universal gravity. - LAPLACE %

4.1 Introduction

One key basis for mathematical thinking is deductive rea-
soning. An informal, and example of deductive reasoning,
borrowed from the study of logic, is an argument expressed
in three statements:

(a) Socrates is a man.

(b)  All men are mortal, therefore,

(¢) Socrates is mortal.

If statements (a) and (b) are true, then the truth of (c) is
established. To make this simple mathematical example,
we could write:

(1) Eightis divisible by two.

(i) Anynumber divisible by two is an even number,

therefore,

(i) FEight is an even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidences till we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing data is the norm. Thus, in simple language,
we can say the word induction means the generalisation from particular cases or facts.

G. Peano
(1858-1932)
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In algebra or in other discipline of mathematics, there are certain results or state-
ments that are formulated in terms of n, where n is a positive integer. To prove such
statements the well-suited principle that is used—based on the specific technique, is
known as the principle of mathematical induction.

4.2 Motivation

In mathematics, we use a form of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed as shown in Fig 4.1.

Fig4.1

When the first tile is pushed in the indicated direction, all the tiles will fall. To be
absolutely sure that all the tiles will fall, it is sufficient to know that

(a) The firsttile falls, and

(b) In the event that any tile falls its successor necessarily falls.

This is the underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N is the smallest subset of R with the following property:

A set S is said to be an inductive setif 1€ Sand x+ 1 € S whenever x € S. Since
N is the smallest subset of R which is an inductive set, it follows that any subset of R
that is an inductive set must contain N.

Illustration

Suppose we wish to find the formula for the sum of positive integers 1, 2, 3....,n, that is,
a formula which will give the value of 1 + 2 + 3 when n = 3, the value 1 + 2 + 3 + 4,
when n =4 and so on and suppose that in some manner we are led to believe that the

nn+1) .

formulal +2+3+...+n = is the correct one.

How can this formula actually be proved? We can, of course, verify the statement
for as many positive integral values of n as we like, but this process will not prove the
formula for all values of n. What is needed is some kind of chain reaction which will
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have the effect that once the formula is proved for a particular positive integer the
formula will automatically follow for the next positive integer and the next indefinitely.
Such a reaction may be considered as produced by the method of mathematical induction.

4.3 The Principle of Mathematical Induction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement is true for n = 1, i.e., P(1) is true, and

(it) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, i.e., truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is simply a statement of fact. There may be situations when a
statement is true for all n > 4. In this case, step 1 will start from n = 4 and we shall
verify the result for n =4, i.e., P(4).

Property (ii) is a conditional property. It does not assert that the given statement
is true for n = k, but only that if it is true for n = k, then it is also true for n = k +1. So,
to prove that the property holds, only prove that conditional proposition:

If the statement is true for n = k, then it is also true forn =k + 1.

This is sometimes referred to as the inductive step. The assumption that the given
statement is true for n = k in this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, a formula will be discovered that appears

to fit a pattern like
1=1*=1
4=22=1+3
9=32=1+3+5
16=4>=14+3+5+7,etc.

It is worth to be noted that the sum of the first two odd natural numbers is the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

1+3+5+7+..+Q2n-1)=n?,1i.e,
the sum of the first n odd natural numbers is the square of n.

Let us write

Pn): 1+3+5+7+...+2n—-1)=n%

We wish to prove that P(n) is true for all n.

The first step in a proof that uses mathematical induction is to prove that
P (1) is true. This step is called the basic step. Obviously
1=1%1ie., P(1)is true.
The next step is called the inductive step. Here, we suppose that P (k) is true for some
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positive integer k and we need to prove that P (k + 1) is true. Since P (k) is true, we
have

1+3+5+7+...+R2k-1)=Fk .. (D

Consider
143+5+7+...+QRk—1)+ {2(k+1)-1} .. (2)
=+ Q2k+1)=(k+1)7 [Using (1)]

Therefore, P (k + 1) is true and the inductive proof is now completed.
Hence P(n) is true for all natural numbers n.

Example 1 For all n > 1, prove that

nn+1)2n+1)
6 .

Solution Let the given statement be P(n), i.e.,

n(n+1)(2n+1)
6

1A+DE2x1+1D)  1x2x3
6 6
Assume that P(k) is true for some positive integer &, i.e.,

k(k+1)(2k +1)
12+ 22+ 324+ 42+, .+ k2 s~ of @ .. (D
We shall now prove that P(k + 1) is also true. Now, we have

(12 422 +32 +4%2 +.. .+ )+ (k+1)?
k(k+1)(2k+1)

= 7+(k +1)° [Using (1)]

12+ 224+ 324+ 424+ .+1n* =

P(n): 1’+2*+32+4*+..+n* =

Forn=1, P(1): 1= =1 which is true.

k(k+1) 2k +D)+6(k +1)*
6

(k +1)(2k* +7k+6)
6

(k+1D)(k+1+D{2(k+1)+1}

6
Thus P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true
for all natural numbers n.
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Example 2 Prove that 2" > n for all positive integers n.

Solution Let P(n): 2" > n
When n =1, 2! >1. Hence P(1) is true.
Assume that P(k) is true for any positive integer k, i.e.,
2k >k (D)
We shall now prove that P(k +1) is true whenever P(k) is true.

Multiplying both sides of (1) by 2, we get
2.2F > 2k
e, 21 >2k=k+k>k+1

Therefore, P(k + 1) is true when P(k) is true. Hence, by principle of mathematical
induction, P(n) is true for every positive integer .

Example 3 For all n > 1, prove that
1 1 1 1 n

—+—+— ..+ L
1.2 23 34 n(n+1) n+1-

Solution We can write

1 N 1 N 1 L\ I n
PO0: 12723734 " an+l) n+l
1 1 1 L. .
We note that P(1): —=—=——, which is true. Thus, P(n) is true forn = 1.
1.2 2 1+1
Assume that P(k) is true for some natural number k,
N SN S IR ' U SN2
1€ 12723 34 7 k(k+1l) k+1 - (M
We need to prove that P(k + 1) is true whenever P(k) is true. We have
1 1 1 1 1
—t—+—F..+

1.2 23 34 7 k(k+1)+(k+1)(k+2)

111 1 1
- | —F—+—+.+ +
[1.2 23 34 k(k+1)} (k+1)(k+2)

ko, 1
T k+1 (k+1)(k+2)

[Using (1)]
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k241 (K +2k+1) (k+1) k+1  k+1

Tk+D(k+2) T GHDK+2) T (k1) (k+2)  k+2 (k+1)+1

Thus P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 4 For every positive integer n, prove that 7" — 3" is divisible by 4.

Solution We can write
P(n): 7" —3"is divisible by 4.

We note that

P(1): 7' — 3! = 4 which is divisible by 4. Thus P(n) is true for n = 1

Let P(k) be true for some natural number &,

i.e., P(k) : 7 — 3% is divisible by 4.

We can write 7% — 3* = 4d, where d € N.

Now, we wish to prove that P(k + 1) is true whenever P(k) is true.

NOW 7(k+1)_3(k+l) =7(k +l)_7'3k+7'3k_3(k+l)
=7(7T" - 3% + (7 - 3)3* =7(4d) + (7 - 3)3*
=74d) +4.3% = 4(7d + 3"

From the last line, we see that 7% 1 — 3* +1 ig divisible by 4. Thus, P(k + 1) is true

when P(k) is true. Therefore, by principle of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (1 + x)" = (1 + nx), for all natural number n, where x > — 1.

Solution Let P(n) be the given statement,
ie., Pm): (1 +x)" > (1 + nx), for x> - 1.
We note that P(n) is true when n = 1, since ( 14+x) > (1 + x) for x > -1

Assume that

P(k): (1 + x)* 2 (1 + kx), x > — 1 is true. .. (D
We want to prove that P(k + 1) is true for x > —1 whenever P(k) is true. .. 2)
Consider the identity

1I+x)*'=0+x)}(1+x)
Giventhat x>-1, so (14+x) > 0.

Therefore , by using (1 + x)* > (1 + kx), we have
1+x) > + kx)(1 + x)
i.e. (I +x)*' > (1 +x+ kx + k). .. (3)
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Here & is a natural number and x> > 0 so that kx> > 0. Therefore
(1 +x+kx+ kx> (1 +x + kx),

and so we obtain
1+ 20 +x+kx)
ie. (I+x)*' > [1+{+kx]

Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 6 Prove that
2.7"+3.5" =5 is divisible by 24, for alln € N.

Solution Let the statement P(n) be defined as
P(n) : 2.7+ 3.5"—5 is divisible by 24.
We note that P(n) is true for n = 1, since 2.7 + 3.5 — 5 = 24, which is divisible by 24.
Assume that P(k) is true
ie. 27+ 3.5-5=24qg, whenge N .. (D
Now, we wish to prove that P(k + 1) is true whenever P(k) is true.
We have
27+ 35 -5 =27 . 7" +3.5¢.5' -5
=7[27+35F-5-35+5]+3.5.5-5
=7 [24g - 3.5+ 5] + 15.5* -5
=7x%x24g-21.5"+35+ 155 -5
=7 %x24qg - 6.5+ 30
=7x%x24g-6(5-5)
=7 x24q -6 (4p) [(5%-5) is a multiple of 4 (why?)]

=7 x24q - 24p
=24 (7q - p)
=24 x r; r=Tq - p, is some natural number. .. 2)

The expression on the R.H.S. of (1) is divisible by 24. Thus P(k + 1) is true whenever
P(k) is true.

Hence, by principle of mathematical induction, P(n) is true for all n € N.
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Example 7 Prove that
i
PP+22+ ... +n* > ?,ne N
Solution Let P(n) be the given statement.

. 713
ie,P(m): 12+2%+ ... +n? >?, ne N

3
We note that P(n) is true for n = 1 since > > ?

Assume that P(k) is true

k3
ie. Pk): 17+ 22+ ...+ k& > ? ..(1)

We shall now prove that P(k + 1) is true whenever P(k) is true.
We have 12+ 22+ 32 + ... + K>+ (k + 1)?
3

= (P+2°+.+k%) + (k+1)" > % + (k+1)’ [by ()]

(OSSR

[k* + 3k* + 6k + 3]

1
[(k+l)3+3k+2]>§ (k+ 1)

(OSSR

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by mathematical induction
P(n) is true for all n € N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
ie. P(n) : (ab)' = a'b".

We note that P(n) is true for n = 1 since (ab)'= a'b'.
Let P(k) be true, i.e.,

(ab)* = a'b* .. (D
We shall now prove that P(k + 1) is true whenever P(k) is true.
Now, we have

(ab)'*'= (ab)" (ab)

2020-21



94

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by principle of math-

MATHEMATICS

= (d" b") (ab) [by (1]
= (d" . a") . Db") =a* . b

ematical induction, P(n) is true for all n € N.

Prove the following by using the principle of mathematical induction foralln € N:

1.

10.

11.

| EXERCISE 4.1 |

3" -1
1+3+32+...+3”“=¥.
2
N
P+2°+3+ = (MJ
> .

1 1 1 2n
1+ + +ot =
I+2) (1+2+3) A+24+3+..n) (n+1)-

nn+l)(n+2)(n+3)

1.23+234 +...+ n(n+l) (n+2) = 1

Q2n-13""+3
— &

n(n+1)(n+2)}
— 3 |

13+232+333+...+ n3'=

12+23+34+...+n(n+l) = [

n(4n2 +6n—1)

1.3435+57+...+(2n-1) 2n+1) = 3

1.2+222+ 323+ ...+n2"=(n-1) 2"+ + 2.

L I S B
25 58 811 7 (Bn-D@Bn+2) (6n+4)"

1 1 1 1 n(n+3)
+ + ot =
123 234 345 n(n+)(n+2) 4n+D)(n+2)
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12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24.
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a(r' =1
r—=1 -~

[1+§j[1+§j [1+Zj...[1+(2njl)j=(n+l)2,
1 4 9 n
[1+1)[1+1j [1+1j...[1+1j=(n+1)_

1 2 3 n

n(2n—1)2n+1)
3 .

a+ar+arr+..+ar =

12432 +52 + ..+ (2n-1)* =

1 1 n

11
— ..t =
1.4 47 17.10 Gn-2)3n+1) @Gu+l)-

11
35 57 79 T @Qu+)2n+3) 32n+3)

1 1 n
+

1
1+2+3+...+n< §(2n+ 1)2

n(n+1)(n+5)is a multiple of 3.
10>~ + 1 is divisible by 11.

x* — y? is divisible by x + y.
32— 8n -9 is divisible by 8.
41" — 14" is a multiple of 27.
Rn+7)<(n+3)>

Summary

® One key basis for mathematical thinking is deductive reasoning. In contrast to

deduction, inductive reasoning depends on working with different cases and
developing a conjecture by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

@ The principle of mathematical induction is one such tool which can be used to

prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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96 MATHEMATICS

for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical induction is not
the invention of a particular individual at a fixed moment. It is said that the principle
of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan contributed many accomplishments in the field of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan’s rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principle of mathematical induction is a restatement of one of the Peano’s axioms.

4

@ —

o,
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COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

s Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. — GAUSS **

5.1 Introduction

In earlier classes, we have studied linear equations in one
and two variables and quadratic equations in one variable.
We have seen that the equation x* + 1 = 0 has no real
solution as x* + 1 = 0 gives x> = — 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation x*> = — 1. In fact, the main
objective is to solve the equation ax? + bx + ¢ = 0, where
D = b* - 4ac <0, which is not possible in the system of
real numbers.

W. R. Hamilton
5.2 Complex Numbers (1805-1865)

Let us denote ,/_1 by the symbol i. Then, we have i* =—1. This means that i is a

solution of the equation x> + 1 = 0.
A number of the form a + ib, where a and b are real numbers, is defined to be a

11

For the complex number z = a + ib, a is called the real part, denoted by Re z and
b is called the imaginary part denoted by Im z of the complex number z. For example,
ifz=2+1i5,thenRe z=2and Im z =5.

Two complex numbers z, =a + ib and z, = ¢ + id are equal if a=cand b=d.

complex number. For example, 2 + i3, (- 1)+ /3, 4+ i[ J are complex numbers.
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98 MATHEMATICS

Example 1 If 4x + i(3x —y) =3 + i (— 6), where x and y are real numbers, then find
the values of x and y.

Solution We have
4x+i(Bx-y)=3+1i(-06) .. (D)
Equating the real and the imaginary parts of (1), we get
4x=3,3x—y=-06,
. o . 3 33
which, on solving simultaneously, give X= n and Y= I
5.3 Algebra of Complex Numbers
In this Section, we shall develop the algebra of complex numbers.

5.3.1 Addition of two complex numbers Letz, = a + ib and z, = ¢ + id be any two
complex numbers. Then, the sum z, + z, is defined as follows:

7, +2,=(a+c)+1i(b+d), which is again a complex number.
For example, 2 +i3) + (-6 +i5)=(2-6)+i(3+5)=-4+i8

The addition of complex numbers satisfy the following properties:

(1) The closure law The sum of two complex numbers is a complex
number, i.e., z, + z, is a complex number for all complex numbers
z, and z,.

(i) The commutative law For any two complex numbers z, and z,,
7, +2,=2,+7

(i) The associative law For any three complex numbers z,, z,, Z,,
(Zl + ZZ) + Z3 = Z1 + (ZZ [ Z3)'

@iv) The existence of additive identity There exists the complex number
0 + i 0 (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, 7z + 0 = z.

(v) The existence of additive inverse To every complex number
z = a + ib, we have the complex number — a + i(— b) (denoted as — z),
called the additive inverse or negative of z. We observe that z + (—z) =0
(the additive identity).

5.3.2 Difference of two complex numbers Given any two complex numbers z, and
25 the difference Z,-2, is defined as follows:
L=t - Zz)'
For example, 6G+3)-QL-D=06+3D)+(-2+i)=4+4i
and Q2-D-(06+3)=QL-D)+(-6-3)=-4-4i
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5.3.3 Multiplication of two complex numbers Let z, = a + ib and z, = ¢ + id be any
two complex numbers. Then, the product z, z, is defined as follows:

2, 2, = (ac — bd) + i(ad + bc)

For example, 3+i5) 2+i6)=3x2-5x6)+i(3x6+5x%x2)=—24+i28
The multiplication of complex numbers possesses the following properties, which
we state without proofs.

@
(if)
(ii)
@iv)

)

(vi)

The closure law The product of two complex numbers is a complex number,
the product z, z, is a complex number for all complex numbers z, and z,.
The commutative law For any two complex numbers z, and z,,
Z1 ZZ = ZZ ZIA
The associative law For any three complex numbers z, z,, 2,
(z,2) 2, =2, (2, 2.
The existence of multiplicative identity There exists the complex number
14170 (denoted as 1), called the multiplicative identity such that z.1 = z,
for every complex number z.
The existence of multiplicative inverse For every non-zero complex
number z = a + ib or a + bi(a # 0, b # 0), we have the complex number

a . —b 1
R +i Y (denoted by Z or z7!), called the multiplicative inverse

of z such that

1
Z.—=1 (the multiplicative identity).
<

The distributive law For any three complex numbers z , z,, z,,
(@ z,(z,+z)=22,+2 2
®) (z,+2z)z,=2,2,+t2, 2

5.3.4 Division of two complex numbers Given any two complex numbers z, and z,,

. 4 . .
where z, # 0, the quotient o, s defined by
2

Z 1
_lzzl_
%) %)

For example,let z, =6+3iand z,=2-1i

Then

Z . 1 .
== (6+3)x— | = ; +1
% [( ) 2_1.) = (6+3l) 22+ 2
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- (6+3i)[%j - %[12—3+i(6+6):| =§(9+12i)

5.3.5 Power of i we know that

i° =(i2)2i=(—1)2i=i, i° =(i2)3 =(-1)’ =—1, etc.

IR SN A .. 1 1
Also, we have I =-X-=—=-1, 1 :7:_:_1’
i i -1 im -1
-3 1 1 i 1 4 1 1
io—ioi 1 i1
In general, for any integer k, i* =1, i**! =4, **2=—1, **3=—1

5.3.6 The square roots of a negative real number
Note that ?=—-1and (—-i)P?=#=-1
Therefore, the square roots of — 1 are 7, — i. However, by the symbol /_1, we would

mean i only.
Now, we can see that i and —i both are the solutions of the equation x>+ 1 =0 or
2
x*=-1.

Similarly (ﬁz‘)zz(ﬁ)2 2=3(C1)=-3

2 2
(—3i) = (—B) 2=-3
Therefore, the square roots of -3 are /3 ; and —+/3i.
Again, the symbol /=3 is meant to represent J3i only,ie., J=3 = J3i.

Generally, if a is a positive real number, \/—~¢ = <Ja V-1 = Ja i,

We already know that \/ax~/b = /b for all positive real number a and b. This

result also holds true when eithera>0,b<0 ora<0, b>0. Whatifa<0, b<0?
Let us examine.

Note that
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i =N-1-1= J(=1) (—1) (by assuming /g x+/b = Jab for all real numbers)

= «1 =1, which is a contradiction to the fact that i?=-1,
Therefore, \/Z x«/; #+/ab if both a and b are negative real numbers.
Further, if any of a and b is zero, then, clearly, \/Z x\/z =+Jab=0.
5.3.7 Identities We prove the following identity
( 71 +2, )2 = le + Z22 +2z,z,, for all complex numbers z, and z,.
Proof We have, (z,+2,)'=(z, +2,) (z, +2,),
= (g, +2)z,+(z,+2) 2, (Distributive law)
= 112 +2,7,+2, + 122 (Distributive law)
= 7P+ 232, v 52 t2 (Commutative law of multiplication)
=7 +235,+2
Similarly, we can prove the following identities:
. 2
O (a-2) =4 -2u5+2
.. 3
@) (z+2) =2 +35%+332 +2

3 2 2
(i) (z,-z,) =z —3z72,+322 — 2

: 2 2
V) 7 -2 =(5+2)(3 -2)
In fact, many other identities which are true for all real numbers, can be proved

to be true for all complex numbers.

Example 2 Express the following in the form of a + bi:
NEy 1Y
M (-50) [glj i) (i) (24) [—gl ]

~( L. =5 =5 5 5
Solution . (1) (=5i) [glj = —i = ?(—1) == g.|_i()

1 3
(L) s _
G (=) Z)( slj P axaxs T 256\
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Example 3 Express (5 — 3i)’in the form a + ib.

Solution We have, (5 - 3i)° = 5° -3 x52x (3i) + 3 x 5 (3i)*> -= (3i)*
=125- 225i - 135+27i =-10-198i.

Example 4 Express (—\/5 + \/3)(2\/5 - i)in the form of a + ib

Solution We have, (—\/§+\/3) (2\/5—1') = (—\/§+\/§i) (2\/§—i)
= 6+3i+2v6i—\2i* = (-6+32)+3(1+2V2)i

5.4 The Modulus and the Conjugate of a Complex Number

Let z=a + ib be a complex number. Then, the modulus of z, denoted by | z |, is defined

to be the non-negative real number /42 +p2 .ie.,1z1= /4% + p? and the conjugate

of z, denoted as 7, is the complex number a — ib,i.e., 7 =a— ib.
For example, |3+i| =432 +17 =410, | 2-5i| =27 +(-5)" =+/29,

and 3+i=3—i>» 2-5i=2+5i, 3i—5=3i-5
Observe that the multiplicative inverse of the non-zero complex number z is
given by
B 1 a__gm -b a—ib zZ
Ta+ib T a*+b* aP+bP T d+b T |Z|2

— 2
or z27=|z]
Furthermore, the following results can easily be derived.

For any two compex numbers z, and z, , we have

3y

2

||
0 |2 2|=|all] @ Q provided | z, | #0

ey, ——  —— . _ = — L& .
(i) zz,=2 2, iv) ztz,=7%tz, (V) (Zz )— 2 provided z, # 0.
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Example 5 Find the multiplicative inverse of 2 — 3i.
Solution Letz=2- 3i

Then 7 =2+3iand | z['=22+(-3)’=13
Therefore, the multiplicative inverse of 2 — 3; is given by

z _2+3 2 3,

1= -
|2

71 =

3 13 13

2N

The above working can be reproduced in the following manner also,

L1 2430
T 2-3i (2-30)(2+30)

Z

243i 243 2 3.
= = =—4+—1
22-@3i)* 13 13 13
Example 6 Express the following in the form a + ib

5+/2i

i Y 73S

() -2 (ii) i
Solution () Wo have, - N& =3+ V21, (AT _5+5V2i+2i-2
Solution (1) € nave, 1—\/51 1_\/51 1+\/§l 1_(\/51)2

) 3+6J§i:3(1+2ﬁi) 14243
1+2 3

5 1 1 1
= HT oo - X7 =2
—1

i
X
l

|EXERCISE 5.1]

Express each of the complex number given in the Exercises 1 to 10 in the
form a + ib.

NEER
1. (51)[—?) 2. %441 30¢%

2020-21



104 MATHEMATICS

4. 37+iH+i(7+i7) 5. 1-)—-(-1+i6)

[1 ,2j [ ,sj [(1 .7) ( 1)} ( 4 j
6. |=ti=|-]|4+i= 7. —+i— |+ 4+i= ||| ——+i
5 5 2 3 3 3 3

3 3
8. (- 9. [§+3ij 10. [—2—%;’)

Find the multiplicative inverse of each of the complex numbers given in the
Exercises 11 to 13.

11. 4- 3i 12, f5+3i 13. —i

14. Express the following expression in the form of a + ib :
(3+iv5) (3-i/5)
(V3++2i)-(V3-in2)

5.5 Argand Plane and Polar Representation

We already know that corresponding to
each ordered pair of real numbers
(x, y), we get a unique point in the XY-
plane and vice-versa with reference to a
set of mutually perpendicular lines known
as the x-axis and the y-axis. The complex

D(2,0)

number x + iy which corresponds to the
ordered pair (x, y) can be represented ® E (-5,-2) ®F(1,-2)
geometrically as the unique point P(x, y)
in the XY-plane and vice-versa.

Some complex numbers such as
2+4+4i,-2+3i,0+1i,2+0i,—5-2i and
1 — 2i which correspond to the ordered
pairs (2, 4), (=2, 3), (0, 1), (2, 0), (=5, =2), and (1, — 2), respectively, have been
represented geometrically by the points A, B, C, D, E, and F, respectively in
the Fig 5.1.

The plane having a complex number assigned to each of its point is called the

Yl
Fig 5.1

complex plane or the Argand plane.
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Obviously, in the Argand plane, the modulus of the complex number

x + iy = {/x* + y? is the distance between the point P(x, y) and the origin O (0, 0)

(Fig 5.2). The points on the x-axis corresponds to the complex numbers of the form
a + i 0 and the points on the y-axis corresponds to the complex numbers of the form

Y
N
5 P(x, y)
%9
<
! X
X € o) >
(0,0)
v Fig 5.2
Y ig 5.

0+ i b. The x-axis and y-axis in the Argand plane are called, respectively, the real axis
and the imaginary axis.
The representation of a complex number z = x + iy and its conjugate
z =x — iy in the Argand plane are, respectively, the points P (x, y) and Q (x, — y).
Geometrically, the point (x, —y) is the mirror image of the point (x, y) on the real
axis (Fig 5.3).

Y
N P(x,y)
X' € e} >X
\ ,’ Q(x’ —.}’)
Y
Fig5.3
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5.5.1 Polar representation of a complex
number Let the point P represent the non-
zero complex number z = x + iy. Let the
directed line segment OP be of length r and
0 be the angle which OP makes with the
positive direction of x-axis (Fig 5.4).

We may note that the point P is
uniquely determined by the ordered pair of
real numbers (r, 0), called the polar
coordinates of the point P. We consider
the origin as the pole and the positive
direction of the x axis as the initial line.

v
Y
Fig 5.4

We have, x = r cos 6, y = r sin 0 and therefore, z = r (cos 0 + i sin 0). The latter

is said to be the polar form of the complex number. Here r=./x*+ y* =|Z| is the

modulus of z and 0 is called the argument (or amplitude) of z which is denoted by arg z.

For any complex number z # 0, there corresponds only one value of 0 in
0 <0 <2rn. However, any other interval of length 27, for example — Tt < 0 <, can be
such an interval.We shall take the value of 6 such that — = < 6 < T, called principal
argument of z and is denoted by arg z, unless specified otherwise. (Figs. 5.5 and 5.6)

Y Y
P P ',
0 0 0
X' X ! ' 1.
0 X 0 X X ) X X
P
Y’ Y’ Y’
()

(i)

(iii) (iv)

Fig 5.5 (0<6<2n)

Y P P Y
0 0
! ! X!
X o X X o X

Y’ Y’
@) (i)

(iii) (iv)

Fig5.6 (—t<0<m)
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Example 7 Represent the complex number z =1+ ir/3 in the polar form.
Solution Let 1 = r cos 6, ﬁ =rsin O

By squaring and adding, we get Y » (1,43)
r? (0052 0+ sin’ 6) =4
ie., r=v4=2 (conventionally, r >0) X 0 X
. 3 . . L
Therefore, ¢c0s0=—sin 0 =—— which gives 0= —
2 2 3 Y’
Fig 5.7

.. W
Therefore, required polar formis 2= 2[0035 +isin gj

The complex number z =1+ i3 is represented as shown in Fig 5.7.

-16

1+ i3 into polar form.

Example 8 Convert the complex number

o 1 ( ~16 ~16 Xl—i\/§
So1ution eglvencomp X numboer 1+l\/§ - 1+l\/§ l—l\/§

—16(1-i/3) —16(1-i/3
_ 1_((1-\5)2): (1+3 )2_4(1_iﬁ)=_4+i4ﬁ (Fig 5.8).

Let —4=rcos9, 4\/5 =rsin O P(4, 443) Y
By squaring and adding, we get

0
16 +48= 7’ (cosze + sinze) X' o X

which gives =64, ie, r=8

1 V3 v
Hence cosO=—", sin@ =—

2 2 Fig 5.8

gog_Fo_2m
3 3

2 . . 2m
Thus, the required polar form is 8 COS? i Sln?
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|[EXERCISE 5.2]

Find the modulus and the arguments of each of the complex numbers in
Exercises 1 to 2.

1. z=-1-1iJ3 2. z=-[3+i

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

3. 1-i 4. -1+ 5. —=1-1i

6. -3 7. J3+i 8. i

5.6 Quadratic Equations

We are already familiar with the quadratic equations and have solved them in the set
of real numbers in the cases where discriminant is non-negative, i.e., 2 0,
Let us consider the following quadratic equation:

ax® + bx + ¢ = 0 with real coefficients a, b, ¢ and a # 0.

Also, let us assume that the b*> —4ac < 0.

Now, we know that we can find the square root of negative real numbers in the
set of complex numbers. Therefore, the solutions to the above equation are available in
the set of complex numbers which are given by

—b+~b* —4ac _-b +dac—b* i

2a 2a

At this point of time, some would be interested to know as to how many
roots does an equation have? In this regard, the following theorem known as the
Fundamental theorem of Algebra is stated below (without proof).

X =

“A polynomial equation has at least one root.”

As a consequence of this theorem, the following result, which is of immense
importance, is arrived at:

“A polynomial equation of degree n has n roots.”

Example 9 Solve x> +2=0
Solution We have, x> +2 =0

o xX=-2ie,x= -2 = +2i
Example 10 Solve x* +x+ 1=0

Solution Here, b*—dac=1"-4x1x1l=1-4=-3
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—1£+-3  —1£4/3i
Therefore, the solutions are given by x = TR 2\/_1

Example 11 Solve \/5x% + x++/5=0
Solution Here, the discriminant of the equation is

12 —4x5x5 =1-20=-19
Therefore, the solutions are

14419 —1+:19

NN
|EXERCISE 53|

Solve each of the following equations:
1. x*+3=0 2. 2%+x+1=0 3. *+3x+9=0
4. —-x*+x-2=0 5. ¥*+3x+5=0 6. X>’-x+2=0
7. N2x2+x++/2=0 8. BxX=V2x+3/3=0

2 1 2 X

X +x+—=0 X +—=+1=0
9. NG 10. NG

Miscellaneous Examples

(3-2i)(2+3i)
Example 12 Find the conjugate of m .

(3=2i)(2+3i)

Solution We have , (0+2i)(2—1)

6+9i—4i+6 12+5ix4—3i
2—i+4i+2  4+3i 4-3i

48-36i+20i+15 63-16i 63 16,

= i
16+9 25 25 25

_ (3-2i)(2+3i0) . 63+ 16 .
Therefore, conjugate of m 1S 25 2_5<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>