Chapter 1

11076CHOT

( SETS )

**In these days of conflict between ancient and modern studies; there
must surely be something to be said for a study which did not
begin with Pythagoras and will not end with Einstein; but
is the oldest and the youngest. — G.H. HARDY *®

1.1 Introduction

The concept of set serves as a fundamental part of the
present day mathematics. Today this concept is being used
in almost every branch of mathematics. Sets are used to
define the concepts of relations and functions. The study of
geometry, sequences, probability, etc. requires the knowledge
of sets.

The theory of sets was developed by German
mathematician Georg Cantor (1845-1918). He first
encountered sets while working on “problems on trigonometric
series”. In this Chapter, we discuss some basic definitions
and operations involving sets.

Georg Cantor
(1845-1918)

1.2 Sets and their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as,
a pack of cards, a crowd of people, a cricket team, etc. In mathematics also, we come
across collections, for example, of natural numbers, points, prime numbers, etc. More
specially, we examine the following collections:
(1) 0Odd natural numbers less than 10,1i.e.,1,3,5,7,9

@ii)) The rivers of India

@iii)) The vowels in the English alphabet, namely, a, ¢, i, o, u

(iv) Various kinds of triangles

(v) Prime factors of 210, namely, 2,3,5 and 7

(vi) The solution of the equation: x*— 5x + 6 =0, viz, 2 and 3.

We note that each of the above example is a well-defined collection of objects in
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2 MATHEMATICS

the sense that we can definitely decide whether a given particular object belongs to a
given collection or not. For example, we can say that the river Nile does not belong to
the collection of rivers of India. On the other hand, the river Ganga does belong to this
colleciton.

We give below a few more examples of sets used particularly in mathematics, viz.

N : the set of all natural numbers

Z : the set of all integers

Q : the set of all rational numbers

R : the set of real numbers

Z* : the set of positive integers

Q* : the set of positive rational numbers, and

R* : the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout
this text.

Again the collection of five most renowned mathematicians of the world is not
well-defined, because the criterion for determining a mathematician as most renowned
may vary from person to person. Thus, it is not a well-defined collection.

We shall say that a set is a well-defined collection of objects.

The following points may be noted :

(i) Objects, elements and members of a set are synonymous terms.
(i) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
@iii) The elements of a set are represented by small letters a, b, c, x, y, z, etc.

If a is an element of a set A, we say that ““ a belongs to A” the Greek symbol €
(epsilon) is used to denote the phrase ‘belongs to’. Thus, we write a € A. If ‘b’ is not
an element of a set A, we write b ¢ A and read “b does not belong to A”.

Thus, in the set V of vowels in the English alphabet, a € V but b ¢ V. In the set
P of prime factors of 30,3 € Pbut 15 ¢ P.

There are two methods of representing a set :
(1) Roster or tabular form
(i) Set-builder form.

(1) Inroster form, all the elements of a set are listed, the elements are being separated
by commas and are enclosed within braces { }. For example, the set of all even
positive integers less than 7 is described in roster form as {2, 4, 6}. Some more
examples of representing a set in roster form are given below :

(a) The set of all natural numbers which divide 42 is {1, 2, 3, 6,7, 14,21, 42}.
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SETS 3

In roster form, the order in which the elements are listed is immaterial.
Thus, the above set can also be represented as {1, 3, 7, 21, 2, 6, 14, 42}.

(b) The set of all vowels in the English alphabet is {a, ¢, i, o, u}.
(c¢) The set of odd natural numbers is represented by {1, 3, 5, .. .}. The dots
tell us that the list of odd numbers continue indefinitely.

It may be noted that while writing the set in roster form an element is not

generally repeated, i.e., all the elements are taken as distinct. For example, the set
of letters forming the word ‘SCHOOL’ is { S, C, H, O, L} or {H, O, L, C, S}. Here,
the order of listing elements has no relevance.

(i) In set-builder form, all the elements of a set possess a single common property

which is not possessed by any element outside the set. For example, in the set

{a, e, i, 0, u}, all the elements possess a common property, namely, each of them

is a vowel in the English alphabet, and no other letter possess this property. Denoting

this set by V, we write

V = {x: xis a vowel in English alphabet}

It may be observed that we describe the element of the set by using a symbol x
(any other symbol like the letters y, z, etc. could be used) which is followed by a colon
“: 7. After the sign of colon, we write the characteristic property possessed by the
elements of the set and then enclose the whole description within braces. The above
description of the set V is read as “the set of all x such that x is a vowel of the English
alphabet”. In this description the braces stand for “the set of all”, the colon stands for
“such that”. For example, the set

A = {x: xis anatural number and 3 < x < 10} is read as “the set of all x such that

x 1s a natural number and x lies between 3 and 10.” Hence, the numbers 4, 5, 6,

7, 8 and 9 are the elements of the set A.

If we denote the sets described in (a), (b) and (c) above in roster form by A, B,
C, respectively, then A, B, C can also be represented in set-builder form as follows:

A= {x: xis a natural number which divides 42}

B={y:yis avowel in the English alphabet}

C= {z: zis an odd natural number}

Example 1 Write the solution set of the equation x>+ x — 2 = 0 in roster form.

Solution The given equation can be written as
x-1) x+2)=0,i.e, x=1,-2
Therefore, the solution set of the given equation can be written in roster form as {1, —2}.

Example 2 Write the set {x : x is a positive integer and x> < 40} in the roster form.
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4 MATHEMATICS

Solution The required numbers are 1, 2, 3, 4, 5, 6. So, the given set in the roster form
is{1,2,3,4,5,6}.

Example 3 Write the set A= {1,4,9, 16, 25, ... }in set-builder form.

Solution We may write the set A as
A = {x: x is the square of a natural number}
Alternatively, we can write
A = {x:x=n% where n € N}
E le 4 Write th t{123456}' the set-builder f
xample rite the set 15,27 5> o> -1 in the set-builder form.
Solution We see that each member in the given set has the numerator one less than
the denominator. Also, the numerator begin from 1 and do not exceed 6. Hence, in the
set-builder form the given set is

n )
{x IXx= ,where nis a natural number and 1 <n < 6}
n+

Example 5 Match each of the set on the left described in the roster form with the
same set on the right described in the set-builder form :
@ {P,R,LN,C,A,L} (a){x:xisapositive integer and is a divisor of 18}

@@ {0} (b) { x: xis an integer and x*— 9 = 0}
@) {1,2,3,6,9,18} (c) {x:x1is an integer and x + 1=1}
@iv) {3,-3} (d) {x: x is a letter of the word PRINCIPAL}

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I
are repeated, so (i) matches (d). Similarly, (ii) matches (c) as x + 1 = 1 implies
x=0.Also, 1,2 .,3,6,9, 18 are all divisors of 18 and so (iii) matches (a). Finally, x>~ 9 =0
implies x = 3, =3 and so (iv) matches (b).

|EXERCISE 1.1|

1. Which of the following are sets ? Justify your answer.
(1) The collection of all the months of a year beginning with the letter J.
(ii)) The collection of ten most talented writers of India.
(i) A team of eleven best-cricket batsmen of the world.
(iv) 'The collection of all boys in your class.
(v) The collection of all natural numbers less than 100.
(vi) A collection of novels written by the writer Munshi Prem Chand.
(vii) The collection of all even integers.
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SETS 5

(viii) The collection of questions in this Chapter.
(ix) A collection of most dangerous animals of the world.
Let A= {1, 2, 3,4,5, 6}. Insert the appropriate symbol € or ¢ in the blank

spaces:
i 5...A Gi) 8...A Gi) 0...A
(v) 4...A V) 2...A (vi) 10...A

Write the following sets in roster form:
(1) A={x:xisanintegerand -3 <x<7}
(i) B = {x:x1is a natural number less than 6}
@) C={x:xis atwo-digit natural number such that the sum of its digits is 8 }
(iv) D= {x:xis aprime number which is divisor of 60}
(v) E =The set of all letters in the word TRIGONOMETRY
(vi) F =The set of all letters in the word BETTER
Write the following sets in the set-builder form :
@ (3,6,9,12} 1) {24.8,16,32} @) {5,25,125,625}
i) {2.,4,6,...} v) {14,9,...,100}
List all the elements of the following sets :
(1) A ={x:xisan odd natural number}

(i) B = {x:xis an integer, —% <x< %}

(i) C={x:xisaninteger, x**’< 4}

(iv) D = {x:xis aletter in the word “LOYAL”}

(v) E={x:xis amonth of a year not having 31 days}

(vi) F={x:xisaconsonant in the English alphabet which precedes k }.
Match each of the set on the left in the roster form with the same set on the right

described in set-builder form:

1 {1,2,3,6} (a) {x:xisaprime number and a divisor of 6}
@@ {2,3} (b) {x:xisan odd natural number less than 10}
@) {M,ATHEILC,S} (¢) {x:xisnatural number and divisor of 6}
Gv) {1,3,5,7,9} (d) {x:xis a letter of the word MATHEMATICS}.

1.3 The Empty Set

Consider the set

A = { x:xis astudent of Class XI presently studying in a school }
We can go to the school and count the number of students presently studying in

Class XI in the school. Thus, the set A contains a finite number of elements.

‘We now write another set B as follows:
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6 MATHEMATICS

B = { x: xis a student presently studying in both Classes X and XI }
We observe that a student cannot study simultaneously in both Classes X and XI.
Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the
null set or the void set.
According to this definition, B is an empty set while A is not an empty set. The
empty set is denoted by the symbol ¢ or { }.
We give below a few examples of empty sets.
(1) LetA={x:1<x<2,xis anatural number}. Then A is the empty set,
because there is no natural number between 1 and 2.
(i) B ={x:x*-2=0and xis rational number}. Then B is the empty set because
the equation x*— 2 = 0 is not satisfied by any rational value of x.
@iii) C={x:xisaneven prime number greater than 2}.Then C is the empty set,
because 2 is the only even prime number.
(iv) D={x:x*=4,xisodd }. Then D is the empty set, because the equation
x*= 4 is not satisfied by any odd value of x.

1.4 Finite and Infinite Sets

Let A={1,2,3,4,5}, B=1{a b c d e g}

and C = { men living presently in different parts of the world}

We observe that A contains 5 elements and B contains 6 elements. How many elements
does C contain? As it is, we do not know the number of elements in C, but it is some
natural number which may be quite a big number. By number of elements of a set S,
we mean the number of distinct elements of the set and we denote it by n (S). If n (S)
is a natural number, then S is non-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this
set is not finite since there are infinite number of natural numbers. We say that the set
of natural numbers is an infinite set. The sets A, B and C given above are finite sets
and n(A) = 5, n(B) = 6 and n(C) = some finite number.

Definition 2 A set which is empty or consists of a definite number of elements is
called finite otherwise, the set is called infinite.
Consider some examples :
(1) Let W be the set of the days of the week. Then W is finite.
(i) Let S be the set of solutions of the equation x*~16 = 0. Then S is finite.
@iii) Let G be the set of points on a line. Then G is infinite.
When we represent a set in the roster form, we write all the elements of the set
within braces { }. It is not possible to write all the elements of an infinite set within
braces { } because the numbers of elements of such a set is not finite. So, we represent

2020-21



SETS 7

some infinite set in the roster form by writing a few elements which clearly indicate the
structure of the set followed ( or preceded ) by three dots.

For example, {1, 2, 3 ...} is the set of natural numbers, {1, 3, 5,7, ...} is the set
of odd natural numbers, {...,-3,-2,-1,0,1,2 .3, ...} is the set of integers. All these
sets are infinite.

‘@ Note |All infinite sets cannot be described in the roster form. For example, the

set of real numbers cannot be described in this form, because the elements of this
set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite :
1 {x:xeNand (x-1)(x-2)=0}
(i) {x:xe Nandx*=4}
@) {x:xe Nand2x-1=0}
(iv) {x:xe Nandx is prime}
(v) {x:xe Nanduxisodd}
Solution (i) Givenset= {1, 2}. Hence, it is finite.
(i) Given set = {2}. Hence, it s finite.
(iii) Given set = ¢. Hence, it is finite.
(iv)  The given set is the set of all prime numbers and since set of prime
numbers is infinite. Hence the given set is infinite
(v) Since there are infinite number of odd numbers, hence, the given set is
infinite.
1.5 Equal Sets

Given two sets A and B, if every element of A is also an element of B and if every
element of B is also an element of A, then the sets A and B are said to be equal.
Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same
elements and we write A = B. Otherwise, the sets are said to be unequal and we write
A # B.
We consider the following examples :
(1 LetA={1,2,3,4}and B={3,1,4,2}. Then A=B.
(i) Let A be the set of prime numbers less than 6 and P the set of prime factors
of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of
30 and also these are less than 6.

A set does not change if one or more elements of the set are repeated.
For example, the sets A = {1, 2, 3} and B = {2, 2, 1, 3, 3} are equal, since each
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8 MATHEMATICS

element of A is in B and vice-versa. That is why we generally do not repeat any
element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:
A ={0}, B={x:x>15and x <5},
C={x:x-5=01}, D = {x: x¥*= 25},
E = {x: x is an integral positive root of the equation x* — 2x —15 = 0}.

Solution Since 0 € A and 0 does not belong to any of the sets B, C, D and E, it
follows that, A#B,A#C, A#D, A#E.

Since B = ¢ but none of the other sets are empty. Therefore B # C, B # D
and B # E. Also C = {5} but -5 € D, hence C # D.

Since E = {5}, C =E. Further, D={-5,5} and E = {5}, we find that, D #E.
Thus, the only pair of equal sets is C and E.

Example 8 Which of the following pairs of sets are equal? Justify your answer.
(1) X, the set of letters in “ALLOY” and B, the set of letters in “LOYAL”.
@) A= {n:neZandn’<4}and B={x:xe Rand x>~ 3x +2 =0}.

Solution (i) We have, X = {A,L,L, O, Y},B={L, O, Y, A, L}. Then X and B are

equal sets as repetition of elements in a set do not change a set. Thus,
X={A,L,0,Y} =B

({)A={-2,-1,0,1,2}, B={1,2}.Since 0 € Aand 0 ¢ B, A and B are not equal sets.

|[EXERCISE1.2]

1. Which of the following are examples of the null set
(1) Set of odd natural numbers divisible by 2
(i) Set of even prime numbers
(i) { x : x1is a natural numbers, x <5 and x> 7 }
@iv) {y:y isapoint common to any two parallel lines}
2. Which of the following sets are finite or infinite
(1) The set of months of a year
@ {1,2,3,...}
@y {1,2,3,...99,100}
(iv) The set of positive integers greater than 100
(v) The set of prime numbers less than 99
3. State whether each of the following set is finite or infinite:
(1) The set of lines which are parallel to the x-axis
(i) The set of letters in the English alphabet
(@iii)) The set of numbers which are multiple of 5
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(iv) The set of animals living on the earth
(v) The set of circles passing through the origin (0,0)
4.  Inthe following, state whether A =B or not:
1 A={ab,cd} B ={dcbal
i A={4,8,12,16} B = {8,4,16,18}
@) A={2,4,6,8,10} B = {x:xispositive even integer and x < 10}
@iv) A={x:x isamultiple of 10}, B = {10,15,20,25,30,...}
5. Are the following pair of sets equal ? Give reasons.
(1 A={2,3}, B= {x:xissolution of x> + 5x + 6 = 0}
(i) A ={x:xis aletter in the word FOLLOW }
B ={ y: yisaletter in the word WOLF}
6.  From the sets given below, select equal sets :
A=1{2,4,812}, B={1,2,3,4}, C={4,8,12,14}, D
E={-1,1}, F={0,a}, G={1,-1}, H=

1.6 Subsets
Consider the sets : X = set of all students in your school, Y = set of all students in your
class.

We note that every element of Y is also an element of X; we say that Y is a subset
of X. The fact that Y is subset of X is expressed in symbols as Y < X. The symbol c
stands for ‘is a subset of” or ‘is contained in’.

Definition 4 A set A is said to be a subset of a set B if every element of A is also an
element of B.

In other words, A < B if whenever a € A, then a € B. It is often convenient to
use the symbol “=" which means implies. Using this symbol, we can write the definiton
of subset as follows:

AcBifae A=ae B

We read the above statement as “A is a subset of B if a is an element of A
implies that a is also an element of B”. If A is not a subset of B, we write A ¢ B.

We may note that for A to be a subset of B, all that is needed is that every
element of A is in B. It is possible that every element of B may or may not be in A. If
it so happens that every element of B is also in A, then we shall also have B c A. In this
case, A and B are the same sets so that we have Ac B and B ¢ A < A =B, where
“&” is a symbol for two way implications, and is usually read as if and only if (briefly
written as “iff”).

It follows from the above definition that every set A is a subset of itself, i.e.,
A c A. Since the empty set ¢ has no elements, we agree to say that ¢ is a subset of
every set. We now consider some examples :
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10 MATHEMATICS

(i) The set Q of rational numbers is a subset of the set R of real numbes, and
we write Q < R.
(i) IfAisthe setof all divisors of 56 and B the set of all prime divisors of 56,
then B is a subset of A and we write B C A.
(i) LetA={1,3,5}andB = {x . xis an odd natural number less than 6}. Then
A c B and B c A and hence A = B.
(iv) LetA={a, e i 0 u}and B={aq, b, ¢, d}. Then A is not a subset of B,
also B is not a subset of A.
Let A and B be two sets. [f A c B and A # B, then A is called a proper subset
of B and B is called superset of A. For example,
A ={1,2,3}is aproper subset of B = {1, 2, 3,4}.
If a set A has only one element, we call it a singleton set. Thus,{ a } is a
singleton set.

Example 9 Consider the sets
0,A={1,3}, B={L59}, C={1,3,579}.
Insert the symbol < or & between each of the following pair of sets:

» ¢...B (i)A...B (i) A...C iv)B...C

Solution (1) ¢ < B as ¢ is a subset of every set.
(i) AzBas3eAand3¢ B
@) AcCasl,3 e AalsobelongstoC
(iv) B < C as each element of B is also an element of C.

Example 10 LetA={a, ¢ i, 0, u} and B={ q, b, ¢, d}. Is A a subset of B ? No.
(Why?). Is B a subset of A? No. (Why?)

Example 11 Let A, B and C be three sets. If A € B and B < C, is it true that
A < C?. If not, give an example.

Solution No.LetA={1},B ={{1},2}andC={{1},2,3}. Here Ae BasA= {1}
and BcC.ButAzCasle Aand 1 ¢ C.
Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers

As noted in Section 1.6, there are many important subsets of R. We give below the

names of some of these subsets.
The set of natural numbers N =
The set of integers y/

1,2,3,4,5,...}
{...,-3,-2,-1,0,1,2,3,...}

The set of rational numbers Q = { x: x = g ,p»q€ Zand q+#0}
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D
which is read “ Q is the set of all numbers x such that x equals the quotient ; , where

p and g are integers and ¢ is not zero”. Members of Q include -5 (which can be

11

1
expressed as _T) , 7, 35 (which can be expressed as 5) and —?.

The set of irrational numbers, denoted by T, is composed of all other real numbers.
Thus T ={x: xe Rand x ¢ Q}, i.e., all real numbers that are not rational.

Members of T include /2 , /5 and =.

Some of the obvious relations among these subsets are:
NcZcQQcR TcR NgT.

1.6.2 Intervals as subsets of R Leta, b € R and a < b. Then the set of real numbers
{ y:a<y<b}iscalled an open interval and is denoted by (a, b). All the points
between a and b belong to the open interval (a, b) but a, b themselves do not belong to
this interval.

The interval which contains the end points also is called closed interval and is
denoted by [ a, b ]. Thus

[a, b]l={x:a<x<Db}
We can also have intervals closed at one end and open at the other, i.e.,

[a b)={x:a<x<b}isanopen interval from a to b, including a but excluding b.

(a,b]l={x:a<x< b}isanopen interval from a to b including b but excluding a.

These notations provide an alternative way of designating the subsets of set of
real numbers. For example , if A= (-3, 5) and B =[-7, 9], then A < B. The set [ 0, o)
defines the set of non-negative real numbers, while set ( — oo, 0 ) defines the set of
negative real numbers. The set (— oo, o0') describes the set of real numbers in relation
to a line extending from — oo to oo.

On real number line, various types of intervals described above as subsets of R,
are shown in the Fig 1.1.

(a,b) [a,b] [a,b) (a,b)

O O @ @ @ O O @

a b a b a b a b
Fig 1.1

Here, we note that an interval contains infinitely many points.

For example, the set {x : x € R, -5 < x <7}, written in set-builder form, can be
written in the form of interval as (=5, 7] and the interval [-3, 5) can be written in set-
builder form as {x: -3 <x < 5}.
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12 MATHEMATICS

The number (b — a) is called the length of any of the intervals (a, b), [a, b],
[a, b) or (a, b].

1.7 Power Set

Consider the set {1, 2}. Let us write down all the subsets of the set {1, 2}. We
know that ¢ is a subset of every set . So, ¢ is a subset of {1, 2}. We see that {1}
and { 2 }are also subsets of {1, 2}. Also, we know that every set is a subset of
itself. So, { 1, 2 } is a subset of {1, 2}. Thus, the set { 1, 2 } has, in all, four
subsets, viz. 0, { 1 }, { 2 } and { 1, 2 }. The set of all these subsets is called the
power setof { 1,2 }.

Definition 5 The collection of all subsets of a set A is called the power set of A. It is
denoted by P(A). In P(A), every element is a set.
Thus, as in above, if A= { 1, 2 }, then
P(A)={o{1}, {2} {L2}}
Also, note that n [ P (A) ] =4 =22
In general, if A is a set with n(A) = m, then it can be shown that
n [ P(A)] = 2"

1.8 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a
basic set which is relevant to that particular context. For example, while studying the
system of numbers, we are interested in the set of natural numbers and its subsets such
as the set of all prime numbers, the set of all even numbers, and so forth. This basic set
is called the “Universal Set”. The universal set is usually denoted by U, and all its
subsets by the letters A, B, C, etc.

For example, for the set of all integers, the universal set can be the set of rational
numbers or, for that matter, the set R of real numbers. For another example, in human
population studies, the universal set consists of all the people in the world.

|EXERCISE 1.3|

1. Make correct statements by filling in the symbols c or & in the blank spaces :
@» {2,3,4}...{1,2,3,45} (G){ab,c}...{b,c,d}
@) {x:xisastudent of Class XI of your school}. . .{x : x student of your school}
(iv) {x:xisacircle in the plane} .. .{x : x is a circle in the same plane with
radius 1 unit}

(v) {x:xisatriangle in a plane} ... {x : x is a rectangle in the plane}
(vi) {x:xisanequilateral triangleinaplane} ... {x:xisatriangle in the same plane}
(vil) {x:xis an even natural number} ... {x:xis an integer}
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Examine whether the following statements are true or false:

@O {ab}yz{bcal

(i) {a e} c{x:xisavowelin the English alphabet}

@) {1,2,3}c{1,35}

i) {a}lc {a b c}

V) {ale {ab c}

(vi) { x:xisaneven natural number less than 6} < { x: x is a natural number

which divides 36}
Let A={1,2,{3,4},5}. Which of the following statements are incorrect and why?
1 {3,4}c A @ {3,4}e A @) {{3,4}}c A
@iv) 1e A v) 1cA i) {1,2,5}c A
(i) {1,2,5}€e A (vii) {1,2,3} c A ix) ¢ A
x 0c A xi) {0} c A
Write down all the subsets of the following sets
@ {a} i {a, b} () {1,2,3} iv) o

How many elements has P(A), if A = ¢?
Write the following as intervals :

1 {x:xeR,-4<x<6} @@ {x:xeR,-12<x<-10}
@) {x:xe R, 0<x<7} iv) {x:xe R,3<x<4}
Write the following intervals in set-builder form :

® 3,0 @@ [6,12] (i) (6, 12] av) [-23,5)
What universal set(s) would you propose for each of the following :

(1) The set of right triangles. (i) The set of isosceles triangles.
Given the sets A= {1,3,5},B={2,4,6} and C = {0, 2, 4, 6, 8}, which of the
following may be considered as universal set (s) for all the three sets A, B and C

@ {0,1,2,3,4,5,6}

(i) ¢
@) {0,1,2,3,4,5,6,7,8,9,10}
av) {1,2,34,5,6,7,8}

1.9 Venn Diagrams

Most of the relationships between sets can be
represented by means of diagrams which are known
as Venn diagrams. Venn diagrams are named after
the English logician, John Venn (1834-1883). These
diagrams consist of rectangles and closed curves
usually circles. The universal set is represented
usually by a rectangle and its subsets by circles.
In Venn diagrams, the elements of the sets

are written in their respective circles (Figs 1.2 and 1.3)
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14 MATHEMATICS

Hlustration 1 InFig 1.2, U= {1,2,3, ..., 10} is the U
universal set of which
A=1{2,4,6,8,10} is a subset. el

Ilustration 2 In Fig 1.3, U= {1,2,3, ..., 10} is the
universal set of which

A=1{2,4,6,8,10} and B = {4, 6} are subsets, *9
and also B C A. Fig 1.3

The reader will see an extensive use of the
Venn diagrams when we discuss the union, intersection and difference of sets.

1.10 Operations on Sets

In earlier classes, we have learnt how to perform the operations of addition, subtraction,
multiplication and division on numbers. Each one of these operations was performed
on a pair of numbers to get another number. For example, when we perform the
operation of addition on the pair of numbers 5 and 13, we get the number 18. Again,
performing the operation of multiplication on the pair of numbers 5 and 13, we get 65.
Similarly, there are some operations which when performed on two sets give rise to
another set. We will now define certain operations on sets and examine their properties.
Henceforth, we will refer all our sets as subsets of some universal set.

1.10.1 Union of sets Let A and B be any two sets. The union of A and B is the set
which consists of all the elements of A and all the elements of B, the common elements
being taken only once. The symbol ‘U’ is used to denote the union. Symbolically, we
write A U B and usually read as ‘A union B’.

Example 12 LetA={2,4,6,8} and B={ 6, 8, 10, 12}. Find A U B.

Solution We have AuUB ={2,4,6,8, 10, 12}
Note that the common elements 6 and 8 have been taken only once while writing
AUB.

Example 13 LetA={qa e i,0,u}andB={aqa,i u}. Showthat AUB =A
Solution We have, AUB={a,e 1,0, u}=A.

This example illustrates that union of sets A and its subset B is the set A
itself, i.e., if Bc A, then AU B = A.

Example 14 Let X = {Ram, Geeta, Akbar} be the set of students of Class XI, who are
in school hockey team. Let Y = {Geeta, David, Ashok} be the set of students from
Class XI who are in the school football team. Find X U Y and interpret the set.

Solution We have, X UY = {Ram, Geeta, Akbar, David, Ashok}. This is the set of
students from Class XI who are in the hockey team or the football team or both.
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Thus, we can define the union of two sets as follows:

Definition 6 The union of two sets A and B is the set C which consists of all those
elements which are either in A or in B (including
those which are in both). In symbols, we write. |U
AUB ={x:xeAorxeB}

The union of two sets can be represented by a A
Venn diagram as shown in Fig 1.4.

The shaded portion in Fig 1.4 represents AU B. B

Some Properties of the Operation of Union AUB
1) AuB =B uUA (Commutative law) Fig 1.4
i@ (AuB)uC=Au(BUC)
(Associative law )

i) Auo=A (Law of identity element, ¢ is the identity of L)

iv) AUA =A (Idempotent law)

v) UuA =U (Law of U)
1.10.2 Intersection of sets The intersection of sets A and B is the set of all elements
which are common to both A and B. The symbol ‘"’ is used to denote the infersection.
The intersection of two sets A and B is the set of all those elements which belong to
both A and B. Symbolically, we writte AN B = {x: x€ Aand x € B}.
Example 15 Consider the sets A and B of Example 12. Find A n B.
Solution We see that 6, 8 are the only elements which are common to both A and B.
Hence AnB={6,8}.
Example 16 Consider the sets X and Y of Example 14. Find X N Y.

Solution We see that element ‘Geeta’ is the only element common to both. Hence,
XNY = {Geeta}.

Example 17 LetA={1,2,3,4,5,6,7,8,9,10} and B={2,3,5,7 }. Find A N B and
hence show that Am B = B.

Solution We have AnB={2,3,5,7}=B. We
note that B — A and that AN B = B. U
Definition 7 The intersection of two sets A and B
is the set of all those elements which belong to both A
A and B. Symbolically, we write

ANnB={x:xe Aandx € B} B
ANB

The shaded portion in Fig 1.5 indicates the
intersection of A and B. Fig 1.5
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16 MATHEMATICS

If A and B are two sets such that Am B = ¢, then
A and B are called disjoint sets.

For example, letA={ 2,4, 6,8 } and
B={1,3,5,7 }. Then A and B are disjoint sets,
because there are no elements which are common to
A and B. The disjoint sets can be represented by
means of Venn diagram as shown in the Fig 1.6
In the above diagram, A and B are disjoint sets.
Some Properties of Operation of Intersection

Fig 1.6

(Associative law).
(Law of ¢ and U).
(Idempotent law)

i) AnB =BnA (Commutative law).
@ (AnB)NnC=An(BnNC)

i) ¢NA=0,UNnA=A

iv) AnA=A

v) An(Bu(C)

M distributes over U

= (ANnB)uU (AnC) (Distributive law ) i. e.,

This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

(R Ne:
(o ®
®  (BUC) (i) (ANB)
N &
(o ®,
i) AN(BUC) iv) (ANC)

(v) (AnB)uU (ANC)

Figs 1.7 (i) to (v)
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1.10.3 Difference of sets The difference of the sets A and B in this order is the set
of elements which belong to A but not to B. Symbolically, we write A — B and read as
“ A minus B”.

Example 18 LetA={1,2,3,4,5,6), B={2,4,6,8 ). Find A—Band B —A.

Solution We have, A— B ={ 1, 3, 5 }, since the elements 1, 3, 5 belong to A but
not to B and B — A= { 8 }, since the element 8 belongs to B and not to A.
We note that A— B #B — A.

Example 19 LetV={aq, ¢ i, 0, u } and
B={a ik u}.FindV-Band B-V

U
Solution We have, V-B={ ¢, 0 }, since the elements
e, obelong to V butnotto Band B—V = { k }, since ‘
the element k belongs to B but not to V.
We note that V— B # B — V. Using the set- | 4 p
builder notation, we can rewrite the definition of
difference as
A-B={x:xe Aandx¢ B }
The difference of two sets A and B can be
represented by Venn diagram as shown in Fig 1.8.
The shaded portion represents the difference of

the two sets A and B.

Remark The sets A — B, AN B and B — A are |A-B
mutually disjoint sets, i.e., the intersection of any of
these two sets is the null set as shown in Fig 1.9.

Fig 1.8

(ANB)
Fig 1.9

|EXERCISE 1.4|

1. Find the union of each of the following pairs of sets :
1 X={1,3,5} Y={1,23}
i) A=1la e i o0 u} B={a b c}

@iii) A = {x:xis anatural number and multiple of 3}
B = {x: x is a natural number less than 6}

(iv) A ={x:xisanatural number and 1 <x <6 }
B = {x: xis a natural number and 6 < x < 10 }

(v) A={

2. LetA={a b},B= {a b, c}.IsAcB?WhatisAUB?

If A and B are two sets such that A < B, then whatis A U B ?

4. IfA={1,2,3,4},B={3,4,5,6},C={5,6,7,8 }andD={7,8,9, 10 }; find

w9
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10.

11.

12.

MATHEMATICS

i AuB i@ AucC @) BucC ivyBuD
vy AuBuUC (vij AuBUD (vi) BuCuD

Find the intersection of each pair of sets of question 1 above.
IfA={3,57,9,11},B={7,9,11,13},C={11,13,15}and D = {15, 17}; find

i AnB @@ BnNC @) ANCnD
iav) AnC vy BnD vi) AnBuUO)
(vii AnD (vii) AnBuD) @(x) (AnB)n(BuC(C)

x) (AuD)Nn(BuUO)
If A= {x:x1is anatural number }, B = {x: x is an even natural number}
C = {x: xis an odd natural number}andD = {x : x is a prime number }, find
i AnNB i AnC @) AnND
iv) BnC v) BnD (vi) CnD
Which of the following pairs of sets are disjoint
1 {I1,2,3,4} and {x: x is a natural number and 4 <x <6 }
) {aeiouland{c def}
@) {x:xisaneven integer } and {x : x is an odd integer}
IfA={3,6,9,12,15,18,21},B={4,8,12,16,20 },
C={2,4,6,8,10,12,14,16 }, D= {5, 10, 15, 20 }; find

G A-B (i) A-C (i) A-D (iv) B—A
(v) C—A vi) D-A (vii) B-C (vii) B-D
(ix) C—-B x) D-B xi) C-D i) D-C
IfX={abcd}andY={fb d g} find

() X-Y (i) Y-X (i) XNY

If R is the set of real numbers and Q is the set of rational numbers, then what is

R -Q?

State whether each of the following statement is true or false. Justify your answer.
@ {2,3,4,5}and {3, 6} are disjoint sets.

@) {aeio u}and{a b c d}are disjoint sets.

@) {2,6,10,14 }and { 3,7, 11, 15} are disjoint sets.

@iv) {2,6,10}and { 3,7, 11} are disjoint sets.

1.11 Complement of a Set

Let U be the universal set which consists of all prime numbers and A be the subset of

U which consists of all those prime numbers that are not divisors of 42. Thus,

A=

{x:xe Uand xisnotadivisor of 42 }. We see that 2 € U but 2 ¢ A, because

2 is divisor of 42. Similarly,3€ Ubut3 ¢ A,and 7€ Ubut7 ¢ A.Now 2,3 and 7 are
the only elements of U which do not belong to A. The set of these three prime numbers,
i.e., the set {2, 3, 7} is called the Complement of A with respect to U, and is denoted by
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A’. So we have A’ = {2, 3,7}. Thus, we see that
A’ ={x:xe Uand x ¢ A }. This leads to the following definition.

Definition 8 Let U be the universal set and A a subset of U. Then the complement of
A is the set of all elements of U which are not the elements of A. Symbolically, we
write A” to denote the complement of A with respect to U. Thus,
A’={x:xe Uandx ¢ A }. Obviously A’=U - A
We note that the complement of a set A can be looked upon, alternatively, as the
difference between a universal set U and the set A.

Example 20LetU= {1,2,3,4,5,6,7,8,9,10} and A={1,3,5,7,9}. Find A".

Solution We note that 2, 4, 6, 8, 10 are the only elements of U which do not belong to
A. Hence A'={2,4,6,810}.

Example 21 Let U be universal set of all the students of Class XI of a coeducational
school and A be the set of all girls in Class XI. Find A”.

Solution Since A is the set of all girls, A” is clearly the set of all boys in the class.

If A is a subset of the universal set U, then its complement A" is also a
subset of U.
Again in Example 20 above, we have A" ={2,4,6,8,10 }
Hence (A’Y={x:xe Uandx ¢ A’}
={1,3,5,7,9} =A
Itis clear from the definition of the complement that for any subset of the universal
set U, we have (A') =A

Now, we want to find the results for (A U B )' and A” N B’ in the followng
example.
Example 22 Let U= {1,2,3,4,5,6},A={2,3} and B = {3, 4, 5}.
Find A", B", A” n B’, AU B and hence show that ( AUB ) =A’n B".

Solution Clearly A" = {1,4,5,6},B’={1,2,6 }. Hence A n B’ ={ 1,6 }
AlsoAUB ={2,3,4,5},sothat AUB) ={1,6}
(AUB) ={1,6}=A" "B

It can be shown that the above result is true in general. If A and B are any two
subsets of the universal set U, then

(AUB ) =A"NB. Similarly,(ANnB )" = A” UB’. These two results are stated
in words as follows :
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The complement of the union of two sets is U
the intersection of their complements and the
complement of the intersection of two sets is the
union of their complements. These are called De
Morgan’s laws. These are named after the
mathematician De Morgan.

The complement A” of a set A can be represented
by a Venn diagram as shown in Fig 1.10. Fig 1.10
The shaded portion represents the complement of the set A.

Some Properties of Complement Sets
1. Complement laws: HAUA" =U (i)ANA =0
2. De Morgan’s law: (A UB) =A'"NnB ({)(ANnB)Y =A"UB’
3. Law of double complementation : (A")" = A

4. Laws of empty set and universal set ¢’ = U and U" = ¢.
These laws can be verified by using Venn diagrams.

|EXERCISE 1.5 |

1. LetU={1,2,3,4,5,6,7,8,9},A={1,2,3,4},B={2, 4,6,8 } and
C=1{3,4,5,6}. Find (i) A (ii)) B” (iii)) (AW C)" (iv) (AU B)" (v) (A"

(vi) B - CY

2. IfU={a b cd e f g h}, find the complements of the following sets :
1) A={a b, c} )B={d e f g}
(i) C={a, ¢ ¢ g} vy D={f g h, a}

3. Taking the set of natural numbers as the universal set, write down the complements
of the following sets:

(1) {x:xis an even natural number} (i1) { x:xisan odd natural number }
(i) {x:xisapositive multiple of 3} @iv) { x : x is a prime number }
(v) {x:xis anatural number divisible by 3 and 5}
(vi) { x:xis a perfect square } (vii) { x : x is a perfect cube}
(vii)) { x:x+5=8} x){x:2x+5=9}
x) {x:x=27} xi){x:xe Nand2x+1>10}
4. IfU={1,2,3,4,5,6,7,8,9},A={2,4,6,8}and B={2, 3,5, 7}. Verify that
A AUBY=A"NnB (i) (ANnBY=A"UB’
5. Draw appropriate Venn diagram for each of the following :
(i) (A U BY, (i) A" N B’, (i) (ANBY, (v)A"UB’

6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at
least one angle different from 60°, what is A"?
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7.  Fill in the blanks to make each of the following a true statement :
i AUA'=... (i) ONA=...
(i) ANnA'=... @iv) UnA=...

1.12 Practical Problems on Union and
Intersection of Two Sets
In earlier Section, we have learnt union, intersection Q

U

and difference of two sets. In this Section, we will
go through some practical problems related to our
daily life.The formulae derived in this Section will

also be used in subsequent Chapter on Probability (ANB)

(Chapter 16). Fig 1.11
Let A and B be finite sets. If A B = ¢, then
Wn(AuB)=n(A)+n(B) .. (1)

The elements in A U B are either in A or in B but not in both as AN B = ¢. So, (1)
follows immediately.

In general, if A and B are finite sets, then

Mn(AuB)=n(A)+n(B)-n(AnNnB) .. 2)

Note that the sets A—B, A mn B and B — A are disjoint and their union is A U B
(Fig 1.11). Therefore
n(AuB)=n(A-B)+n(A NnB)+n(B-A)
=n(A-B)+ n(AnB)+n(B-A)+n(A nB)-n(A NnB)
=n(A)+n(B)-n(A nB), which verifies (2)
(ii1) If A, B and C are finite sets, then
n(AuBuUC)=n(A)+n(B)+n(C)-n(A nB)-n(B nC)
-n(AnNnC)+n(AnBnNnC) ... 3)
In fact, we have
n(AuBuUC)=nA)+n(BuC)-n[ANn(BuC)] [ by (2) ]
=nA)+n(B)+n(C)-n(B nC)-n[AnNn(BuC)] [by (2)]
SinceA N(BuUC)=(A nNnB)u(A nC), we get
n[AN(BuC)l=n(AnB)+n(AnC)-n[(AnNnB)n(A nO)]
=n(AnB)+n(AnNnC)-n(AnBnNO
Therefore
n(AuBUC) =nA)+n(B)+n(C)-n(A NnB)-n(B nO)
-n(A NmnC)+n(A NmnB nC)
This proves (3).

Example 23 If X and Y are two sets such that X U Y has 50 elements, X has
28 elements and Y has 32 elements, how many elements does X N'Y have ?
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Solution Given that U

n(XuY)=50,n(X)=28, n(Y)=32,
nXNY)=?
By using the formula Q
n(XuY)=n(X)+n(Y)-n(XnNnY),
we find that (XNY)
n(XNY)=n(X)+n(Y)-n(XuUY)
=28+32-50=10 Fig 1.12
Alternatively, suppose n ( X N'Y ) = k, then
n(X-Y)=28-k,n(Y-X)=32-k(by Venn diagram in Fig 1.12)
ThisgivesS0=n(XuY)=nX-Y)+n X nY)+n(Y-X)

=(28—k)+k+(32-k)
Hence k =10.

Example 24 In a school there are 20 teachers who teach mathematics or physics. Of
these, 12 teach mathematics and 4 teach both physics and mathematics. How many
teach physics ?

Solution Let M denote the set of teachers who teach mathematics and P denote the
set of teachers who teach physics. In the statement of the problem, the word ‘or’ gives
us a clue of union and the word ‘and’ gives us a clue of intersection. We, therefore,
have
n(MuP)=20,n(M)=12andn(MnNP)=4
We wish to determine n ( P).
Using the result
n(MuUP)=n(M)+n(P)-n (MnNnP),
we obtain
20=12+n(P)-4
Thus n(P)=12
Hence 12 teachers teach physics.

Example 25 In a class of 35 students, 24 like to play cricket and 16 like to play
football. Also, each student likes to play at least one of the two games. How many
students like to play both cricket and football ?

Solution Let X be the set of students who like to play cricket and Y be the set of

students who like to play football. Then X U'Y is the set of students who like to play

at least one game, and X N'Y is the set of students who like to play both games.

Given n(X)=24,n(Y)=16,n(XuY)=35nXNnY)=7?

Using the formulan (XUuY)=n(X)+n(Y)-n (XNY), we get
35=24+16-n(XNY)
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Thus, nXNY)=5
ie., 5 students like to play both games.

Example 26 In a survey of 400 students in a school, 100 were listed as taking apple
juice, 150 as taking orange juice and 75 were listed as taking both apple as well as
orange juice. Find how many students were taking neither apple juice nor orange juice.

Solution Let U denote the set of surveyed students and A denote the set of students
taking apple juice and B denote the set of students taking orange juice. Then

n (U) =400, n (A) =100, n (B) =150 and n (A N B) =75.
Now n(A'nB’) =n(AuUB)Y
=n(U)-n(AuUB)
=n(U)-nA)—-n(B)+n(AnB)
=400 - 100 - 150 + 75 =225
Hence 225 students were taking neither apple juice nor orange juice.

Example 27 There are 200 individuals with a skin disorder, 120 had been exposed to
the chemical C , 50 to chemical C,, and 30 to both the chemicals C, and C,. Find the
number of individuals exposed to

(i)  Chemical C, but not chemical C, (i) Chemical C, but not chemical C,
(i) Chemical C, or chemical C,

Solution Let U denote the universal set consisting of individuals suffering from the
skin disorder, A denote the set of individuals exposed to the chemical C, and B denote
the set of individuals exposed to the chemical C,.

Here n(U)=200,n(A)=120,n(B)=50andn (AN B)=30

(1) From the Venn diagram given in Fig 1.13, we have
A=(A-B)u(AnB).
n(A)=n(A-B)+n(AnB) (Since A-B) and A N B are disjoint.)
orn(A-B)=n(A)-n(AnB)=120-30=90

Hence, the number of individuals exposed to

chemical C, but not to chemical C, is 90. U
(i1) From the Fig 1.13, we have
B=(B-A)uU(AnB). Q
andso, n(B)=n(B-A)+n(ANB)
(Since B — A and A nB are disjoint.)
oo n(B-A)=n(B)-n(ANB) (ANB)
=50-30= 20 Fig 1.13
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Thus, the number of individuals exposed to chemical C, and not to chemical C, is 20.
(i) The number of individuals exposed either to chemical C, or to chemical C, i.e.,
n(AuB)=n(A)+n(B)-n(AnB)
=120 + 50 — 30 = 140.

|EXERCISE 1.6|

1. IfXandY aretwosetssuchthatn (X )=17,n(Y)=23andn (X uUY )=38,
findn(XNY).

2. If Xand Y are two sets such that X U Y has 18 elements, X has 8 elements and
Y has 15 elements ; how many elements does X N'Y have?

3. Ina group of 400 people, 250 can speak Hindi and 200 can speak English. How
many people can speak both Hindi and English?

4. If S and T are two sets such that S has 21 elements, T has 32 elements, and S N T
has 11 elements, how many elements does S U T have?

5. If X and Y are two sets such that X has 40 elements, X U Y has 60 elements and
X MY has 10 elements, how many elements does Y have?

6. Ina group of 70 people, 37 like coffee, 52 like tea and each person likes at least
one of the two drinks. How many people like both coffee and tea?

7. Inagroup of 65 people, 40 like cricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?

8. In a committee, 50 people speak French, 20 speak Spanish and 10 speak both
Spanish and French. How many speak at least one of these two languages?

Miscellaneous Examples

Example 28 Show that the set of letters needed to spell “ CATARACT ” and the
set of letters needed to spell *“ TRACT” are equal.

Solution Let X be the set of letters in “CATARACT”. Then
X={C,A TR}

Let Y be the set of letters in “ TRACT”. Then
Y={T,RACT}={T,R,A,C}

Since every element in X is in Y and every element in Y is in X. It follows that X =Y.

Example 29 List all the subsets of the set { -1, 0, 1 }.

Solution Let A= {-1,0,1 }. The subset of A having no element is the empty
set 0. The subsets of A having one elementare { —1 }, { 0 }, { 1 }. The subsets of
A having two elements are {-1, 0}, {-1, 1} ,{0, 1}. The subset of A having three
elements of A is Aitself. So, all the subsets of Aare ¢, {1}, {0}, {1}, {-1,0}, {-1, 1},
{0,1} and {-1,0, 1}.
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Example 30 Show that Au B = AN B implies A=B

Solution Leta € A.Thenae AUB.SinccAUB=A "nB,ae A nB.Soae B.
Therefore, A B. Similarly, if b € B, then b€ A U B. Since
AUB=ANB,be AnB. So, b € A. Therefore, Bc A. Thus, A=B

Example 31 For any sets A and B, show that
P(AnB)=P(A)nP( B).

Solution Let X € P(A N B ). Then X ©¢ AN B. So, X © A and X c B. Therefore,
X e P(A)and X € P (B ) which implies X € P(A) N P (B). This givesP(ANB)
cP(A)nP(B).LetYe P(A)nP(B). ThenYe P(A)andY € P(B). So,
Yc AandY c B. Therefore, Y € A N B, whichimplies Y € P(A m B ). This gives
P(A)nP(B)cP(ANB)

Hence P(ANB)=P(A)nP(B).

Example 32 A market research group conducted a survey of 1000 consumers and
reported that 720 consumers like product A and 450 consumers like product B, what is
the least number that must have liked both products?

Solution Let U be the set of consumers questioned, S be the set of consumers who
liked the product A and T be the set of consumers who like the product B. Given that
n(U)=1000,n(S)=720,n( T)=450
So n(SuT)=n(S)+n(T)-n(SNT)
=720+450-n(SNT)=1170-n(SNT)

Therefore, n ( S U T ) is maximum when n ( S N T ) is least. But S U T < U implies
n(SUT) <n(U)=1000. So, maximum values of n (S U T ) is 1000. Thus, the least
value of n (S N T ) is 170. Hence, the least number of consumers who liked both products
is 170.

Example 33 Out of 500 car owners investigated, 400 owned car A and 200 owned
car B, 50 owned both A and B cars. Is this data correct?

Solution Let U be the set of car owners investigated, M be the set of persons who
owned car A and S be the set of persons who owned car B.

Given that n(U) =500,n(M)=400,n(S)=200andn (S "M ) =50.
Then n(SuUM)=n(S)+n(M)-n(SNnM) =200+ 400 - 50 =550
ButSUM < Uimpliesn (SUM)<n(U).

This is a contradiction. So, the given data is incorrect.

Example 34 A college awarded 38 medals in football, 15 in basketball and 20 in
cricket. If these medals went to a total of 58 men and only three men got medals in all
the three sports, how many received medals in exactly two of the three sports ?
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Solution Let F, B and C denote the set of men who U

received medals in football, basketball and cricket,

respectively. a

Thenn (F)=38,n(B)=15n(C)=20 9@7&
n(FuUBuUC)=58andn (FNBNC)=3

Therefore, n(FuUBUC)=n(F)+n(B) C

+n(C)-n(FNnB)-n(FNC)-n(BNC)+

n(FABAN C), Fig 1.14

givesn (FNB)+n(FNC)+n(BnNnC)=18

Consider the Venn diagram as given in Fig 1.14

Here, a denotes the number of men who got medals in football and basketball only, b

denotes the number of men who got medals in football and cricket only, ¢ denotes the

number of men who got medals in basket ball and cricket only and d denotes the

number of men who got medal in all the three. Thus,d=n (FNB N C) =3 and

a+d+b+d+c+d=18

Therefore a+b+c=09,

which is the number of people who got medals in exactly two of the three sports.

Miscellaneous Exercise on Chapter 1

1. Decide, among the following sets, which sets are subsets of one and another:
A={x:xe R and xsatisfy x> —8x+ 12 = 0 },
B={2,46}, C={2,4,6,8,...},D={6}.

2.  Ineach of the following, determine whether the statement is true or false. If itis
true, prove it. If it is false, give an example.

i) Ifxe AandAe B,thenxe B
(@) IfA cBandBe C,thenAe C
@) IfAcBandBcC,thenAcC
ivy fAgBandBz C,thenA ¢ C
(v) Ifxe Aand Az B ,thenxe B
(vij fAcBandx¢ B,thenx¢g A

3. LetA, B, and C be the sets suchthat AuB=AuCand AN B =AnNC. Show
that B = C.
4. Show that the following four conditions are equivalent :

i)AcB@l)A-B=¢ (@(i)AuUuB=B (iviAnB=A
5. Show thatif Ac B,thenC-B c C - A.
Assume that P(A) =P (B ). Show that A=B

7. Isittrue that for any sets Aand B,P(A) UP (B )=P (A u B )? Justify your
answer.

=)
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Show that for any sets A and B,

A=(An B) U(A-B)andAu(B-A)= (AuUB)

Using properties of sets, show that

HDAU(A NB)=A (i) An(AuB)=A.

Show that Am B = A mn C need not imply B =C.

Let Aand Bbesets. fFA NmX=BNnX=¢and Au X =B U X for some set
X, show that A = B.

(Hints A=An(AuX),B=Bn(BuX) and use Distributive law )
Find sets A, B and C such that A N B, B m C and A n C are non-empty
setsand AN B N C=¢.

In a survey of 600 students in a school, 150 students were found to be taking tea
and 225 taking coffee, 100 were taking both tea and coffee. Find how many
students were taking neither tea nor coffee?

In a group of students, 100 students know Hindi, 50 know English and 25 know
both. Each of the students knows either Hindi or English. How many students
are there in the group?

In a survey of 60 people, it was found that 25 people read newspaper H, 26 read
newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T,
8 read both T and I, 3 read all three newspapers. Find:

(i) the number of people who read at least one of the newspapers.

(i1) the number of people who read exactly one newspaper.

In a survey it was found that 21 people liked product A, 26 liked product B and
29 liked product C. If 14 people liked products A and B, 12 people liked products
C and A, 14 people liked products B and C and 8 liked all the three products.
Find how many liked product C only.

Summary

This chapter deals with some basic definitions and operations involving sets. These

are summarised below:

@ A setis a well-defined collection of objects.

# A set which does not contain any element is called empty set.

@ A set which consists of a definite number of elements is called finite set,
otherwise, the set is called infinite set.

# Two sets A and B are said to be equal if they have exactly the same elements.

€ AsetAis said to be subset of a set B, if every element of A is also an element
of B. Intervals are subsets of R.

@ A power set of a set A is collection of all subsets of A. It is denoted by P(A).
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# The union of two sets A and B is the set of all those elements which are either
in A or in B.

@ The intersection of two sets A and B is the set of all elements which are
common. The difference of two sets A and B in this order is the set of elements
which belong to A but not to B.

4 The complement of a subset A of universal set U is the set of all elements of U
which are not the elements of A.

# For any two sets Aand B, AUB)=A"nB’and (ANB) =A"UB’

¢ If A and B are finite sets such that A n B = ¢, then
n(AuB)=n(A)+n(B).

IfA N B # 0, then
n(AuB)=n(A)+n B)-n(AnNB)

Historical Note

The modern theory of sets is considered to have been originated largely by the
German mathematician Georg Cantor (1845-1918). His papers on set theory
appeared sometimes during 1874 to 1897. His study of set theory came when he
was studying trigonometric series of the form a, sin x + a, sin 2x + a, sin 3x + ...
He published in a paper in 1874 that the set of real numbers could not be put into
one-to-one correspondence wih the integers. From 1879 onwards, he publishd
several papers showing various properties of abstract sets.

Cantor’s work was well received by another famous mathematician Richard
Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding
infinite set the same way as finite sets. Another German mathematician Gottlob
Frege, at the turn of the century, presented the set theory as principles of logic.
Till then the entire set theory was based on the assumption of the existence of the
set of all sets. It was the famous Englih Philosopher Bertand Russell (1872-
1970 ) who showed in 1902 that the assumption of existence of a set of all sets
leads to a contradiction. This led to the famous Russell’s Paradox. Paul R.Halmos
writes about it in his book ‘Naive Set Theory’ that “nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory.
Many paradoxes were produced later by several mathematicians and logicians.
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As a consequence of all these paradoxes, the first axiomatisation of set theory
was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham
Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of
regularity. Later in 1937 Paul Bernays gave a set of more satisfactory
axiomatisation. A modification of these axioms was done by Kurt Godel in his
monograph in 1940. This was known as Von Neumann-Bernays (VNB) or Godel-
Bernays (GB) set theory.

Despite all these difficulties, Cantor’s set theory is used in present day
mathematics. In fact, these days most of the concepts and results in mathematics
are expressed in the set theoretic language.

g
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Chapter 2

11076CHO2

(RELATIONS AND FUNCTIONS )

* Mathematics is the indispensable instrument o
p f
all physical research. - BERTHELOT **

2.1 Introduction

Much of mathematics is about finding a pattern — a
recognisable link between quantities that change. In our
daily life, we come across many patterns that characterise
relations such as brother and sister, father and son, teacher
and student. In mathematics also, we come across many
relations such as number m is less than number 7, line /s
parallel to line m, set A is a subset of set B. In all these, we
notice that a relation involves pairs of objects in certain
order. In this Chapter, we will learn how to link pairs of
objects from two sets and then introduce relations between
the two objects in the pair. Finally, we will learn about G.W. Leibnitz
special relations which will qualify to be functions. The (1646-1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.

2.2 Cartesian Products of Sets

Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
A = {red, blue}and B = {b, ¢, 5},

where b, ¢ and s represent a particular bag, coat and shirt, respectively.

How many pairs of coloured objects can be made from these two sets?

s
Proceeding in a very orderly manner, we can see that there will be 6
distinct pairs as given below:

(red, b), (red, ¢), (red, s), (blue, b), (blue, ¢), (blue, s). b
. e . . [ ] [ )
Thus, we get 6 distinct oth?cts (Fig 2.1). red  blue
Let us recall from our earlier classes that an ordered pair of elements Fig 2.1

taken from any two sets P and Q is a pair of elements written in small
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brackets and grouped together in a particular order, i.e., (p,q), p € Pand g € Q. This
leads to the following definition:

Definition 1 Given two non-empty sets P and Q. The cartesian product P X Q is the
set of all ordered pairs of elements from P and Q, i.e.,

PXxQ={(pqg:p €PgeQ}
If either P or Q is the null set, then P X Q will also be empty set, i.e., PXQ =0

From the illustration given above we note that

A X B = {(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.

Again, consider the two sets:

A = {DL, MP, KA}, where DL, MP, KA represent Delhi,

Madhya Pradesh and Karnataka, respectively and B = {01,02, 03
03 }representing codes for the licence plates of vehicles issued 02
by DL, MP and KA . 01

If the three states, Delhi, Madhya Pradesh and Karnataka !
were making codes for the licence plates of vehicles, withthe DL MP KA
restriction that the code begins with an element from set A,
which are the pairs available from these sets and how many such
pairs will there be (Fig 2.2)?

The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
A X B = {(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03), (KA,01), (KA,02),

(KA,03)}.

It can easily be seen that there will be 9 such pairs in the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elements are paired is crucial. For example, the code
(DL, 01) will not be the same as the code (01, DL).

As a final illustration, consider the two sets A= {a, a,} and b,

B={b,b, b, b,} (Fig23). b,

AXB ={(a,b), (a, b,), (a, b)), (a,, b), (a,, b)), (a, b)), b,

(a,, by, (a,, b)}. b,
The 8 ordered pairs thus formed can represent the position of points in )
the plane if A and B are subsets of the set of real numbers and it is  a, a,
obvious that the point in the position (a,, b,) will be distinct from the point Fig 2.3
in the position (b,, a,).

Fig 2.2

Remarks
(1) Two ordered pairs are equal, if and only if the corresponding first elements
are equal and the second elements are also equal.
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(i) If there are p elements in A and ¢ elements in B, then there will be pg
elements in A X B, i.e., if n(A) = p and n(B) = ¢, then n(A X B) = pgq.

(iii) If A and B are non-empty sets and either A or B is an infinite set, then so is
A X B.

iv) AxAxA={(a,b,c):a,b,ce A}.Here (a, b, c) is called an ordered
triplet.

Example 1 If (x+ 1, y—-2)=(3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x+1=3 andy-2=1.
Solving we get x=2andy=3.

Example 2 If P= {a, b, ¢} and Q = {r}, form the sets P X Q and Q X P.
Are these two products equal?

Solution By the definition of the cartesian product,
PxQ= {(a, 1), (b, r),(c,r)}and QX P= {(r, a), (r, b), (1, )}
Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair
(r, a), we conclude that P x Q # Q x P.
However, the number of elements in each set will be the same.

Example 3 Let A= {1,2,3}, B={3,4} and C = {4,5,6}. Find
i AxBNO i) (AxB)Nn(AxQC)
i) Ax@BuUO @iv) (AxB)U(AxCO)
Solution (i) By the definition of the intersection of two sets, (B M C) = {4}.
Therefore, Ax (BN C) ={(1,4), (2,4), (3,4)}.
(1) Now (AxB)={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}
and (AXC)={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}
Therefore, (AXB)MN(AXC) ={(1,4),(2,4),(3,4)}.
(i) Since, (B W C)={3,4,5, 6}, we have
AX (B UOC) ={(1,3),(14), (1,5, (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3.4),(3,5),(3,6)}.

(iv) Using the sets A X B and A X C from part (ii) above, we obtain
(AXB)U(AXC)={(1,3),(1,4),(1,5),(1,6),(2,3), (2,4), (2,5), (2,6),
(3,3),(3,4),(3,5),(3,6)}.
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Example 4 If P= {1, 2}, form the set PX P X P.

Solution We have, PXPXP= {(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1), (2,1,2), (2,2,1),
(2,2,2)}.

Example 5 If R is the set of all real numbers, what do the cartesian products R x R

and R X R X R represent?

Solution The Cartesian product R X R represents the set R x R={(x, y) : x, y € R}

which represents the coordinates of all the points in two dimensional space and the

cartesian product R X R X R represents the set RX RX R ={(x,y 2) :x, y,z€ R}
which represents the coordinates of all the points in three-dimensional space.

Example 6 If AX B ={(p, 9),(p, 1), (m, q), (in, r)}, find A and B.

Solution A = set of first elements = {p, m}
B = set of second elements = {q, r}.

| EXERCISE 2.1 |

1. If [ﬁ"‘l’y—zj:[é’lj find the values of x and y
’ 3 3 33/ ;

2. 1If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of
elements in (AXB).

3. fG={7,8}andH={5,4,2},find GXHand HXG.

4. State whether each of the following statements are true or false. If the statement
is false, rewrite the given statement correctly.

1) IfP={m,n}and Q ={ n, m}, then P X Q = {(m, n),(n, m)}.

(i) If A and B are non-empty sets, then A X B is a non-empty set of ordered

pairs (x, y) such that x € Aand y € B.
i) IfA={1,2},B={3,4},then AX (B M) =4¢.
5. IfA={-1, 1}, find AXAXA.
IfAXB={(a, x),a,y), (b, x), (b,y)}. Find A and B.
7. LetA={1,2},B={1,2,3,4},C={5,6}and D = {5, 6,7, 8}. Verify that
HAX(BNC)=(AXB) N (AXC). (ii)) AX Cis a subset of B X D.
8. LetA={1,2}and B={3,4}. Write A X B. How many subsets will A X B have?

List them.
9. Let A and B be two sets such that n(A) =3 and n(B) = 2. If (x, 1), (v, 2), (z, 1)

are in A X B, find A and B, where x, y and z are distinct elements.

=)
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10. The Cartesian product A X A has 9 elements among which are found (-1, 0) and
(0,1). Find the set A and the remaining elements of A X A.

2.3 Relations
Consider the two sets P= {a, b, c} and Q = {Ali, Bhanu, Binoy, Chandra, Divya}.
The cartesian product of P Q
P and Q has 15 ordered pairs which
can be listed as P x Q = {(a, Ali),
(a,Bhanu), (a, Binoy), ..., (¢, Divya)}.
We can now obtain a subset of
P x Q by introducing a relation R
between the first element x and the
second element y of each ordered pair
(x, y) as
R= { (x,y): x is the first letter of the name y, x € P, y € Q}.
Then R = {(a, Ali), (b, Bhanu), (b, Binoy), (¢, Chandra)}
A visual representation of this relation R (called an arrow diagram) is shown
inFig2.4.

o Ali
eBhanu
eBinoy

eChandra
eDivya

Definition 2 A relation R from a non-empty set A to a non-empty set B is a subset of
the cartesian product A X B. The subset is derived by describing a relationship between
the first element and the second element of the ordered pairs in A X B. The second
element is called the image of the first element.

Definition 3 The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.

Definition 4 The set of all second elements in a relation R from a set A to a set B is
called the range of the relation R. The whole set B is called the codomain of the
relation R. Note that range © codomain.

Remarks (i) A relation may be represented algebraically either by the Roster
method or by the Set-builder method.
(i) An arrow diagram is a visual representation of a relation.

Example 7Let A= {1, 2, 3,4, 5, 6}. Define a relation R from A to A by
R=A{(,y):y=x+1}
(1) Depict this relation using an arrow diagram.
(i) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,
R={(1,2),(2,3),(3.4), (4,5, (5,6) }.
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The corresponding arrow diagram is
shown in Fig 2.5.

(i) We can see that the
domain={1,2, 3,4,5,}

Similarly, the range = {2, 3, 4, 5, 6}
and the codomain = {1, 2, 3,4, 5, 6}.

Fig 2.5

Example 8 The Fig 2.6 shows a relation
between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form.

What is its domain and range? P Q
Solution It is obvious that the relation R is 9 :g
[13 M 29 ~ .2
X 18 tl.le square o.f y’. o4 > 1
(1) In set-builder form, R = {(x, y): x )
is the square of y, x € P,y € Q} 025 S F 3
(i) In roster form, R = {(9, 3), =

(9’ _3)7 (4a 2)’ (49 _2)a (25, 5)7 (25, _5)} Fig 2'6

The domain of this relation is {4, 9, 25}.
The range of this relation is {-2, 2, -3, 3, -5, 5}.
Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

he total number of relations that can be defined from a set A to a set B
is the number of possible subsets of A X B. If n(A ) = p and n(B) = ¢, then
n (A X B) = pg and the total number of relations is 274.

Example 9 Let A= {1, 2} and B = {3, 4}. Find the number of relations from A to B.
Solution We have,
AXB={(L,3),(1,4),(2,3),(2,4)}.

Since n (AXB ) = 4, the number of subsets of AXB is 2% Therefore, the number of
relations from A into B will be 2%,

Remark A relation R from A to A is also stated as a relation on A.

| EXERCISE 2.2 |

1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by
R={(x,y):3x—y=0, where x, ye A}. Write down its domain, codomain and
range.
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2.  Define a relation R on the set N of natural numbers by R = {(x, y) : y= x + 5,

x is a natural number less than 4; x, y € N}. Depict this relationship using roster
form. Write down the domain and the range.

3. A={1,2,3,5} and B = {4, 6, 9}. Define a relation R from A to B by
R = {(x, y): the difference between x and y is odd; x € A, y € B}. Write R in
roster form.

4. The Fig2.7 shows a relationship

between the sets P and Q. Write this >

relation

(1) in set-builder form (ii) roster form. >

What is its domain and range? ~
L

5. LetA={1,2 3,4, 6). Let R be the
relation on A defined by Fig 2.7
{(a,b):a,beA,bisexactly divisible by a}.

(1) Write R in roster form
(i) Find the domain of R

(iii) Find the range of R.

6. Determine the domain and range of the relation R defined by
R={(xx +5):x€{0,1,2,3,4,5}}.

7. Write the relation R = {(x, x*) : x is a prime number less than 10} in roster form.

LetA={x, y,z} and B = {1, 2}. Find the number of relations from A to B.

9. LetR be the relation on Z defined by R = {(a,b): a, b € Z, a— b is an integer}.
Find the domain and range of R.

R

2.4 Functions

In this Section, we study a special type of relation called function. It is one of the most
important concepts in mathematics. We can, visualise a function as a rule, which produces
new elements out of some given elements. There are many terms such as ‘map’ or
‘mapping’ used to denote a function.

Definition 5 A relation f from a set A to a set B is said to be a function if every
element of set A has one and only one image in set B.

In other words, a function f'is a relation from a non-empty set A to a non-empty
set B such that the domain of fis A and no two distinct ordered pairs in f have the
same first element.

If fis a function from A to B and (a, b) € f, then f(a) = b, where b is called the
image of a under f and a is called the preimage of b under f.
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The function f from A to B is denoted by f: A = B.
Looking at the previous examples, we can easily see that the relation in Example 7 is
not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the
domain are connected to more than one images. Similarly, the relation in Example 9 is
also not a function. (Why?) In the examples given below, we will see many more
relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on
N such that R = {(x,y): y=2x, x, y e N}.
What is the domain, codomain and range of R? Is this relation a function?

Solution The domain of R is the set of natural numbers N. The codomain is also N.
The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a
function.

Example 11 Examine each of the following relations given below and state in each
case, giving reasons whether it is a function or not?
@® R={21.,3.1),(42)}, () R={(2,2),2.4),(3,3), (4.4)}
@) R={(1,2),2,3),(3.4),(4.5).(5,6), (6,1}

Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images,

this relation R is a function.

(i) Since the same first element 2 corresponds to two different images 2
and 4, this relation is not a function.
(i) Since every element has one and only one image, this relation is a

function.

Definition 6 A function which has either R or one of its subsets as its range is called
a real valued function. Further, if its domain is also either R or a subset of R, it is
called a real function.

Example 12 Let N be the set of natural numbers. Define a real valued function

f:N=> N by f(x)=2x+ 1. Using this definition, complete the table given below.

X 1 2 3 4 5 6 7

YIfWD=|fQ=.fQ=..[f@D=.|fO)=..1fO)=.|fT)=..
Solution The completed table is given by

X 1 2 3 4 5 6 7

v | r=3] r@=5|r®=7| r@=9|re=11|r©) =13 (1 =15
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2.4.1 Some functions and their graphs

(1)  Identity function Let R be the set of real numbers. Define the real valued
function f: R - R by y = fix) = x for each x € R. Such a function is called the
identity function. Here the domain and range of fare R. The graph is a straight line as
shown in Fig 2.8. It passes through the origin.

Y

Y!
Sx)=x
Fig 2.8
(i) Constant function Define the function f: R - R by y = f(x) = ¢, x € R where

¢ is a constant and each x € R. Here domain of fis R and its range is {c}.

Y
N

8
6--
4
2

N
v

N<E—t+—4—4+—F+—+—+F+—+4+—>X
8 -6-4-2 |02 4 6 8

Fig 2.9
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The graph is a line parallel to x-axis. For example, if f(x)=3 for each xe R, then its
graph will be a line as shown in the Fig 2.9.

(iii) Polynomial function A function f: R — R is said to be polynomial function if
foreachxin R,y = f(x)=a,+ax +ax’+..+a X', where n is a non-negative
integer and a, a, a,,....a €ER.

The functions defined by f{x) = x* — x>+ 2, and g(x) = x* + /2 x are some examples

2
of polynomial functions, whereas the function 4 defined by A(x) = x* + 2x is not a
polynomial function.(Why?)

Example 13 Define the function : R — R by y = fix) = x%, x € R. Complete the
Table given below by using this definition. What is the domain and range of this function?
Draw the graph of f.

X -4 -31]-2 [-1 0] 1 2 4] 4

y=f) =

wn

olution The completed Table is given below:

X -4 13| -2|-1] 0f{|'1 2 3 4
y=fx)=x*| 16 9 4 1] 0] 1 4 9 16

Domain of f = {x : xeR}. Range of f = {xZ: x € R}. The graph of fis given
by Fig2.10

Y

fo)=x? Fig 2.10
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Example 14 Draw the graph of the function f :R — R defined by f (x) = x°, xeR.

Solution We have
f0) =0, /(1) =1, f(-1) =-1, 2) = 8, A(-2) =8, f(3) =27; (-3) =-27, etc.
Therefore, f= {(x,X’): xe R}. Y

The graph of fis given in Fig 2.11.

Y!
fix)=x3

Fig 2.11

f &) , where f(x) and g(x) are
(%)

(iv) Rational functions are functions of the type
polynomial functions of x defined in a domain, where g(x) # 0.

1
Example 15 Define the real valued function f: R — {0} — R defined by f(x)=—,
X

x € R-{0}. Complete the Table given below using this definition. What is the domain
and range of this function?

X 2| -15]-1[-05]025(05( 1 1.5 2
1
X

y:

Solution The completed Table is given by
X -2 -1.5 | -1{ -0.5] 025| 05 |1 1.5 2

-05]-067 -1 -2 | 4 2 1| 067 ] 05

<
Il
==
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The domain is all real numbers except 0 and its range is also all real numbers

except 0. The graph of fis given in Fig 2.12.
Y

Fig 2.12

(v) The Modulus function The function
f: R—R defined by f(x) = Ixl for each
x € R is called modulus function. For each
non-negative value of x, f(x) is equal to x.
But for negative values of x, the value of
f(x) is the negative of the value of x, i.e.,

x,x20

-x,x<0

f)= {
The graph of the modulus function is given

in Fig 2.13.

(vi) Signum function The function
J:R—R defined by

Lif x>0
fx)=40,if x=0
-1,if x<0
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is called the signum function. The domain of the signum function is R and the range is
the set {—1, 0, 1}. The graph of the signum function is given by the Fig 2.14.

Y
1 y=1
X' € 5 > X
y=- -1
Y!
o
f(x)=7,x 0OandOforx=10
Fig 2.14
(vii) Greatest integer function X
The function f: R — R defined
by fix) = [x], x € R assumes the +3 —0
value of the greatest integer, less 4 o
than or equal to x. Such a function
is called the greatest integer 3 -2 -1 T! 1 2 3 4 5
function. X'€ g +—+—+—+—>X
From the definition of [x], we —0 -1
can see that —0 +-2
= — 1<
[x] lfor-1<x<0 3
[x]= Ofor0<x<1
[x]= 1for1<x<2 v
Y!
x]= 2for2<x<3and
1l fx) = 1]
SO on.
Fig 2.15

The graph of the function is
shown in Fig 2.15.

2.4.2 Algebra of real functions In this Section, we shall learn how to add two real
functions, subtract a real function from another, multiply a real function by a scalar
(here by a scalar we mean a real number), multiply two real functions and divide one

real function by another.

@

Addition of two real functions Let f: X — Rand g : X — R be any two real

functions, where X < R. Then, we define (f+ g): X — R by
f+8) @) =f)+gx),forallxe X.
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(i) Subtraction of a real function from another Let f: X — Rand g: X — Rbe
any two real functions, where X CR. Then, we define (f — g) : X—=R by

(f-g) (x) = fix) —g(x), for all x € X.

(i) Multiplication by a scalar Let f: X—R be a real valued function and & be a
scalar. Here by scalar, we mean a real number. Then the product o fis a function from
X to R defined by (0L f) (x) = A f(x), x € X.

(iv) Multiplication of two real functions The product (or multiplication) of two real
functions f:X—R and g:X—R is a function fg:X—R defined by
(fo) (x) = fix) g(x), for all x € X.

This is also called pointwise multiplication.

(v) Quotient of two real functions Let f and g be two real functions defined from

f
X—R, where X CR. The quotient of f by g denoted by E is a function defined by ,

[ﬁ ](x) =% , provided g(x) #0,x € X

Example 16 Let fix) = xzand g(x) = 2x + 1 be two real functions.Find

f
f+ 2 @, (f-g) ), (f8) (X),[E](x).

Solution We have, , ,
F+e@=x +2x+1, f-g )= x —2x-1,
2
2 3 2 S X 1
_ _ = |(x) = __
fo)(x)=x 2x+1)=2x +x, [g]( ) = IR # 5

Example 17 Let f(x) = \/; and g(x) = x be two functions defined over the set of non-

negative real numbers. Find (f + g) (x), (f— g) (x), (fg) (x) and [g] (x).

Solution We have

F+g) = Jx+x (f-g @ =Jx —-x,

3 1
(fo)x = Vx(x)=x" and [ﬁ]@c) S 0
X
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| EXERCISE 2.3 |
1. Which of the following relations are functions? Give reasons. If it is a function,
determine its domain and range.
@ {2,1),65,1),8,1),(11,1),(14,1),(17,1)}
@) {(2,1),(4.2),(6,3),(8:4),(10,5),(12,6), (14,7)}
@) {(1,3),(1,5),(2,5)}.
2.  Find the domain and range of the following real functions:
i) f) = - |o i) S0 = o— .
3. A function fis defined by f{x) = 2x —5. Write down the values of
® £, Gy f(7), @) f(3).

4. The function ‘" which maps temperature in degree Celsius into temperature in

9C
degree Fahrenheit is defined by #(C) = 5 + 32.

Find () #0) (i) #28) (i) #(=10) (iv) The value of C, when #C) = 212.
5.  Find the range of each of the following functions.
1 fx) =2-3x,xe R x>0.
() f(x) =x*+ 2, xis areal number.
@) f(x) =x, xis areal number.

Miscellaneous Examples

Example 18 Let R be the set of real numbers.

Define the real function }{\
- R=Rby flx)=x+10

and sketch the graph of this function. (0.10)
Solution Here f(0) =10, (1) =11, f(2) =12, ...,
f(10) = 20, etc., and

f-1)=9.f(-2)=8, .. f-10) =0 and soon. 100 -

Therefore, shape of the graph of the given X V (0] -
function assumes the form as shown in Fig 2.16.
Remark The function f defined by fix) = mx + ¢, ;{"
x € R, is called linear function, where m and c are f(x)=x+10
constants. Above function is an example of a linear

Fig 2.16

function.
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Example 19 Let R be a relation from Q to Q defined by R = {(a,b): a,b € Q and
a—b e Z}. Show that
(1) (a,a) e Rforallae Q
(i) (a,b) € R implies that (b, a) € R
(i) (a,b) € R and (b,c) € R implies that (a,c) eR

Solution (i) Since,a —a =0 € Z, if follows that (a, a) € R.
(i) (a,b) € R implies that a — b € Z. So, b — a € Z. Therefore,
(b, a) e R
(iii) (a, b) and (b, c) € Rimpliesthata—-be Z.b—c e Z. So,
a—-c=(a->b)+ (b-c)e Z. Therefore, (a,c) € R
Example 20 Letf= {(1,1), (2,3), (0,-1), (=1, -3)} be a linear function from Z into Z.
Find f(x).
Solution Since fis a linear function, f (x) = mx + c. Also, since (1, 1), (0, - 1) € R,

f()=m+c=1andf(0)=c=-1. This gives m = 2 and f(x) = 2x — 1.

x> +3x+5

Example 21 Find the domain of the function f (x) =—;
x —5x+4

Solution Since x2 —Sx+4=(x—-4) (x-1), the function fis defined for all real numbers
except at x =4 and x = 1. Hence the domain of fis R— {1, 4}.

Example 22 The function fis defined by
1-x, x<0

1 ,x=0
x+1, x>0

f)=

Draw the graph of f (x).
Solution Here, fix)=1-x,x <0, this gives
f=4) =1-(=4)=5;
f=3) =1-(=3)=4,

-2
f=2) =1-(=2)=3 3
=D =1-(1) =2;etc, -
and f(1) =2,f(2)=3,f3)=4 \p
f(4) =5andsoonfor fix)=x+1,x>0. Y’
Thus, the graph of fis as shown in Fig 2.17 Fig 2.17
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Miscellaneous Exercise on Chapter 2

The relation fis defined by f (¥) ¥, 02153
t —
e relation fis defined by 3x3<2<10
2
) x”,0<xL2
. . . )=
The relation g is defined by § 3x.2<x<10
Show that fis a function and g is not a function.
1.)-fq
I £ (x) =, find LLD =S D
(1.1-1
2
) . . x +2x+1
Find the domain of the function f(x) =—————.
x —8x+12

Find the domain and the range of the real function f defined by f (x) = \/(x-1) .

Find the domain and the range of the real function f defined by f (x) = |x - 1| .

2
X
Let f = {[x, 1+ 22 } X € R} be a function from R into R. Determine the range

of f.
Let f, g : R—>R be defined, respectively by fix) = x + 1, g(x) = 2x — 3. Find

L
f+g f-gan g

Let f = {(1,1), (2,3), (0,~1), (=1, =3)} be a function from Z to Z defined by
flx) = ax + b, for some integers a, b. Determine a, b.

Let R be a relation from N to N defined by R = {(a,b) : a,beNand a = bz}. Are
the following true?
(i) (a,a)e R,forallae N @i) (a,b) € R, implies (b,a) € R
@) (a,b) € R, (b,c) € R implies (a,c) € R.
Justify your answer in each case.
LetA={1,23,4},B={1,5,9,11,15,16} and f={(1,5),(2,9), (3,1), (4,5), (2,11)}
Are the following true?
(1) fis arelation from A to B (i) f is a function from A to B.
Justify your answer in each case.
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Let f be the subset of Z x Z defined by f = {(ab, a + b) : a, b € Z}.1Is f a
function from Z to Z? Justify your answer.

Let A={9,10,11,12,13} and let f: A—N be defined by f (n) = the highest prime
factor of n. Find the range of f.

Summary

In this Chapter, we studied about relations and functions.The main features of
this Chapter are as follows:
@ Ordered pair A pair of elements grouped together in a particular order.
@ Cartesian product A x B of two sets A and B is given by
AxB= {(a b):ae A,be B}
In particular R x R = {(x, y): x, y € R}
and RxR xR =(x,y,2):x,y,z€ R}
¢ If (a, b) = (x, y), then a = x and b = y.
@ If n(A) = p and n(B) = ¢, then n(A x B) = pq.
CAXO=0
@ In general, Ax B #B x A.

@ Relation A relation R from a set A to a set B is a subset of the cartesian
product A x B obtained by describing a relationship between the first element
x and the second element y of the ordered pairs in A x B.

¢ The image of an element x under a relation R is given by y, where (x, y) € R,

¢ The domain of R is the set of all first elements of the ordered pairs in a
relation R.

¢ The range of the relation R is the set of all second elements of the ordered
pairs in a relation R.

¢ Function A function f from a set A to a set B is a specific type of relation for
which every element x of set A has one and only one image y in set B.

We write f: A—B, where fx) = y.

¢ A is the domain and B is the codomain of f.
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# The range of the function is the set of images.

@ A real function has the set of real numbers or one of its subsets both as its
domain and as its range.

® Algebra of functions For functions f: X — R and g : X — R, we have
F+e=f)+gk),xe X
f-89 @W=f-gx,xe X
e 0 =f g0, xeX
(k) (x) =k (f(x) ), x e X, where k is a real number.

f S ()
[EJ(X) = 20 ¥ € X g =0

Historical Note

The word FUNCTION first appears in a Latin manuscript “Methodus
tangentium inversa, seu de fuctionibus’ written by Gottfried Wilhelm Leibnitz
(1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He
considered a function in terms of “mathematical job” — the “employee” being
just a curve.

On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time
deliberately assigned a specialised use of the term function in the analytical
sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers’ Cyclopaedia: “The
term function is used in algebra, for an analytical expression any way compounded
of a variable quantity, and of numbers, or constant quantities”.

4

> —
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(TRIGONOMETRIC FUNCTIONS )

**A mathematician knows how to solve a problem,
he can not solve it. - MILNE *®

3.1 Introduction

The word ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘measuring the sides of
a triangle’. The subject was originally developed to solve
geometric problems involving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.

In earlier classes, we have studied the trigonometric Arya Bhatt
ratios of acute angles as the ratio of the sides of a right (476-550)
angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, we will generalise the concept of trigonometric ratios to trigonometric functions
and study their properties.

3.2 Angles

Angle is a measure of rotation of a given ray about its initial point. The original ray is

B Velteg Initial side

Vertex Initial side

(i)Positive angle Fig 3.1 (ii) Negative angle
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called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotation is anticlockwise, the angle is said to be positive and if the direction of rotation
is clockwise, then the angle is negative (Fig 3.1).

The measure of an angle is the amount of Initial side \A
rotation performed to get the terminal side from . . -
Terminal Side B

the initial side. There are several units for
measuring angles. The definition of an angle Fig 3.2

suggests a unit, viz. one complete revolution from the position of the initial side as
indicated in Fig 3.2.

This is often convenient for large angles. For example, we can say that a rapidly
spinning wheel is making an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

th
3.2.1 Degree measure 1If arotation from the initial side to terminal side is (%j of

arevolution, the angle is said to have a measure of one degree, written as 1°. A degree is
divided into 60 minutes, and a minute is divided into 60 seconds . One sixtieth of a degree is
called a minute, written as 1, and one sixtieth of a minute is called a second, written as 1”.
Thus, 1° =60/, 1" =60

Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
shown in Fig 3.3.

(o] (o]
360 A O 270
@ S5 B< 180 v >A A
B

(0]

(o]
420 o A A
A NZ_30° > _ 420"
B
Fig 3.3 B
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3.2.2 Radian measure There is another unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unit in a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig

3.4(i) to (iv), OA is the initial side and OB is the terminal side. The figures show the

1 1
angles whose measures are 1 radian, —1 radian, 15 radian and —1 5 radian.
B‘\
1
\

(i) (1)

(iii)

@iv)
Fig 3.4 (i) to (iv)

We know that the circumference of a circle of radius 1 unit is 27. Thus, one
complete revolution of the initial side subtends an angle of 27 radian.

More generally, in a circle of radius r, an arc of length r will subtend an angle of
1 radian. It is well-known that equal arcs of a circle subtend equal angle at the centre.
Since in a circle of radius r, an arc of length r subtends an angle whose measure is 1
radian, an arc of length / will subtend an angle whose measure is L radian. Thus, if in

r
acircle of radius r, an arc of length / subtends an angle 6 radian at the centre, we have

l
O =—orl =r0.
r
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3.2.3 Relation between radian and real numbers N
Consider the unit circle with centre O. Let A be any point 1
on the circle. Consider OA as initial side of an angle.
Then the length of an arc of the circle will give the radian 11
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0
real number zero, AP represents positive real number and
AQ represents negative real numbers (Fig 3.5). If we
rope the line AP in the anticlockwise direction along the
circle, and AQ in the clockwise direction, then every real
number will correspond to a radian measure and {122

conversely. Thus, radian measures and real numbers can Fig 3.5 v, Q
be considered as one and the same.

3.2.4 Relation between degree and radian Since a circle subtends at the centre
an angle whose radian measure is 27 and its degree measure is 360°, it follows that

2rw radian = 360° or mwradian = 180°

The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

22

of w as 7, we have

o

1 radian = =57° 16" approximately.
T
Also 1°= 130 radian = 0.01746 radian approximately.

The relation between degree measures and radian measure of some common angles
are given in the following table:

Degree | 30° 45° 60° 90° 180° | 2700 | 360°
et | = | = | x| = 3n
adan ¢ 4 3 2 m 2 2
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Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measure is 6 and
whenever we write angle 3, we mean the angle whose radian measure is f3.

Note that when an angle is expressed in radians, the word ‘radian’ is frequently

. o T o . . . T
omitted. Thus, ©=180° and e 45° are written with the understanding that 7w and 2

are radian measures. Thus, we can say that

T
Radian measure = @ x Degree measure
180 .
Degree measure = —— X Radian measure
T

Example 1 Convert 40° 20" into radian measure.

Solution We know that 180° = 7 radian.

: 1 n 121 121w .
Hence 40° 20" =40 3 degree = 130 XT radian = 540 radian.
, 121n .
Therefore 40° 20" = 540 radian.

Example 2 Convert 6 radians into degree measure.

Solution We know that 7 radian = 180°.

H 6 radi 8 S 1080x7 q
= WA X = -
ence radians . egree 5, degree
7 7%x60
=343—degree =343°+ minute [as 1° = 60]
11 11
2
=343° + 38" + ﬁ minute [as 17 = 607]
=343° +38 +10.9” =343°38’ 11” approximately.
Hence 6 radians = 343° 38" 11” approximately.

Example 3 Find the radius of the circle in which a central angle of 60° intercepts an

arc of length 37.4 cm (use @ =7).
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. 60 . 1
Solution Here [ =37.4 cm and 6 = 60° = 180 radian = 3

Hence, by r= 6 , we have
37.4x3  37.4%x3x7
r= = =357 cm
T 22

Example 4 The minute hand of a watch is 1.5 cm long. How far does its tip move in
40 minutes? (Use 7 = 3.14).

Solution In 60 minutes, the minute hand of a watch completes one revolution. Therefore,

2
in 40 minutes, the minute hand turns through — of arevolution. Therefore, 0 = 3 x 360°

3
T
or ? radian. Hence, the required distance travelled is given by
4n
l=r0 =15 ><?cm=2ﬂ:cm=2><3.14cm=6.280m.

Example 5 If the arcs of the same lengths in two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Let r . and r, be the radii of the two circles. Given that

e _ 650 _ LX 65 13_7T d
T T80 T 36
T 221 )

and 0, =110°= @XUO = gradlan
Let [ be the length of each of the arc. Then [ = rle1 = r262, which gives

36 11T 3¢ XMarlen =0
Hence roir,=22:13.

| EXERCISE 3.1 |

1.  Find the radian measures corresponding to the following degree measures:
(1) 25° (ii) —47°30 (iii) 240° (iv) 520°
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2. Find the degree measures corresponding to the following radian measures

2
(Use —7).
1 S 5 _n
® 16 i - (i) 3 (iv) 5

3. A wheel makes 360 revolutions in one minute. Through how many radians does
it turn in one second?
4. Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use T = 7).

5. Inacircle of diameter 40 cm, the length of a chord is 20 cm. Find the length of
minor arc of the chord.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find the ratio of their radii.
7.  Find the angle in radian through which a pendulum swings if its length is 75 cm
and th e tip describes an arc of length
1 10cm (i) 15cm @@i) 21 cm

3.3 Trigonometric Functions

In earlier classes, we have studied trigonometric ratios for acute angles as the ratio of
sides of a right angled triangle. We will now extend the definition of trigonometric
ratios to any angle in terms of radian measure and study them as trigonometric functions.

Consider a unit circle with centre %
at origin of the coordinate axes. Let '\
P (a, b) be any point on the circle with
angle AOP = x radian, i.e., length of arc ODIB _ p 5
AP = x (Fig 3.6).
We define cos x=a and sinx = b 1 b ¥
Since AOMP is aright triangle, we have c1,0C X \, (1,0)
OM2 + MP? = OP?or a® + > = 1 ~ oleam Ja X
Thus, for every point on the unit circle,
we have
aZ. + b’=1 or cos’x + sin’*x = .1 N
Since one complete revolution
subtends an angle of 2x radian at the ;{f,
centre of the circle, ZAOB = % , Fig 3.6
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3n I
ZAOC=mand ZAOD = o All angles which are integral multiples of 5 are called

quadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1, 0), (0, 1), (-1, 0) and (0, —1). Therefore, for quadrantal angles, we have

cos0°=1 sin 0° =0,
Z =0 in— =1

cos 5 = sin 5 =
cost=—1 sint =0
O
cos ;= sin 5 ="
cos 2w =1 sin2wt =0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we also observe that if x increases (or decreases) by any integral
multiple of 27, the values of sine and cosine functions do not change. Thus,

sin 2nm + x) =sinxsne Z, cos 2nt+x)=cosx-ne Z
Further, sin x=0, if x =0, + &, + 2%, + 37, ..., i.e., when x is an integral multiple of &

3 Sn

+ — ,+ —, ..1ie., cos x vanishes when x is an odd

T
d =0,if x =+ —,
and cos x 1 ) ’ )

I
multiple of 5 Thus
sin x = 0 implies x = nT, where 7 is any integer

T
cos x = 0 implies x = 2n + 1) 2 where 7 is any integer.

We now define other trigonometric functions in terms of sine and cosine functions:

1
cosec x = ——, x # nm, where n is any integer.
sin x
Tc . .
secx = ,X#(2n+ 1) =, where n is any integer.
cosx 2
sin x T _ )
tanx = ,X# (2n +1)—, where n is any integer.
cosx 2
COs X _ )
cotx = —,Xx#nT, wheren is any integer.
sin x
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We have shown that for all real x, sin’x + cos’x =1
It follows that
1 + tan’x = sec’x (why?)

1 + cot’x = cosec’x (why?)

In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°,45°,60° and 90°. The values of trigonometric functions for these angles are same
as that of trigonometric ratios studied in earlier classes. Thus, we have the following
table:

e | * | ® T | = 3
6 4 3 2 " 2 o
. 5 1] L SO X 0 1 0
Sin 9 \/5 2 a
R
coSs 1 7 \/5 ) 0 =1 0 1
Ry not not
tan 0 NE) 1 V3 defined L defined 0

The values of cosec x, sec x and cot x

Y
are the reciprocal of the values of sin x, N
cos x and tan x, respectively.
ODIB p (a, b)
3.3.1 Sign of trigonometric functions ‘\
Let P (a, b) be a point on the unit circle 1
with centre at the origin such that  (-1,0)C X | b \/(1, 0)
ZAOP = x. If ZAOQ = — x, then the ~ < o\ fA >X
coordinates of the point Q will be (a, —b) X
(Fig 3.7). Therefore | /
cos (—x) = cos x 0,1 [p Q(a-b)
and sin (—x)=-sinx
4
Since for every point P (a, b) on Y’
the unit circle, — 1 < a <1 and Fig 3.7
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- 1< b<1,wehave—1<cosx<1and-1<sinx<1 forall x. We have learnt in

T
previous classes that in the first quadrant (0 < x < B ) a and b are both positive, in the
second quadrant (5 < x <T) a is negative and b is positive, in the third quadrant

3n 3n
(T<x< 7 ) a and b are both negative and in the fourth quadrant (7 <x<2m) ais

positive and b is negative. Therefore, sin x is positive for 0 < x < 7, and negative for

T T 3n
T < x< 2m. Similarly, cos x is positive for 0 <x < 3 negative for 3 <x< > and also

3n
positive for o < x < 2x. Likewise, we can find the signs of other trigonometric

functions in different quadrants. In fact, we have the following table.

I II I1I v
sin x + - - _
coS X + - - +
tan x + = 4L _
COsec x + + - -
sec x + - - +
cot x 5 = aF —

3.3.2 Domain and range of trigonometric functions From the definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each real number x,

—1<sinx<land —1<cosx<1

Thus, domain of y = sin x and y = cos x is the set of all real numbers and range

is the interval [-1, 1],1.e., - 1 <y < 1.
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Since cosec x = sinx° the domain of y = cosec x is the set { x : x € R and

x#nn,ne Z} andrangeistheset {y:ye R,y 21 ory <-1}. Similarly, the domain

T
ofy=secxistheset {x:xe Randx# 2n + 1) E,ne Z} and range is the set

{y:y € Rjy <—1lory=1}. The domain of y = tan x is the set {x : x € R and

T
x#@2n+ 1) E’ n € Z} and range is the set of all real numbers. The domain of

y=cotxistheset {x:x € Rand x#n 7, n e Z} and the range is the set of all real
numbers.

b
We further observe that in the first quadrant, as x increases from 0 to E , sin x
. . T .
increases from O to 1, as x increases from E to T, sin x decreases from 1 to 0. In the
. . 3n . .
third quadrant, as x increases from T t07 , sin x decreases from 0 to —1and finally, in

02
207'5.

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
have the following table:

the fourth quadrant, sin x increases from —1 to O as x increases from

I quadrant II quadrant III quadrant IV quadrant

sin

increases from O to 1

decreases from 1 to 0

decreases from 0 to —1

increases from —1 to O

COos

decreases from 1 to 0

decreases from 0 to — 1

increases from —1 to 0

increases from O to 1

tan

increases from 0 to oo

increases from —ooto 0

increases from 0 to oo

increases from —ooto 0

cot

decreases from oo to 0

decreases from 0 to—oo

decreases from oo to 0

decreases from 0to —oo

secC

increases from 1 to oo

increases from —ooto—1

decreases from —1to—oo

decreases from oo to 1

cosec

decreases from oo to 1

increases from 1 to oo

increases from —ooto—1

decreases from—1to—oo

Remark In the above table, the statement tan x increases from 0 to oo (infinity) for

T T
O<x< 5 simply means that tan x increases as x increases for 0 < x < 5 and
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T
assumes arbitraily large positive values as x approaches to 5 Similarly, to say that

cosec x decreases from —1 to — oo (minus infinity) in the fourth quadrant means that

3n
cosec x decreases for x € (? , 21) and assumes arbitrarily large negative values as

x approaches to 27. The symbols oo and — oo simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin x and cos x repeats after an interval of

2n. Hence, values of cosec x and sec x will also repeat after an interval of 2. We

Y
A

LN N o\ N\ a

X’/ T ¢ ¢ T T T T T
dn N\ T AR o mN\_ T
2
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L} Y L] L}
2t/ ;
IR G
- Y
’/: 1 L ® 1 P
X'<€ — o 'L 3 X
2,-17 2 )
el B ;
Yl
y=secx y = cosec x
Fig 3.12 Fig 3.13

shall see in the next section that tan (7 + x) = tan x. Hence, values of tan x will repeat
after an interval of 7. Since cot x is reciprocal of tan x, its values will also repeat after
an interval of 7. Using this knowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

Example 6 If cosx= - é , x lies in the third quadrant, find the values of other five
5

trigonometric functions.
L . 5
Solution Since cos x = —g , we have sec x = —g
Now sin’x + cos?x = 1, i.e., sin’x = 1 — cos’x

. 9 16
or sinfx=1-— = —

25 25

Hence sinx =+ —

Since x lies in third quadrant, sin x is negative. Therefore

. 4
sinx=- _

5
which also gives

Bl

CoseC X = —
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Further, we have

sinx 4 cosx 3
tan x = = — and cotx=—; = —.
cosx 3 sinx 4
5 o ! .
Example 7 If cot x = — E’ x lies in second quadrant, find the values of other five
trigonometric functions.
. . 5 12
Solution Since cotx = — —, we have tanx =— —
12 5
N Zx=1+tan’x=1+ & = @
ow sec’x = an’x = 5 = 25
13
Hence sec x =% ?

Since x lies in second quadrant, sec x will be negative. Therefore

13
sec x =— 5
which also gives
COS X = ——
13
Further, we have
~~ o5 1
sinx = tan x cos x = (- 5 ) x (= 13) =13
q 1 13
an cosec x == .
sinx 12
. o 3lIn
Example 8 Find the value of sin T .

Solution We know that values of sin x repeats after an interval of 2x. Therefore

ol

1L .
sin 3 = sin ( 71:+3)—s1n3—
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Example 9 Find the value of cos (=1710°).

Solution We know that values of cos x repeats after an interval of 27 or 360°.
Therefore, cos (—1710°) =cos (=1710° + 5 x360°)
=cos (-1710° + 1800°) = cos 90° = 0.

|EXERCISE 3.2 |

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. cosx=-—_, xlies in third quadrant.

2
3

2. sinx= g, x lies in second quadrant.

3
3. cotx= AR lies in third quadrant.

13
4. secx= ?, x lies in fourth quadrant.
5. tanx=-— E’ x lies in second quadrant.
Find the values of the trigonometric functions in Exercises 6 to 10.
6. sin765° 7. cosec (— 1410°)
o g 10 o n T
. tan 3 . sin (— 3

15n
10. cot (- T)

3.4 Trigonometric Functions of Sum and Difference of Two Angles

In this Section, we shall derive expressions for trigonometric functions of the sum and
difference of two numbers (angles) and related expressions. The basic results in this
connection are called trigonometric identities. We have seen that

1. sin (-x) =-sinx
2. ¢os (—x) =cos x

We shall now prove some more results:
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3. cos(x+y)=cosxcosy—sinxsiny

Consider the unit circle with centre at the origin. Letx be the angle P,OP and y be
the angle P OP,. Then (x + y) is the angle P,OP,. Also let (- y) be the angle P,OP..
Therefore, P, P,, P, and P, will have the coordinates P (cos x, sin x),
P, [cos (x + ), sin (x + y)], P, [cos (- y), sin (- y)] and P, (1, 0) (Fig 3.14).

Y
N

P, (cos x, sin x)

— <

e
X'<€

P, [cos(x + y), sin(x + y)]

P, [cos(-y), sin(-y)] ~——]

Fig 3.14

Consider the triangles P, OP, and P,OP,. They are congruent (Why?). Therefore,
P P, and P,P, are equal. By using distance formula, we get

P P.> =[cos x—cos (- y)]* + [sin x — sin(—y]?
= (cos x — cos y)? + (sin x + sin y)?
=co0s? x + cos> y — 2 cos x cos y + sin’x + sin*y + 2sin x sin y
=2 -2 (cos x cos y — sin x sin y) (Why?)
Also, PP? =[1-cos(x+y)]*+[0—sin(x+y)]
=1-2cos (x +y) +cos? (x +y) +sin? (x + y)

=2-2cos(x+y)

2020-21



TRIGONOMETRIC FUNCTIONS 65

Since P P, =PP, we have P1P32 = P2P42.
Therefore, 2 =2 (cos x cos y —sin x sin y) =2 — 2 cos (x + y).
Hence cos (x+y) =cos x cos y —sin x sin y

4. cos (x —y)=cosx cosy + sin x sin y
Replacing y by — y in identity 3, we get
cos (x + (—y)) = cos x cos (—y) — sin x sin (- y)
or cos(x—y)=cosxcosy+sinxsiny

T
5. cos (E—x) = sin x

I
If we replace x by 5 and y by x in Identity (4), we get

(n ) T T .
COS(-—X)=COS — COSX++SIn — SInx=SsIn x.
2 2 2

.oom
6. sm(E—x):cosx

Using the Identity 5, we have

_om r_(n_,
sm(E X) =cos 2 |2 = COS X.

7. sin (x +y) =sinx cosy + cos x sin y
We know that

sin (x + y) = cos [g—(x"‘)’)j = cos [(g—x)—YJ

n . Tc .
= Cos (E_x) cos y + sin (E_x) sin y

=sin x cos y + cos x sin y
8. sin(x —y)=sinx cosy - cos x siny
If we replace y by —y, in the Identity 7, we get the result.

9. By taking suitable values of x and y in the identities 3, 4, 7 and 8, we get the

following results:

T . R
cos (E+x) = -sin x sin (E+x) = coS X
cos (M —x) =—cos x sin (T —x) =sin x
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cos (T +x) =—cosx sin (T +x) =-sinx

cos (2T — x) = cos x sin (2% — x) = - sin x
Similar results for tan x, cot x, sec x and cosec x can be obtained from the results of sin
x and cos x.

T
10. If none of the angles x, y and (x + y) is an odd multiple of X then

tan x +tan y

tan (x +y) = 1-tanx tany

T
Since none of the x, y and (x + y) is an odd multiple of 5, it follows that cos x,
cos y and cos (x + y) are non-zero. Now

sin(x+y) sinxcosy+cosxsiny

tan (x +y) = = . -
cos(x+y) cosxcosy—sinxsiny

Dividing numerator and denominator by cos x cos y, we have

sin xXCos y 4 08 xsin y
COSXCOSYy COSXCOS Y

tan (x +y) = : 3
COSXCOs y  sinxsiny
COSXCOSY COSXCOS Yy
tanx+tany
= 1—tan xtany
tan x —tan y
11. tan (x —-y)=

1+tan x tan y
If we replace y by — y in Identity 10, we get
tan (x —y) =tan [x + (— y)]

tan x+tan (—y) tan x—tan y

I-tanxtan(—y) l+tanxtany
12. If none of the angles x, y and (x + y) is a multiple of &, then

cotxcoty—-1

cot (x +y) = cot y+cotx
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Since, none of the x, y and (x + y) is multiple of 7, we find that sin x sin y and
sin (x + y) are non-zero. Now,

cos(x+y) cosxcosy—sinxsiny
cot (x+y)=— = .
sin (x+y) sinxcos y+cos xsiny

Dividing numerator and denominator by sin x sin y, we have

cotxcoty—1
cot(x+y)=—""—
coty+cotx

cotxcoty+1
13. cot (x —y)= CORreoyr if none of angles x, y and x—y is a multiple of 7
coty —cotx

If we replace y by —y in identity 12, we get the result

) ) 1-tan® x
14. cos 2x =cos’x —sin*x=2cos’x—-1=1-2sin*x= ———>—
1+tan” x

‘We know that

cos (x + y) =cos x cosy—sin x sin y
Replacing y by x, we get
cos 2x = cos’x — sin®x

=cos’x — (1 —cos?x) =2 cos’x — 1
Again, cos 2x = cos? x — sin*x

=1-sin’x—sin>x=1-2 sin’x.
cos® x—sin®x
We have cos2x=cos’x—sin?x = — 5 5
cos” x+sin “ x

Dividing numerator and denominator by cos? x, we get

1—tan® x T . .
cos2x =", X#nm+—_ where nis an integer
I+tan” x 2
2tan x

T . .
15. sin 2x = 2 sinx cos x = X#nm +5, where n is an integer

1+tan® x
We have

sin (x + y) = sin x cos y + cos x sin y
Replacing y by x, we get sin 2x = 2 sin x cos x.

2sin xCcos x

Again sin 2x = . 5
g cos’ x+sin’ x
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Dividing each term by cos? x, we get
2tan x

sin 2x =
* 1+tan” x

2tan x

T
16. tan2x = if 2x#nmn +5, where n is an integer

1-tan’x
‘We know that

tanx +tany
tan (x +y) = 1—tanx tany
. 2 tan x
Replacing y by x , we get tan2x=1t—2
—tan” x

17. sin 3x =3 sin x — 4 sin’x
We have,
sin 3x = sin (2x + x)
=sin 2x cos x + cos 2x sin x
=2 sin x cos x cos x + (1 — 2sin?x) sin x
=2sinx (1 —sin?x) + sin x — 2 sin’x
=2sinx—2 sin*x + sin x — 2 sin®*x
=3sinx—4sin’x
18. cos 3x=4 cos’x — 3 cos x
We have,
cos 3x = cos (2x +x)
=co0s 2x cos x — sin 2x sin x
= (2cos*x — 1) cos x — 2sin x cos x sin x
= (2cos*x — 1) cos x — 2cos x (1 — cos?x)
=2c0s’x — cos x — 2cos x + 2 cos’x
=4cos*x — 3cos x.

3tan x —tan® x T .
19. tan3x =m if 3x;tnn+5, where n is an integer

We have tan 3x =tan (2x + x)
2tan x
tan 2x +tan x 1—tan? x

1-tan 2x tan x I—M
1—tan® x

+ tan x
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_ 2tan x + tan x — tan’x _ 3tan x — tan>x

1—tan’x — 2tan’x 1—3tan’x

X+ X -
yCOS 4

20. (i) cosx + cosy = 2cos

(ii) cos x — cos y = — 2sin 1Y in XY
2 2
(iii) sin x + sin y = 2sin Y cos%
(iv) sin x —siny = 2cos xry sin%
We know that
cos (x+y)=cosxcosy—sinxsiny .. (1)
and €os (x —y) = C0S x COs y + Sin x sin y .. (2)
Adding and subtracting (1) and (2), we get
cos (x +y) +cos(x—y)= 2cosxcosy ... 3)
and cos (x+y)—cos (x—y)=-—2sinxsiny . (4)
Further  sin (x + y) = sin x cos y + cos x sin y ... (5)
and sin (x — y) = sin x oS y — €OS X Sin y ... (6)
Adding and subtracting (5) and (6), we get
sin (x + y) + sin (x —y) = 2 sin x cos y .. (1)
sin (x + y) — sin (x — y) = 2cos x sin y ... (8)

Let x + y = 0 and x — y = ¢. Therefore

o2 (2]
2 2

Substituting the values of x and y in (3), (4), (7) and (8), we get

cos 0 + cos 0 =2 cos [GL;DJCOS [6_;(1))

cos O —cos ¢ =—2 sin [9+¢jsin[9—¢j
2 2

sin © +sin ¢ =2 sin [942-¢jcos [G—T(l)j

2020-21

69



70 MATHEMATICS

sin  — sin ¢ =2 cos [e—kTq)jSin [9_;(1))

Since 0 and ¢ can take any real values, we can replace 6 by x and ¢ by y.
Thus, we get

Xy Xty X~y
; COS X —Ccos y =— 2 sin

COs

COS X + cos y =2 cos

Xty  X—y . . x+y . x=y
cos ; sinx —siny =2 cos sin

sin x + sin y = 2 sin

Remark As a part of identities given in 20, we can prove the following results:

21. (i) 2cosxcosy=cos (x +y)+ cos (x —y)
(ii) —2sinx siny =cos (x +y) — cos (x —y)
(iii) 2 sin x cos y = sin (x + y) + sin (x — y)
(iv) 2 cos x siny =sin (x + y) — sin (x - y).

Example 10 Prove that
3sin£sec£—4sin5—ncot5=1
6 3 6 4
Solution We have

L.H.S 3sinEseCE—4sinEcotE
T 6 3 6 4

3x = x2—dsin | T |x1=3—4sin =
_><2><—s1n 6><——sm6

1
=3-4x - =1=RHS.
2
Example 11 Find the value of sin 15°.

Solution We have
sin 15° = sin (45° - 30°)
= sin 45° cos 30° — cos 45° sin 30°

ILINVEIE U NE !
NN N
131

Example 12 Find the value of tan EE
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Solution We have
131 . T otan| E-T
tan D = tan 12 = tan 12 4 6

T T
tan— —tan — 1-
4 6

& =) =
|
W
+
*

= p T =
1+tan—tan— 1+
4 6

Example 13 Prove that

sin(x+y) tanx+tany

sin(x—y) tanx—tany "
Solution We have

_sin(x+y) sinxcos y+cosxsiny

L.H.S. _Sin (x—y) sinxcosy—cosxsiny

Dividing the numerator and denominator by cos x cos y, we get

sin(x+y) tanx+tany

sin(x—y) tanx—tany °
Example 14 Show that
tan 3 x tan 2 x tan x = tan 3x —tan 2 x — tan x
Solution We know that 3x = 2x + x

Therefore, tan 3x =tan (2x + x)

tan 2 x+tan x
or tan3x=————

1—tan 2 xtan x
or tan 3x — tan 3x tan 2x tan x = tan 2x + tan x
or tan 3x — tan 2x — tan x = tan 3x tan 2x tan x
or tan 3x tan 2x tan x = tan 3x — tan 2x — tan x.

Example 15 Prove that
cos [§+ X J+cos [g—x j=\/§ cosx

Solution Using the Identity 20(i), we have
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T 1
=2COSZ cosx:2x$ cos x = /7 cos x = R.H.S.

cos 7x+cosSx _

Example 16 Prove that cot x

sin 7x —sin S5x
Solution Using the Identities 20 (i) and 20 (iv), we get

Tx+5x Tx—5x
cos

2cos
2 CcoS X

2
L.H.S. = = N =cotx = R.H.S.
2c08 Tx+5x sin Tx—5x sin x

2

sin5x—2sin3x+sinx _

Example 17 Prove that = tan x

cos5x—cosx
Solution We have

sinSx—2sin3x+sinx _sinSx+sinx—2sin3x

LHS. =
cos5x—cosx cos5x—cosx
~ 2sin3x cos2x—2sin3x B sin3x (cos2x—1)
—2sin3xsin 2x sin 3xsin 2x

_1—cos2x _ 2sin® x

: = = tanx = R.H.S.
sin 2x 2sin xcos x
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| EXERCISE 3.3 |
Prove that:
1. si » T , B t ) R__ 2 2 2-2E 2 _TCCOSZE—E
. sin 6+cos 3—an 4 > . sm6+cosec 5 )
.23 T
3. cotzE+coseCS—n+3tanZE=6 4. 2s1n2—n+200s25+2se02—=10
6 6 6 4 4 3
5. Find the value of:
(i) sin 75° (ii) tan 15°
Prove the following:
cos E—x oS r_ —sin E—x Sin e =sin(x+y)
6. 1 1 y 1 7, y y
tan E+x 2
4 (1+tanx] cos (m+x) cos(—x) 2
7. = 8. = cot'x
T 1—tan x . T
tan | ——x sin (T—x) cos | —+x
4 2
3n 3n
9. cos 7+x cos (2m+x) | cot 7—x +cot 2n+x)|=1
10. sin(n+ xsin (n+ 2)x + cos (n+ 1)x cos (n + 2)x = cos x
11. cos E+x —Cos E—x = —/2sin x
4 4
12. sin® 6x — sin®4x = sin 2x sin 10x 13. cos? 2x — cos? 6x = sin 4x sin 8x
14. sin2 x + 2 sin 4x + sin 6x = 4 cos? x sin 4x
15. cot 4x (sin 5x + sin 3x) = cot x (sin 5x — sin 3x)
cos9x —cosSx sin2x sinSx + sin 3x
16. — - =- 17. ————— =tan4x
sin17x — sin3x cos10x cosSx + cos3x
sinx —siny xX—y sin x + sin 3x
18, = =tan 19, ——————— =tan2x
COSX+Cosy 2 cosx + cos3x
sin x — sin 3x i cos4x + cos3x+cos2x
20, —5 5 = 2sinx 21. — X - = cot3x
sin” x —cos” x sin4x + sin3x + sin2x
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22.

23.

25.

MATHEMATICS

cot x cot 2x — cot 2x cot 3x —cot 3x cot x = 1

4tan x (1—tan’x)

> - 24. cos 4x =1 — 8sin® x cos® x
1-6tan“x +tan x

tan 4x =

cos 6x = 32 cos® x — 48cos* x + 18 cos? x — 1

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
equations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 27 and the
values of tan x repeat after an interval of 7. The solutions of a trigonometric equation
for which 0 < x < 2w are called principal solutions. The expression involving integer
‘n’ which gives all solutions of a trigonometric equation is called the general solution.
We shall use ‘Z’ to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

NE

Example 18 Find the principal solutions of the equation sinx = —.

b 3
3 2

. 3 . 2T T .
Solution We know that, sm% = % and s ? = sin [n _Ej =sin—=——,

Therefore, principal solutions are x =§ and —.

T 2
3

1

Example 19 Find the principal solutions of the equation tanx = — ﬁ

1
Solution We know that, tang = L Thus, tan [n —%J= - tan% =——

NG g

d tan 21t—E ——tanE——L
an 6 6 NG
Thus tans—n:tan&:—i.
6 6 3
o . Sn 1lx
Therefore, principal solutions are " and o

We will now find the general solutions of trigonometric equations. We have already
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seen that:
sinx =0 gives x= nmn, where n € Z

s
cosx =0 gives x=(2n + 1)5 , where n € Z.

We shall now prove the following results:
Theorem 1 For any real numbers x and y,

sin x = sin y implies x = nmt + (-1)" y, where n € Z
Proof  If sin x = siny, then

x+ xX—
4 sin 4 =0
2

sinx—siny=0 or 2cos

L X+y L Xy
which gives cos =0 or sin =0
2 2
x+y Vi )
Therefore T =2n+ 1)5 or ) =nx, where n € Z
ie. x=02n+1)w—y orx=2nw+y, where neZ
Hence x=Q2n+ D+ (D**'yorx=2nn+(-1)"y, where n € Z.

Combining these two results, we get
x=nw+ (=1)"y, where n € Z.

Theorem 2 For any real numbers x and y, cos x = cos y, implies x= 2nmw * y,
where n € Z

Proof If cos x = cos y, then

Xty | x-y

cosx—cosy=0 1ie, -2sin sin , = 0

x+ X =

Thus sin Y =0 or sin Y =0
2 2
X—

Therefore =nm or =nn, where n € Z
ie. x=2nm—7y orx=2nw+y, where n € Z
Hence x=2nnty wherene Z

s
Theorem 3 Prove that if x and y are not odd mulitple of 3 then

tan x = tan y implies x =nm + y, where n € Z
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Proof If tanx=tany, then tanx—tany=0

Sinx cosy—Ccosx siny
or =

COSX COSYy
which gives sin(x—y)=0 (Why?)
Therefore X—y=nm,ie,x=nn+y, wheren € Z
: . . V3

Example 20 Find the solution of sinx =— 7

3 LT L . A4mn
Solution We have sinx =— 7 = —SIn— =sIn n+§ =sin ?

. . 4n ) )

Hence sin x = SIII? , which gives

, 4
x=nn+(-1) ?, where n € Z.

4n oy, 3
3 is one such value of x for which sin x = Y One may take any

3
other value of x for which sinx = — 7 The solutions obtained will be the same

although these may apparently look different.

Example 21 Solve cosx = —.

D= N

b
Solution We have, cOs x = — = COSE

T
Therefore X =2nn ig , where n € Z.

Example 22 Solve tan 2x = — cot[x +§j

Solution We have, tan 2x=—cot[x+£} = tan [g+x+§J
3
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5w
or tan2x = tan| x +?
5w
Therefore 2x=nn+x+ I where neZ
5w
or x:mH_F’ where ne Z.

Example 23 Solve sin 2x — sin 4x + sin 6x = 0.

Solution The equation can be written as
sin6x +sin2x —sin4x =0

or 2sin4xcos2x—sindx =0
ie. sin4dx(2cos2x—1) =0

) 1
Therefore sindx=0 or cos2x= v

) T
ie. sindx =0 or cos2x= COSE

T
Hence 4x=nm or 2x=12nm ig , where neZ
nm T

ie. x=7 or x =mtig, where ne Z.

Example 24 Solve 2 cos>x + 3 sinx =0
Solution The equation can be written as

2(1—sin2 x)+38inx =0

or 2sin” x—3sinx—2 =0
or (2sinx +1) (sinx—2) =0
. 1 .
Hence sin x = —5 or sinx=2
But sin x = 2 is not possible (Why?)
Therefi i L sin n
erefore sin x = )= 6
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Hence, the solution is given by

T
x=nn+(—1)"— where n e Z.

6

| EXERCISE 3.4
Find the principal and general solutions of the following equations:
1. tanx:ﬁ 2. secx=2
3. Cotx:_ﬁ 4. cosecx=-2
Find the general solution for each of the following equations:
5. cos4dx=cos2x 6. cos3x+cosx—cos2x=0
7.  sin2x+cosx=0 8. sec? 2x = - tan 2x

9. sinx+sin3x+sin5x=0

Miscellaneous Examples

12
Example 25 If sin x = g, cosy= —1—3, where x and y both lie in second quadrant,

find the value of sin (x + y).

Solution We know that

sin (x + y) = sin x cos y + cos x sin y .. (1)
. 9 16
Now cos? x=1-sinfx=1-—="—
25 25
4

Therefore cos x = ig.

Since x lies in second quadrant, cos x is negative.

4
Hence cos x=——

5
N 7 9 _1 2 _1 &_g
ow sin'y =1 — cos’y = ~ 169~ 169
. . 5
1.e. smy—_B.

5
Since y lies in second quadrant, hence sin y is positive. Therefore, sin y = 1—3 Substituting

the values of sin x, sin y, cos x and cos y in (1), we get
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: 3 { 12) (4)5 36 20 56
sin(x+y) = —X ——J+ ——Jx— = ===
5 5) 13 65 65 65

Example 26  Prove that
cos 2x cosf—cos 3x cos% =sin S5x sin 2 .
2 2 2
Solution  We have

1 X 9x
— — | 2cos 2x cos——2c0os — cos 3x
s - [rasareo- o o]

=l cosS 2x+£ +cos 2x—ﬁ —COoS %+3x —COoS 9—x—3x
2 2 2 2 2

1l 5x 3x 15x 3x| 1] 5x 15x |
= —|_COS— +COS—™ —COS—™— —COS— | = _|_COS—— COS_J
2 2 2 2 2172 2 2

5x  15x 5x 15x) ]
1 ER, PR
—| —2sin 2 2 sin 2 2
=2 2 2

. . 5x ) . . 5x
= —sin5x sin ——Jz sin5x sin— = R.H.S.
2 2
b
Example 27 Find the value of tan 3

T T
Solution Let x = Py Then 2x = e

2tan x
Now tan2x = ————
1—tan” x

2tanE

or tan— = Sn
1—tan’=

8

L ki3 Then 1 2y
et y =tan g enl = l—yz

2020-21
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or y+2y—-1=0

—2 1242
Therefore y= T\/_ = _1+2

T I
Since 3 lies in the first quadrant, y = tan 3 is positve. Hence

tangzﬁ—l_

3 3t X X X
Example 28 If tan x = Z, n<x< 7 , find the value of smz, cosz and tanz.

3n
Solution Since T<x< — > C0sx is negative.

3

50 272 4

X X
Therefore, sin 5 is positive and cos 5 1S negative.

9 25
Now sec’x=1+tan’x= 1+—=—
16 16
16 4
Therefore cos’x=— orcosx=—— (Why?)
25 5
L, X 4 9
Now 2sin" —=1- cosx =1+—=—.
2 5 5
Theref e >
erefore sin >=10
in— i Why?
or sm2 = \/ﬁ (Why?)
X | 4 1
; 2 2 =]1-—=-
Again 2cos )= 1+ cos x 5 5
X 1
Therefore cos? — = —
2 10
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x 1
= = ———= (Why?
. €08y =" o WY

Hence tan — = = X
X /
2 COS— 10 1

X
N EMJ 3

Example 29  Prove that cos?x + cos? [x + g j+ cos> [x _gj =

N | W

Solution We have

1+cos[2x+2n} l+cos[2x—2n}
LHS. = 1+0052x+ 3 " 3 ).

2 2 2

_ 1 3+ cos 2x+ cos [2x+2?n)+cos (2x—2?nﬂ

2
3+ cos 2x+ 2cos 2x cos ?n}

N | —

3+ cos 2x+ 2cos 2x cos [n—gﬂ

= N

34 cos 2x—2cos 2x cos %}

[3+cos 2x —cos 2x] = % =R.HS.

Miscellaneous Exercise on Chapter 3
Prove that:

T On 371 5w
1. 2cos— cos—+cos—+cos—=0
13 13 13 13

2. (sin 3x + sin x) sin x + (cos 3x —cos x) cos x =0
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3. (cos x + cos y)? + (sin x — sin y)*> = 4 cos?

-y
2
5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

. . . X
4. (cosx—cos y)? + (sinx— sin y)* = 4 sin’

(sin 7x + sin 5x) + (sin 9x + sin 3x)
(cos 7x + cos 5x) + (cos 9x + cos 3x)

= tan 6x

X 3x

7. sin 3x + sin 2x — sin x = 4sin x coOS E coS ?

X X
Find sin —, cos — and tan — in each of the following :

4
8. tanx = —g, x in quadrant II 9. cosx= —g, x in quadrant ITI

10. sinx = 1 x in quadrant II

Summary

¢ Ifin a circle of radius r, an arc of length / subtends an angle of 0 radians, then
=19

# Radian measure = X Degree measure

180

180
@ Degree measure = ——X Radian measure
T

@ cos®x +sin’x = 1

¢ 1 + tan’x = sec’x

& 1 + cot’x = cosec’x
@ cos (2nT + x) = cos x
¢ sin (2n7 + x) = sin x
@ sin (—x) =—sinx

@ cos (—x)=cos x
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@ cos (x +y) =cos x cos y—sin x sin y
®cos (x—y)=cosxcosy+sinxsiny

b
& cos (E—X) = sin x

s
¢ sin (E—x) =COS X

@ sin (x + y) = sin x cos y + cos x sin y

@ sin (x — y) = sin x coS y — COSs X sin y

@ cos [%"‘xj:—sinx sin [%"'XJ =CoS X
cos (T —Xx) =—cos x sin (T — x) = sin x
cos (T +x) =—cosx sin (T + x) = — sin x
cos (2T —x) = cos x sin (2T —x) =—sinx

b
¢ If none of the angles x, y and (x + y) is an odd multiple of E , then

tanx+tany
tan(x+y)=7T—"
1—tan x tany

tanx—tany

¢ tan (x - y) = 1+ tan xtan y

¢ If none of the angles x, y and (x + y) is a multiple of 7, then

cot xcot y—1

Bt (54 1) = coty+cotx

cotxcoty+1
# cot (x —y) = coty — cot x

1—tan’x

@®cos 2x =cos’x—sin*x=2cos?x—1=1-2sin’x =7 5
1+ tan“x
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2 tan x

@ sin 2x =2 sinX cos x = 5
1+tan“x

2tanx

tan 2x = T 5
* 1—tan’x

@ sin 3x = 3sinx —4sin’x
@ cos 3x = 4cos’x — 3cosXx

3tan x—tan’ x

{tam S = 1-3tan’ x

. 5 JEar
¢ (1) cosx+cosy=2cos ) )

(il) cos x —cos y =— 2sin

il . . Xty
(i) sinx+ sin y =2 sin

xX+y . XxX—
y S1n —y

(iv) sin x —sin y = 2cos
& (1) 2cosxcosy=cos (x+y)+cos(x—y)

(i) —2sin x siny = cos (x + y) — cos (x —y)

(iii) 2sin x cos y = sin (x + y) + sin (x — y)

(iv) 2 cos x siny =sin (x + y) — sin (x — y).

¢ sin x =0 gives x = nw, where n € Z.
T
®cosx=0givesx=2n+ 1) E,wherene Z.

¢ sin x =sin y implies x =nw + (— 1)* y, where n € Z.
@ cos x =cos y, implies x = 2nw = y, where n € Z.

¢ tan x =tan y implies x = n7 + y, where n € Z.
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Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara I (600) and
Bhaskara II (1114) got important results. All this knowledge first went from
India to middle-east and from there to Europe. The Greeks had also started the
study of trigonometry but their approach was so clumsy that when the Indian
approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents the main
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara I (about 600) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
(period) contains a proof for the expansion of sin (A + B). Exact expression for
sines or cosines of 18°, 36°, 54° 72°, etc., are given by
Bhaskara 1II.

The symbols sin™! x, cos™ x, etc., for arc sin x, arc cos x, etc., were
suggested by the astronomer Sir John E.W. Hersehel (1813) The names of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing the ratios:

H
— =— =tan (sun’s altitude)
S (s

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

4

@ ——

o,
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Chapter

11076CH04

PRINCIPLE OF
MATHEMATICAL INDUCTION

**Analysis and natural philosophy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for his theorem of the binomial and the principle of
universal gravity. - LAPLACE %

4.1 Introduction

One key basis for mathematical thinking is deductive rea-
soning. An informal, and example of deductive reasoning,
borrowed from the study of logic, is an argument expressed
in three statements:

(a) Socrates is a man.

(b)  All men are mortal, therefore,

(¢) Socrates is mortal.

If statements (a) and (b) are true, then the truth of (c) is
established. To make this simple mathematical example,
we could write:

(1) Eightis divisible by two.

(i) Anynumber divisible by two is an even number,

therefore,

(i) FEight is an even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidences till we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing data is the norm. Thus, in simple language,
we can say the word induction means the generalisation from particular cases or facts.

G. Peano
(1858-1932)
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In algebra or in other discipline of mathematics, there are certain results or state-
ments that are formulated in terms of n, where n is a positive integer. To prove such
statements the well-suited principle that is used—based on the specific technique, is
known as the principle of mathematical induction.

4.2 Motivation

In mathematics, we use a form of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed as shown in Fig 4.1.

Fig4.1

When the first tile is pushed in the indicated direction, all the tiles will fall. To be
absolutely sure that all the tiles will fall, it is sufficient to know that

(a) The firsttile falls, and

(b) In the event that any tile falls its successor necessarily falls.

This is the underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N is the smallest subset of R with the following property:

A set S is said to be an inductive setif 1€ Sand x+ 1 € S whenever x € S. Since
N is the smallest subset of R which is an inductive set, it follows that any subset of R
that is an inductive set must contain N.

Illustration

Suppose we wish to find the formula for the sum of positive integers 1, 2, 3....,n, that is,
a formula which will give the value of 1 + 2 + 3 when n = 3, the value 1 + 2 + 3 + 4,
when n =4 and so on and suppose that in some manner we are led to believe that the

nn+1) .

formulal +2+3+...+n = is the correct one.

How can this formula actually be proved? We can, of course, verify the statement
for as many positive integral values of n as we like, but this process will not prove the
formula for all values of n. What is needed is some kind of chain reaction which will
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have the effect that once the formula is proved for a particular positive integer the
formula will automatically follow for the next positive integer and the next indefinitely.
Such a reaction may be considered as produced by the method of mathematical induction.

4.3 The Principle of Mathematical Induction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement is true for n = 1, i.e., P(1) is true, and

(it) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, i.e., truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is simply a statement of fact. There may be situations when a
statement is true for all n > 4. In this case, step 1 will start from n = 4 and we shall
verify the result for n =4, i.e., P(4).

Property (ii) is a conditional property. It does not assert that the given statement
is true for n = k, but only that if it is true for n = k, then it is also true for n = k +1. So,
to prove that the property holds, only prove that conditional proposition:

If the statement is true for n = k, then it is also true forn =k + 1.

This is sometimes referred to as the inductive step. The assumption that the given
statement is true for n = k in this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, a formula will be discovered that appears

to fit a pattern like
1=1*=1
4=22=1+3
9=32=1+3+5
16=4>=14+3+5+7,etc.

It is worth to be noted that the sum of the first two odd natural numbers is the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

1+3+5+7+..+Q2n-1)=n?,1i.e,
the sum of the first n odd natural numbers is the square of n.

Let us write

Pn): 1+3+5+7+...+2n—-1)=n%

We wish to prove that P(n) is true for all n.

The first step in a proof that uses mathematical induction is to prove that
P (1) is true. This step is called the basic step. Obviously
1=1%1ie., P(1)is true.
The next step is called the inductive step. Here, we suppose that P (k) is true for some
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positive integer k and we need to prove that P (k + 1) is true. Since P (k) is true, we
have

1+3+5+7+...+R2k-1)=Fk .. (D

Consider
143+5+7+...+QRk—1)+ {2(k+1)-1} .. (2)
=+ Q2k+1)=(k+1)7 [Using (1)]

Therefore, P (k + 1) is true and the inductive proof is now completed.
Hence P(n) is true for all natural numbers n.

Example 1 For all n > 1, prove that

nn+1)2n+1)
6 .

Solution Let the given statement be P(n), i.e.,

n(n+1)(2n+1)
6

1A+DE2x1+1D)  1x2x3
6 6
Assume that P(k) is true for some positive integer &, i.e.,

k(k+1)(2k +1)
12+ 22+ 324+ 42+, .+ k2 s~ of @ .. (D
We shall now prove that P(k + 1) is also true. Now, we have

(12 422 +32 +4%2 +.. .+ )+ (k+1)?
k(k+1)(2k+1)

= 7+(k +1)° [Using (1)]

12+ 224+ 324+ 424+ .+1n* =

P(n): 1’+2*+32+4*+..+n* =

Forn=1, P(1): 1= =1 which is true.

k(k+1) 2k +D)+6(k +1)*
6

(k +1)(2k* +7k+6)
6

(k+1D)(k+1+D{2(k+1)+1}

6
Thus P(k + 1) is true, whenever P (k) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true
for all natural numbers n.
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Example 2 Prove that 2" > n for all positive integers n.

Solution Let P(n): 2" > n
When n =1, 2! >1. Hence P(1) is true.
Assume that P(k) is true for any positive integer k, i.e.,
2k >k (D)
We shall now prove that P(k +1) is true whenever P(k) is true.

Multiplying both sides of (1) by 2, we get
2.2F > 2k
e, 21 >2k=k+k>k+1

Therefore, P(k + 1) is true when P(k) is true. Hence, by principle of mathematical
induction, P(n) is true for every positive integer .

Example 3 For all n > 1, prove that
1 1 1 1 n

—+—+— ..+ L
1.2 23 34 n(n+1) n+1-

Solution We can write

1 N 1 N 1 L\ I n
PO0: 12723734 " an+l) n+l
1 1 1 L. .
We note that P(1): —=—=——, which is true. Thus, P(n) is true forn = 1.
1.2 2 1+1
Assume that P(k) is true for some natural number k,
N SN S IR ' U SN2
1€ 12723 34 7 k(k+1l) k+1 - (M
We need to prove that P(k + 1) is true whenever P(k) is true. We have
1 1 1 1 1
—t—+—F..+

1.2 23 34 7 k(k+1)+(k+1)(k+2)

111 1 1
- | —F—+—+.+ +
[1.2 23 34 k(k+1)} (k+1)(k+2)

ko, 1
T k+1 (k+1)(k+2)

[Using (1)]
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k241 (K +2k+1) (k+1) k+1  k+1

Tk+D(k+2) T GHDK+2) T (k1) (k+2)  k+2 (k+1)+1

Thus P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 4 For every positive integer n, prove that 7" — 3" is divisible by 4.

Solution We can write
P(n): 7" —3"is divisible by 4.

We note that

P(1): 7' — 3! = 4 which is divisible by 4. Thus P(n) is true for n = 1

Let P(k) be true for some natural number &,

i.e., P(k) : 7 — 3% is divisible by 4.

We can write 7% — 3* = 4d, where d € N.

Now, we wish to prove that P(k + 1) is true whenever P(k) is true.

NOW 7(k+1)_3(k+l) =7(k +l)_7'3k+7'3k_3(k+l)
=7(7T" - 3% + (7 - 3)3* =7(4d) + (7 - 3)3*
=74d) +4.3% = 4(7d + 3"

From the last line, we see that 7% 1 — 3* +1 ig divisible by 4. Thus, P(k + 1) is true

when P(k) is true. Therefore, by principle of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (1 + x)" = (1 + nx), for all natural number n, where x > — 1.

Solution Let P(n) be the given statement,
ie., Pm): (1 +x)" > (1 + nx), for x> - 1.
We note that P(n) is true when n = 1, since ( 14+x) > (1 + x) for x > -1

Assume that

P(k): (1 + x)* 2 (1 + kx), x > — 1 is true. .. (D
We want to prove that P(k + 1) is true for x > —1 whenever P(k) is true. .. 2)
Consider the identity

1I+x)*'=0+x)}(1+x)
Giventhat x>-1, so (14+x) > 0.

Therefore , by using (1 + x)* > (1 + kx), we have
1+x) > + kx)(1 + x)
i.e. (I +x)*' > (1 +x+ kx + k). .. (3)
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Here & is a natural number and x> > 0 so that kx> > 0. Therefore
(1 +x+kx+ kx> (1 +x + kx),

and so we obtain
1+ 20 +x+kx)
ie. (I+x)*' > [1+{+kx]

Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) is true for all natural numbers.

Example 6 Prove that
2.7"+3.5" =5 is divisible by 24, for alln € N.

Solution Let the statement P(n) be defined as
P(n) : 2.7+ 3.5"—5 is divisible by 24.
We note that P(n) is true for n = 1, since 2.7 + 3.5 — 5 = 24, which is divisible by 24.
Assume that P(k) is true
ie. 27+ 3.5-5=24qg, whenge N .. (D
Now, we wish to prove that P(k + 1) is true whenever P(k) is true.
We have
27+ 35 -5 =27 . 7" +3.5¢.5' -5
=7[27+35F-5-35+5]+3.5.5-5
=7 [24g - 3.5+ 5] + 15.5* -5
=7x%x24g-21.5"+35+ 155 -5
=7 %x24qg - 6.5+ 30
=7x%x24g-6(5-5)
=7 x24q -6 (4p) [(5%-5) is a multiple of 4 (why?)]

=7 x24q - 24p
=24 (7q - p)
=24 x r; r=Tq - p, is some natural number. .. 2)

The expression on the R.H.S. of (1) is divisible by 24. Thus P(k + 1) is true whenever
P(k) is true.

Hence, by principle of mathematical induction, P(n) is true for all n € N.
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Example 7 Prove that
i
PP+22+ ... +n* > ?,ne N
Solution Let P(n) be the given statement.

. 713
ie,P(m): 12+2%+ ... +n? >?, ne N

3
We note that P(n) is true for n = 1 since > > ?

Assume that P(k) is true

k3
ie. Pk): 17+ 22+ ...+ k& > ? ..(1)

We shall now prove that P(k + 1) is true whenever P(k) is true.
We have 12+ 22+ 32 + ... + K>+ (k + 1)?
3

= (P+2°+.+k%) + (k+1)" > % + (k+1)’ [by ()]

(OSSR

[k* + 3k* + 6k + 3]

1
[(k+l)3+3k+2]>§ (k+ 1)

(OSSR

Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by mathematical induction
P(n) is true for all n € N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
ie. P(n) : (ab)' = a'b".

We note that P(n) is true for n = 1 since (ab)'= a'b'.
Let P(k) be true, i.e.,

(ab)* = a'b* .. (D
We shall now prove that P(k + 1) is true whenever P(k) is true.
Now, we have

(ab)'*'= (ab)" (ab)
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Therefore, P(k + 1) is also true whenever P(k) is true. Hence, by principle of math-

MATHEMATICS

= (d" b") (ab) [by (1]
= (d" . a") . Db") =a* . b

ematical induction, P(n) is true for all n € N.

Prove the following by using the principle of mathematical induction foralln € N:

1.

10.

11.

| EXERCISE 4.1 |

3" -1
1+3+32+...+3”“=¥.
2
N
P+2°+3+ = (MJ
> .

1 1 1 2n
1+ + +ot =
I+2) (1+2+3) A+24+3+..n) (n+1)-

nn+l)(n+2)(n+3)

1.23+234 +...+ n(n+l) (n+2) = 1

Q2n-13""+3
— &

n(n+1)(n+2)}
— 3 |

13+232+333+...+ n3'=

12+23+34+...+n(n+l) = [

n(4n2 +6n—1)

1.3435+57+...+(2n-1) 2n+1) = 3

1.2+222+ 323+ ...+n2"=(n-1) 2"+ + 2.

L I S B
25 58 811 7 (Bn-D@Bn+2) (6n+4)"

1 1 1 1 n(n+3)
+ + ot =
123 234 345 n(n+)(n+2) 4n+D)(n+2)
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12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24.
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a(r' =1
r—=1 -~

[1+§j[1+§j [1+Zj...[1+(2njl)j=(n+l)2,
1 4 9 n
[1+1)[1+1j [1+1j...[1+1j=(n+1)_

1 2 3 n

n(2n—1)2n+1)
3 .

a+ar+arr+..+ar =

12432 +52 + ..+ (2n-1)* =

1 1 n

11
— ..t =
1.4 47 17.10 Gn-2)3n+1) @Gu+l)-

11
35 57 79 T @Qu+)2n+3) 32n+3)

1 1 n
+

1
1+2+3+...+n< §(2n+ 1)2

n(n+1)(n+5)is a multiple of 3.
10>~ + 1 is divisible by 11.

x* — y? is divisible by x + y.
32— 8n -9 is divisible by 8.
41" — 14" is a multiple of 27.
Rn+7)<(n+3)>

Summary

® One key basis for mathematical thinking is deductive reasoning. In contrast to

deduction, inductive reasoning depends on working with different cases and
developing a conjecture by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

@ The principle of mathematical induction is one such tool which can be used to

prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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96 MATHEMATICS

for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical induction is not
the invention of a particular individual at a fixed moment. It is said that the principle
of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

Later the principle was employed to provide a proof of the binomial theorem.

De Morgan contributed many accomplishments in the field of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan’s rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principle of mathematical induction is a restatement of one of the Peano’s axioms.

4

@ —

o,
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COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

s Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. — GAUSS **

5.1 Introduction

In earlier classes, we have studied linear equations in one
and two variables and quadratic equations in one variable.
We have seen that the equation x* + 1 = 0 has no real
solution as x* + 1 = 0 gives x> = — 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation x*> = — 1. In fact, the main
objective is to solve the equation ax? + bx + ¢ = 0, where
D = b* - 4ac <0, which is not possible in the system of
real numbers.

W. R. Hamilton
5.2 Complex Numbers (1805-1865)

Let us denote ,/_1 by the symbol i. Then, we have i* =—1. This means that i is a

solution of the equation x> + 1 = 0.
A number of the form a + ib, where a and b are real numbers, is defined to be a

11

For the complex number z = a + ib, a is called the real part, denoted by Re z and
b is called the imaginary part denoted by Im z of the complex number z. For example,
ifz=2+1i5,thenRe z=2and Im z =5.

Two complex numbers z, =a + ib and z, = ¢ + id are equal if a=cand b=d.

complex number. For example, 2 + i3, (- 1)+ /3, 4+ i[ J are complex numbers.

2020-21



98 MATHEMATICS

Example 1 If 4x + i(3x —y) =3 + i (— 6), where x and y are real numbers, then find
the values of x and y.

Solution We have
4x+i(Bx-y)=3+1i(-06) .. (D)
Equating the real and the imaginary parts of (1), we get
4x=3,3x—y=-06,
. o . 3 33
which, on solving simultaneously, give X= n and Y= I
5.3 Algebra of Complex Numbers
In this Section, we shall develop the algebra of complex numbers.

5.3.1 Addition of two complex numbers Letz, = a + ib and z, = ¢ + id be any two
complex numbers. Then, the sum z, + z, is defined as follows:

7, +2,=(a+c)+1i(b+d), which is again a complex number.
For example, 2 +i3) + (-6 +i5)=(2-6)+i(3+5)=-4+i8

The addition of complex numbers satisfy the following properties:

(1) The closure law The sum of two complex numbers is a complex
number, i.e., z, + z, is a complex number for all complex numbers
z, and z,.

(i) The commutative law For any two complex numbers z, and z,,
7, +2,=2,+7

(i) The associative law For any three complex numbers z,, z,, Z,,
(Zl + ZZ) + Z3 = Z1 + (ZZ [ Z3)'

@iv) The existence of additive identity There exists the complex number
0 + i 0 (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, 7z + 0 = z.

(v) The existence of additive inverse To every complex number
z = a + ib, we have the complex number — a + i(— b) (denoted as — z),
called the additive inverse or negative of z. We observe that z + (—z) =0
(the additive identity).

5.3.2 Difference of two complex numbers Given any two complex numbers z, and
25 the difference Z,-2, is defined as follows:
L=t - Zz)'
For example, 6G+3)-QL-D=06+3D)+(-2+i)=4+4i
and Q2-D-(06+3)=QL-D)+(-6-3)=-4-4i
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COMPLEX NUMBERS AND QUADRATIC EQUATIONS 99

5.3.3 Multiplication of two complex numbers Let z, = a + ib and z, = ¢ + id be any
two complex numbers. Then, the product z, z, is defined as follows:

2, 2, = (ac — bd) + i(ad + bc)

For example, 3+i5) 2+i6)=3x2-5x6)+i(3x6+5x%x2)=—24+i28
The multiplication of complex numbers possesses the following properties, which
we state without proofs.

@
(if)
(ii)
@iv)

)

(vi)

The closure law The product of two complex numbers is a complex number,
the product z, z, is a complex number for all complex numbers z, and z,.
The commutative law For any two complex numbers z, and z,,
Z1 ZZ = ZZ ZIA
The associative law For any three complex numbers z, z,, 2,
(z,2) 2, =2, (2, 2.
The existence of multiplicative identity There exists the complex number
14170 (denoted as 1), called the multiplicative identity such that z.1 = z,
for every complex number z.
The existence of multiplicative inverse For every non-zero complex
number z = a + ib or a + bi(a # 0, b # 0), we have the complex number

a . —b 1
R +i Y (denoted by Z or z7!), called the multiplicative inverse

of z such that

1
Z.—=1 (the multiplicative identity).
<

The distributive law For any three complex numbers z , z,, z,,
(@ z,(z,+z)=22,+2 2
®) (z,+2z)z,=2,2,+t2, 2

5.3.4 Division of two complex numbers Given any two complex numbers z, and z,,

. 4 . .
where z, # 0, the quotient o, s defined by
2

Z 1
_lzzl_
%) %)

For example,let z, =6+3iand z,=2-1i

Then

Z . 1 .
== (6+3)x— | = ; +1
% [( ) 2_1.) = (6+3l) 22+ 2
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- (6+3i)[%j - %[12—3+i(6+6):| =§(9+12i)

5.3.5 Power of i we know that

i° =(i2)2i=(—1)2i=i, i° =(i2)3 =(-1)’ =—1, etc.

IR SN A .. 1 1
Also, we have I =-X-=—=-1, 1 :7:_:_1’
i i -1 im -1
-3 1 1 i 1 4 1 1
io—ioi 1 i1
In general, for any integer k, i* =1, i**! =4, **2=—1, **3=—1

5.3.6 The square roots of a negative real number
Note that ?=—-1and (—-i)P?=#=-1
Therefore, the square roots of — 1 are 7, — i. However, by the symbol /_1, we would

mean i only.
Now, we can see that i and —i both are the solutions of the equation x>+ 1 =0 or
2
x*=-1.

Similarly (ﬁz‘)zz(ﬁ)2 2=3(C1)=-3

2 2
(—3i) = (—B) 2=-3
Therefore, the square roots of -3 are /3 ; and —+/3i.
Again, the symbol /=3 is meant to represent J3i only,ie., J=3 = J3i.

Generally, if a is a positive real number, \/—~¢ = <Ja V-1 = Ja i,

We already know that \/ax~/b = /b for all positive real number a and b. This

result also holds true when eithera>0,b<0 ora<0, b>0. Whatifa<0, b<0?
Let us examine.

Note that
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i =N-1-1= J(=1) (—1) (by assuming /g x+/b = Jab for all real numbers)

= «1 =1, which is a contradiction to the fact that i?=-1,
Therefore, \/Z x«/; #+/ab if both a and b are negative real numbers.
Further, if any of a and b is zero, then, clearly, \/Z x\/z =+Jab=0.
5.3.7 Identities We prove the following identity
( 71 +2, )2 = le + Z22 +2z,z,, for all complex numbers z, and z,.
Proof We have, (z,+2,)'=(z, +2,) (z, +2,),
= (g, +2)z,+(z,+2) 2, (Distributive law)
= 112 +2,7,+2, + 122 (Distributive law)
= 7P+ 232, v 52 t2 (Commutative law of multiplication)
=7 +235,+2
Similarly, we can prove the following identities:
. 2
O (a-2) =4 -2u5+2
.. 3
@) (z+2) =2 +35%+332 +2

3 2 2
(i) (z,-z,) =z —3z72,+322 — 2

: 2 2
V) 7 -2 =(5+2)(3 -2)
In fact, many other identities which are true for all real numbers, can be proved

to be true for all complex numbers.

Example 2 Express the following in the form of a + bi:
NEy 1Y
M (-50) [glj i) (i) (24) [—gl ]

~( L. =5 =5 5 5
Solution . (1) (=5i) [glj = —i = ?(—1) == g.|_i()

1 3
(L) s _
G (=) Z)( slj P axaxs T 256\
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Example 3 Express (5 — 3i)’in the form a + ib.

Solution We have, (5 - 3i)° = 5° -3 x52x (3i) + 3 x 5 (3i)*> -= (3i)*
=125- 225i - 135+27i =-10-198i.

Example 4 Express (—\/5 + \/3)(2\/5 - i)in the form of a + ib

Solution We have, (—\/§+\/3) (2\/5—1') = (—\/§+\/§i) (2\/§—i)
= 6+3i+2v6i—\2i* = (-6+32)+3(1+2V2)i

5.4 The Modulus and the Conjugate of a Complex Number

Let z=a + ib be a complex number. Then, the modulus of z, denoted by | z |, is defined

to be the non-negative real number /42 +p2 .ie.,1z1= /4% + p? and the conjugate

of z, denoted as 7, is the complex number a — ib,i.e., 7 =a— ib.
For example, |3+i| =432 +17 =410, | 2-5i| =27 +(-5)" =+/29,

and 3+i=3—i>» 2-5i=2+5i, 3i—5=3i-5
Observe that the multiplicative inverse of the non-zero complex number z is
given by
B 1 a__gm -b a—ib zZ
Ta+ib T a*+b* aP+bP T d+b T |Z|2

— 2
or z27=|z]
Furthermore, the following results can easily be derived.

For any two compex numbers z, and z, , we have

3y

2

||
0 |2 2|=|all] @ Q provided | z, | #0

ey, ——  —— . _ = — L& .
(i) zz,=2 2, iv) ztz,=7%tz, (V) (Zz )— 2 provided z, # 0.
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Example 5 Find the multiplicative inverse of 2 — 3i.
Solution Letz=2- 3i

Then 7 =2+3iand | z['=22+(-3)’=13
Therefore, the multiplicative inverse of 2 — 3; is given by

z _2+3 2 3,

1= -
|2

71 =

3 13 13

2N

The above working can be reproduced in the following manner also,

L1 2430
T 2-3i (2-30)(2+30)

Z

243i 243 2 3.
= = =—4+—1
22-@3i)* 13 13 13
Example 6 Express the following in the form a + ib

5+/2i

i Y 73S

() -2 (ii) i
Solution () Wo have, - N& =3+ V21, (AT _5+5V2i+2i-2
Solution (1) € nave, 1—\/51 1_\/51 1+\/§l 1_(\/51)2

) 3+6J§i:3(1+2ﬁi) 14243
1+2 3

5 1 1 1
= HT oo - X7 =2
—1

i
X
l

|EXERCISE 5.1]

Express each of the complex number given in the Exercises 1 to 10 in the
form a + ib.

NEER
1. (51)[—?) 2. %441 30¢%
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4. 37+iH+i(7+i7) 5. 1-)—-(-1+i6)

[1 ,2j [ ,sj [(1 .7) ( 1)} ( 4 j
6. |=ti=|-]|4+i= 7. —+i— |+ 4+i= ||| ——+i
5 5 2 3 3 3 3

3 3
8. (- 9. [§+3ij 10. [—2—%;’)

Find the multiplicative inverse of each of the complex numbers given in the
Exercises 11 to 13.

11. 4- 3i 12, f5+3i 13. —i

14. Express the following expression in the form of a + ib :
(3+iv5) (3-i/5)
(V3++2i)-(V3-in2)

5.5 Argand Plane and Polar Representation

We already know that corresponding to
each ordered pair of real numbers
(x, y), we get a unique point in the XY-
plane and vice-versa with reference to a
set of mutually perpendicular lines known
as the x-axis and the y-axis. The complex

D(2,0)

number x + iy which corresponds to the
ordered pair (x, y) can be represented ® E (-5,-2) ®F(1,-2)
geometrically as the unique point P(x, y)
in the XY-plane and vice-versa.

Some complex numbers such as
2+4+4i,-2+3i,0+1i,2+0i,—5-2i and
1 — 2i which correspond to the ordered
pairs (2, 4), (=2, 3), (0, 1), (2, 0), (=5, =2), and (1, — 2), respectively, have been
represented geometrically by the points A, B, C, D, E, and F, respectively in
the Fig 5.1.

The plane having a complex number assigned to each of its point is called the

Yl
Fig 5.1

complex plane or the Argand plane.
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Obviously, in the Argand plane, the modulus of the complex number

x + iy = {/x* + y? is the distance between the point P(x, y) and the origin O (0, 0)

(Fig 5.2). The points on the x-axis corresponds to the complex numbers of the form
a + i 0 and the points on the y-axis corresponds to the complex numbers of the form

Y
N
5 P(x, y)
%9
<
! X
X € o) >
(0,0)
v Fig 5.2
Y’ ig 5.

0+ i b. The x-axis and y-axis in the Argand plane are called, respectively, the real axis
and the imaginary axis.
The representation of a complex number z = x + iy and its conjugate
z =x — iy in the Argand plane are, respectively, the points P (x, y) and Q (x, — y).
Geometrically, the point (x, —y) is the mirror image of the point (x, y) on the real
axis (Fig 5.3).

Y
N P(x,y)
X' € e} >X
\ ,’ Q(x’ —.}’)
Y
Fig5.3
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5.5.1 Polar representation of a complex
number Let the point P represent the non-
zero complex number z = x + iy. Let the
directed line segment OP be of length r and
0 be the angle which OP makes with the
positive direction of x-axis (Fig 5.4).

We may note that the point P is
uniquely determined by the ordered pair of
real numbers (r, 0), called the polar
coordinates of the point P. We consider
the origin as the pole and the positive
direction of the x axis as the initial line.

v
Y
Fig 5.4

We have, x = r cos 6, y = r sin 0 and therefore, z = r (cos 0 + i sin 0). The latter

is said to be the polar form of the complex number. Here r=./x*+ y* =|Z| is the

modulus of z and 0 is called the argument (or amplitude) of z which is denoted by arg z.

For any complex number z # 0, there corresponds only one value of 0 in
0 <0 <2rn. However, any other interval of length 27, for example — Tt < 0 <, can be
such an interval.We shall take the value of 6 such that — = < 6 < T, called principal
argument of z and is denoted by arg z, unless specified otherwise. (Figs. 5.5 and 5.6)

Y Y
P P ',
0 0 0
X' X ! ' 1.
0 X 0 X X ) X X
P
Y’ Y’ Y’
()

(i)

(iii) (iv)

Fig 5.5 (0<6<2n)

Y P P Y
0 0
! ! X!
X o X X o X

Y’ Y’
@) (i)

(iii) (iv)

Fig5.6 (—t<0<m)
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Example 7 Represent the complex number z =1+ ir/3 in the polar form.
Solution Let 1 = r cos 6, ﬁ =rsin O

By squaring and adding, we get Y » (1,43)
r? (0052 0+ sin’ 6) =4
ie., r=v4=2 (conventionally, r >0) X 0 X
. 3 . . L
Therefore, ¢c0s0=—sin 0 =—— which gives 0= —
2 2 3 Y’
Fig 5.7

.. W
Therefore, required polar formis 2= 2[0035 +isin gj

The complex number z =1+ i3 is represented as shown in Fig 5.7.

-16

1+ i3 into polar form.

Example 8 Convert the complex number

o 1 ( ~16 ~16 Xl—i\/§
So1ution eglvencomp X numboer 1+l\/§ - 1+l\/§ l—l\/§

—16(1-i/3) —16(1-i/3
_ 1_((1-\5)2): (1+3 )2_4(1_iﬁ)=_4+i4ﬁ (Fig 5.8).

Let —4=rcos9, 4\/5 =rsin O P(4, 443) Y
By squaring and adding, we get

0
16 +48= 7’ (cosze + sinze) X' o X

which gives =64, ie, r=8

1 V3 v
Hence cosO=—", sin@ =—

2 2 Fig 5.8

gog_Fo_2m
3 3

2 . . 2m
Thus, the required polar form is 8 COS? i Sln?
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|[EXERCISE 5.2]

Find the modulus and the arguments of each of the complex numbers in
Exercises 1 to 2.

1. z=-1-1iJ3 2. z=-[3+i

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

3. 1-i 4. -1+ 5. —=1-1i

6. -3 7. J3+i 8. i

5.6 Quadratic Equations

We are already familiar with the quadratic equations and have solved them in the set
of real numbers in the cases where discriminant is non-negative, i.e., 2 0,
Let us consider the following quadratic equation:

ax® + bx + ¢ = 0 with real coefficients a, b, ¢ and a # 0.

Also, let us assume that the b*> —4ac < 0.

Now, we know that we can find the square root of negative real numbers in the
set of complex numbers. Therefore, the solutions to the above equation are available in
the set of complex numbers which are given by

—b+~b* —4ac _-b +dac—b* i

2a 2a

At this point of time, some would be interested to know as to how many
roots does an equation have? In this regard, the following theorem known as the
Fundamental theorem of Algebra is stated below (without proof).

X =

“A polynomial equation has at least one root.”

As a consequence of this theorem, the following result, which is of immense
importance, is arrived at:

“A polynomial equation of degree n has n roots.”

Example 9 Solve x> +2=0
Solution We have, x> +2 =0

o xX=-2ie,x= -2 = +2i
Example 10 Solve x* +x+ 1=0

Solution Here, b*—dac=1"-4x1x1l=1-4=-3
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—1£+-3  —1£4/3i
Therefore, the solutions are given by x = TR 2\/_1

Example 11 Solve \/5x% + x++/5=0
Solution Here, the discriminant of the equation is

12 —4x5x5 =1-20=-19
Therefore, the solutions are

14419 —1+:19

NN
|EXERCISE 53|

Solve each of the following equations:
1. x*+3=0 2. 2%+x+1=0 3. *+3x+9=0
4. —-x*+x-2=0 5. ¥*+3x+5=0 6. X>’-x+2=0
7. N2x2+x++/2=0 8. BxX=V2x+3/3=0

2 1 2 X

X +x+—=0 X +—=+1=0
9. NG 10. NG

Miscellaneous Examples

(3-2i)(2+3i)
Example 12 Find the conjugate of m .

(3=2i)(2+3i)

Solution We have , (0+2i)(2—1)

6+9i—4i+6 12+5ix4—3i
2—i+4i+2  4+3i 4-3i

48-36i+20i+15 63-16i 63 16,

= i
16+9 25 25 25

_ (3-2i)(2+3i0) . 63+ 16 .
Therefore, conjugate of m 1S 25 2_51 .
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Example 13 Find the modulus and argument of the complex numbers:

1
Oy v

I+i 14+ 1+i 1-1+2i
Solution (i) We have, ——= ——x——= Leiz 0+
1—i 1-i 1+ 1+1

Now, let us put 0 = r cos 0, 1=rsin®
Squaring and adding, 7> = 1 i.e., r = 1 so that

cos9=0, sin6=1

T

Therefore, 0 =—
crerore 2

1+ T
Hence, the modulus of 1— is 1 and the argument is 5 .
—1i

1 1-i 1-i 1 i

(i) Wehave — 7550 00n 141 2 2

1

Let 5=rcos 0,— — =rsin 0

N | =

Proceeding as in part (i) above, we get r = 0 =

1
— CoS
N

-
Therefore 0 =—
4
Hence, the modulus 6f —— is —= tis —
ence, the modulus o 15 is \/E,argumen is 1
a+ib

Example 14 If x + iy = a—ib > Prove that x* + y* = 1.

Solution We have,

(a+ib)(a+ib)  a®>—b*>+2abi a*>—b*

i sin 0
\/57

-1
NG

2ab

X+ = ibyatib) = @b C a bl

2020-21
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Sothat, x — iy =

Therefore,
(az_bz)z . 4a2b2 (a2+b2)2
(@ +b*?* (@*+bH* T (@*+bH)* T

Example 15 Find real 0 such that

X+y=(x+iy) (x—iy) =

34+2isinf
————— is purely real.
1-2isin6

Solution We have,

3+2isin®  (3+2isin6) (1 +2isind)

1—-2isin® ~ (1—2isinB)(1+ 2isind)
_ 3+6isin6 +2isind —4sin%0 N 4sin’0 N 8i sind
B 1+4sin’0 "~ 144sin%0 1+ 4sin’0

We are given the complex number to be real. Therefore

8sin6 o) 020
1+4sin%9 ~ o SEE
Thus O=nm,ne Z.
i—1 .
Example 16 Convert the complex number z = —x g the polar form.
cos —+isin —
3 3
i—1

Solution We have, z =

~ 2(i—1)xl—\/§i_2(i+\/§_l+\/§i) \/5_1 . \/§+1 ;

1443 1= 1+3 ) 2
Now, put %zrcosﬁ, %zrsinﬁ
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Squaring and adding, we obtain

rzz(ﬁ_1]2+(@+1]2_ z((ﬁ)ZH) s

- = :2
2 2 2 2

J3-1 J3+1

Hence, =,/ which gives cost = ﬁ’ sinf = ﬁ

Therefore, 0 = % + % _n (Why?)

12
Hence, the polar form is

\/E coss—n+i sin5—7t
12 12

Miscellaneous Exercise on Chapter 5

2573
. 1
1. Evaluate: [118"'[;) ] ¢

2. For any two complex numbers z, and z,, prove that

Re (z, z,) = Re z; Re z, — Imz, Imz,

1 2 3—-4i
3. Reduce to the standard form .

1—4i 1+i )| 5+i
4. If x—iy= a— b (x2+y2)2—a2+b2
. =iy =,|—— pro a ==7.
c—id PP° E+d’
5. Convert the following in the polar form:
M 1+3i
O (- i) 1,
Solve each of the equation in Exercises 6 to 9.
20 3
6. 3x2—4x+?=0 7. x2—2x+5=0

8. 27X -10x+1=0
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21x* —28x+10=0

, R ot
Ifz, =2-1i,z,=1+1 find -z, ]|
(x+i)? (CalVis
h — — 2 2 — 2
Ifa+ib= 22+l Prove that a* + b* = (2x2+1) .

Letz, =2 -1i,z,=-2+ i Find

2 1
. R 1<2 .. Im -
N [ ] " (J

Find the modulus and argument of the complex number

1+2i
1-3i°
Find the real numbers x and y if (x — iy) (3 + 5i) is the conjugate of —6 — 24i.

1+i 1-i

Find the modulus of 1—; | e

u v
If (x + iy)* = u + iv, then show that ;+;=4(x2 —yz)‘

B-a
1-ap

If o and P are different complex numbers with | B| =1, then find

Find the number of non-zero integral solutions of the equation | 1-i |x =2".
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
@+ (FF+d)(E+fH(F+h)=A"+B

1+i

If [1__1] =1 then find the least positive integral value of .
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Summary

# A number of the form a + ib, where a and b are real numbers, is called a
complex number, a is called the real part and b is called the imaginary part
of the complex number.

¢ Letz =a+ibandz,=c +id. Then
1) z,+z,=(@a+o)+i(b+d
(i) z,z, =(ac - bd)+ i (ad + bc)
¢ For any non-zero complex number z = a + ib (a # 0, b # 0), there exists the
a . —b

1
+1 — -1
complex number 21b: b denoted by - or z 7', called the

a’ " —b
i
a’+b>  a’+b°

multiplicative inverse of z such that (a + ib) [ J: 1+i0=1

¢ For any integer k, i* =1, %+ =4, i**2=— 1, (%3 =~

¢ The conjugate of the complex number z = a + ib, denoted by 7 , is given by
Z =a-—ib.

@ The polar form of the complex number z = x + iy is 7 (cosO + i sinf), where

X
r=Jx*+ y* (the modulus of z) and cos6 = —, sinf = 24 (0 is known as the
r r
argument of z. The value of 6, such that — T < 6 <, is called the principal
argument of z.
¢ A polynomial equation of n degree has n roots.
@ The solutions of the quadratic equation ax* + bx + ¢ = 0, where a, b, c € R,

—bi\/4ac—b2i

a#0, b*>—4ac <0, are given by x = 2
a
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Historical Note

The fact that square root of a negative number does not exist in the real number
system was recognised by the Greeks. But the credit goes to the Indian
mathematician Mahavira (850) who first stated this difficulty clearly. “He mentions
inhis work ‘Ganitasara Sangraha’ as in the nature of things a negative (quantity)
is not a square (quantity)’, it has, therefore, no square root”. Bhaskara, another
Indian mathematician, also writes in his work Bijaganita, written in 1150. “There
is no square root of a negative quantity, for it is not a square.” Cardan (1545)
considered the problem of solving

x+y =10, xy =40.

He obtained x=5+ /—15 and y = 5— \/—15 as the solution of it, which
was discarded by him by saying that these numbers are ‘useless’. Albert Girard
(about 1625) accepted square root of negative numbers and said that this will
enable us to get as many roots as the degree of the polynomial equation. Euler
was the first to introduce the symbol i for \/—1 and W.R. Hamilton (about
1830) regarded the complex number a + ib as an ordered pair of real numbers
(a, b) thus giving it a purely mathematical definition and avoiding use of the so
called ‘imaginary numbers’.

4

> —
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Chapter

11076CHO6

( LINEAR INEQUALITIES )

** Mathematics is the art of saying many things in many
different ways. - MAXWELL*®

6.1 Introduction

In earlier classes, we have studied equations in one variable and two variables and also
solved some statement problems by translating them in the form of equations. Now a
natural question arises: ‘Is it always possible to translate a statement problem in the
form of an equation? For example, the height of all the students in your class is less
than 160 cm. Your classroom can occupy atmost 60 tables or chairs or both. Here we
get certain statements involving a sign ‘<’ (less than), >’ (greater than), ‘<’ (less than
or equal) and = (greater than or equal) which are known as inequalities.

In this Chapter, we will study linear inequalities in one and two variables. The
study of inequalities is very useful in solving problems in the field of science, mathematics,
statistics, economics, psychology, etc.

6.2 Inequalities

Let us consider the following situations:

(1) Ravi goes to market with ¥200 to buy rice, which is available in packets of 1kg. The
price of one packet of rice is ¥ 30. If x denotes the number of packets of rice, which he
buys, then the total amount spent by him is ¥ 30x. Since, he has to buy rice in packets
only, he may not be able to spend the entire amount of I 200. (Why?) Hence

30x < 200

. (1)
Clearly the statement (i) is not an equation as it does not involve the sign of equality.

(i) Reshma has ¥ 120 and wants to buy some registers and pens. The cost of one
register is ¥ 40 and that of a pen is ¥ 20. In this case, if x denotes the number of
registers and y, the number of pens which Reshma buys, then the total amount spent by
her is ¥ (40x + 20y) and we have

40x + 20y < 120 e (2)
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Since in this case the total amount spent may be upto ¥ 120. Note that the statement (2)
consists of two statements

40x + 20y < 120 .. 3)
and 40x + 20y = 120 e (@)

Statement (3) is not an equation, i.e., it is an inequality while statement (4) is an equation.

Definition 1 Two real numbers or two algebraic expressions related by the symbol

‘<, >, ‘< or 2 form an inequality.

Statements such as (1), (2) and (3) above are inequalities.
3 <5; 7> 5 are the examples of numerical inequalities while
x<5;y>2;x =2 3, y< 4 are some examples of literal inequalities.

3 <5< 7 (read as 5 is greater than 3 and less than 7), 3 < x <5 (read as x is greater
than or equal to 3 and less than 5) and 2 <y < 4 are the examples of double inequalities.

Some more examples of inequalities are:

ax +b<0 ... (5
ax+b>0 ... (6)
ax+ b <0 .. (1)
ax+b=20 ... (8)
ax + by <c .. 9)
ax + by > c ... (10)
ax + by <c .. (11)
ax + by > ¢ .. (12)
ax> + bx +c<0 .. (13)
ax> + bx +c>0 .. (14)

Inequalities (5), (6), (9), (10) and (14) are strict inequalities while inequalities (7), (8),
(11), (12), and (13) are slack inequalities. Inequalities from (5) to (8) are linear
inequalities in one variable x when a #0, while inequalities from (9) to (12) are linear
inequalities in two variables x and y when a #0, b # 0.

Inequalities (13) and (14) are not linear (in fact, these are quadratic inequalities
in one variable x when a # 0).

In this Chapter, we shall confine ourselves to the study of linear inequalities in one
and two variables only.
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6.3 Algebraic Solutions of Linear Inequalities in One Variable and their
Graphical Representation

Let us consider the inequality (1) of Section 6.2, viz, 30x < 200
Note that here x denotes the number of packets of rice.

Obviously, x cannot be a negative integer or a fraction. Left hand side (L.H.S.) of this
inequality is 30x and right hand side (RHS) is 200. Therefore, we have

For x =0, L.H.S. =30 (0) =0 < 200 (R.H.S.), which is true.
Forx=1,L.H.S. =30 (1) =30 < 200 (R.H.S.), which is true.
For x =2, L.H.S. =30 (2) = 60 < 200, which is true.

For x =3, L.H.S. =30 (3) = 90 < 200, which is true.

For x =4, L.H.S. =30 (4) = 120 < 200, which is true.

For x =5, L.H.S. =30 (5) = 150 < 200, which is true.

For x =6, L.H.S. =30 (6) = 180 < 200, which is true.

For x =7, L.H.S. =30 (7) = 210 < 200, which is false.

In the above situation, we find that the values of x, which makes the above
inequality a true statement, are 0,1,2,3,4,5,6. These values of x, which make above
inequality a true statement, are called solutions of inequality and the set {0,1,2,3,4,5,6}
is called its solution set.

Thus, any solution of an inequality in one variable is a value of the variable
which makes it a true statement.

We have found the solutions of the above inequality by trial and error method
which is not very efficient. Obviously, this method is time consuming and sometimes
not feasible. We must have some better or systematic techniques for solving inequalities.
Before that we should go through some more properties of numerical inequalities and
follow them as rules while solving the inequalities.

You will recall that while solving linear equations, we followed the following rules:

Rule 1 Equal numbers may be added to (or subtracted from) both sides of an equation.

Rule 2 Both sides of an equation may be multiplied (or divided) by the same non-zero
number.

In the case of solving inequalities, we again follow the same rules except with a
difference that in Rule 2, the sign of inequality is reversed (i.e., ‘<‘ becomes >’, <’
becomes ‘>’ and so on) whenever we multiply (or divide) both sides of an inequality by
a negative number. It is evident from the facts that

3>2 while -3 <2,
_8<—7while (=8)(=2)>(-7)(~2),ie, 16> 14.
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Thus, we state the following rules for solving an inequality:

Rule 1 Equal numbers may be added to (or subtracted from) both sides of an inequality
without affecting the sign of inequality.

Rule 2 Both sides of an inequality can be multiplied (or divided) by the same positive
number. But when both sides are multiplied or divided by a negative number, then the
sign of inequality is reversed.

Now, let us consider some examples.

Example 1 Solve 30 x < 200 when

(1) x is a natural number, (i1) x is an integer.
Solution We are given 30 x < 200

X 20 Rule 2). i x<20/3
or 30 30 (Rule 2), i.e., x < .

(1) When x is a natural number, in this case the following values of x make the
statement true.
1,2,3,4,5,6.
The solution set of the inequality is {1,2,3,4,5,6}.
(i) When x is an integer, the solutions of the given inequality are
v —3,-2,-1,0,1,2,3,4,5,6
The solution set of the inequality is {...,-3,-2,-1,0, 1,2,3,4, 5,6}

Example 2 Solve 5x — 3 < 3x +1 when

(1) xis an integer, (il) x1is a real number.
Solution We have, Sx -3 <3x + 1
or Sx-3+3<3x+143 (Rule 1)
or S5x<3x+4
or Sx—-3x<3x+4-3x (Rule 1)
or 2x<4
or x<?2 (Rule 2)

(i) When x is an integer, the solutions of the given inequality are
v —4,-3,-2,-1,0, 1
(i) When x is a real number, the solutions of the inequality are given by x < 2,
1.e., all real numbers x which are less than 2. Therefore, the solution set of
the inequality is x € (— oo, 2).
We have considered solutions of inequalities in the set of natural numbers, set of
integers and in the set of real numbers. Henceforth, unless stated otherwise, we shall
solve the inequalities in this Chapter in the set of real numbers.
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Example 3 Solve 4x + 3 < 6x +7.

Solution We have, dx+3<6x+7
or 4x —6x < b6x+ 4 — 6x
or -2x<4 or x>-2

i.e., all the real numbers which are greater than —2, are the solutions of the given
inequality. Hence, the solution set is (-2, o).

5-2x _x
Example 4 Solve <—-5,
Solution We have
5-2x Sﬁ s

3 6
or 2(5-2x) < x-30.
or 10 -4x <x-30
or -5x<-40, ie., x =2 8

Thus, all real numbers x which are greater than or equal to 8 are the solutions of the
given inequality, i.e., x € [8, o).

Example 5 Solve 7x + 3 < 5x + 9. Show the graph of the solutions on number line.

Solution We have 7x + 3 < 5x + 9 or
2x<6orx<3
The graphical representation of the solutions are given in Fig 6.1.

L S e e p e S R
-4 -3-2-1 01 2 3 4 5 6
Fig 6.1
3x—=4 _ x+1 ) )
Example 6 Solve 2 T—l. Show the graph of the solutions on number line.
Solution We have
3x—4 > x+1 1
2 4
3x—4 _x-
> —
o 2 T4
or 20@Bx-4)=>2x-3)
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or 6x—-82>2x-3
or 5x=25 or x2>1

The graphical representation of solutions is given in Fig 6.2.

T T T T T T T T
-4 -3-2-1 01 2 3 4 5 6
Fig 6.2

>

Example 7 The marks obtained by a student of Class XI in first and second terminal
examination are 62 and 48, respectively. Find the minimum marks he should get in the
annual examination to have an average of at least 60 marks.

Solution Let x be the marks obtained by student in the annual examination. Then

62+48+x o
3
or 110 + x> 180
or x=>70

Thus, the student must obtain a minimum of 70 marks to get an average of at least
60 marks.

Example 8 Find all pairs of consecutive odd natural numbers, both of which are larger
than 10, such that their sum is less than 40.

Solution Let x be the smaller of the two consecutive odd natural number, so that the
other one is x +2. Then, we should have

x>10 . (D
and x+ (x+2)<40 .. 2)
Solving (2), we get

2x +2<40
e, x<19 .. (3)
From (1) and (3), we get

10<x<19

Since x is an odd number, x can take the values 11, 13, 15, and 17. So, the required
possible pairs will be

(11,13),(13,15), (15,17),(17,19)
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| EXERCISE 6.1 |

1. Solve 24x < 100, when

(1)  xis a natural number. (i) xis an integer.
2. Solve — 12x > 30, when

(1)  xis a natural number. (i) xis an integer.
3. Solve 5x -3 <7, when

(1) xis an integer. (il) xis a real number.
4. Solve 3x + 8 >2, when

(i) xis an integer. (il) xis a real number.

Solve the inequalities in Exercises 5 to 16 for real x.

5. dx+3<5x+7 6. 3x-7>5x-1
7. 3x-1)<2(x-3) 8. 32-x)=22(1-x)
X X X X
.ox+—+—<11 .o—>—+1
9, x >3 10 )
3(x=2) _5Q2-x) 1(3x 1
< —| =+4 p—(x=6
11. 5 3 12. 2[ 5 3(x )
13. 22x+3)-10<6 (x-2) 14. 37-Bx+5 > -8 (x-3)
- £<(5x—2)_(7x—3) 6 (2x—1)2(3x—2)_(2—x)
4 3 5 3 4 5

Solve the inequalities in Exercises 17 to 20 and show the graph of the solution in each
case on number line

17. 3x—2<2x+1 18. 5x—3>3x-5
5x-2) (7x-3
19. 3(1-x)<2@x+4) 20. %2“63 )_(xs )

21. Raviobtained 70 and 75 marks in first two unit test. Find the minimum marks he
should get in the third test to have an average of at least 60 marks.

22. To receive Grade ‘A’ in a course, one must obtain an average of 90 marks or
more in five examinations (each of 100 marks). If Sunita’s marks in first four
examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain
in fifth examination to get grade ‘A’ in the course.

23. Find all pairs of consecutive odd positive integers both of which are smaller than
10 such that their sum is more than 11.

24. Find all pairs of consecutive even positive integers, both of which are larger than
5 such that their sum is less than 23.
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The longest side of a triangle is 3 times the shortest side and the third side is 2 cm

shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find
the minimum length of the shortest side.

26.

A man wants to cut three lengths from a single piece of board of length 91cm.

The second length is to be 3cm longer than the shortest and the third length is to
be twice as long as the shortest. What are the possible lengths of the shortest
board if the third piece is to be at least Scm longer than the second?

[Hint: If x is the length of the shortest board, then x , (x + 3) and 2x are the
lengths of the second and third piece, respectively. Thus, x + (x + 3) + 2x <91 and
2x > (x +3) + 5].

6.4 Graphical Solution of Linear Inequalities in Two Variables

In earlier section, we have seen that a graph of an inequality in one variable is a visual
representation and is a convenient way to represent the solutions of the inequality.
Now, we will discuss graph of a linear inequality in two variables.

We know that a line divides the Cartesian plane into two parts. Each part is
known as a half plane. A vertical line will divide the plane in left and right half planes
and a non-vertical line will divide the plane into lower and upper half planes

(Figs. 6.3 and 6.4).

Y
Y Upper half
N N plane
I
Left half | Right half Lower half
plane plane plane
I 1T
X'<5 >X | -
X’ ~ O / rd X
I
v \4 l/\ y
Y' Y’
Fig 6.3 Fig 6.4

A point in the Cartesian plane will either lie on a line or will lie in either of the half
planes I or II. We shall now examine the relationship, if any, of the points in the plane

and the inequalities

ax + by < corax + by > c.

Let us consider the line

ax + by = ¢,

a0, b #0
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There are three possibilities namely:
1) ax+by= c (i) ax+ by >c (i) ax + by <c.

In case (i), clearly, all points (x, y) satisfying (i) lie on the line it represents and

conversely. Consider case (ii), let us first assume that » > 0. Consider a point P (c,3)

on the line ax + by = ¢, b > 0, so that

ao. + bP = c.Take an arbitrary point /Y\

Q (o, 7y) in the half plane II (Fig 6.5). \ e Q (o)
Now, from Fig 6.5, we interpret, :
v>B  (Why?)

or bY>bB or ao+by>ad+bp
(Why?)

or ao+by>c X' €
ire., Q(a,?Y) satisfies the inequality

ax + by > c.

Thus, all the points lying in the half
plane IT above the line ax + by = c satisfies Fig 6.5
the inequality ax + by > c¢. Conversely, let (o, B) be a point on line ax + by = ¢ and an
arbitrary point Q(a, ) satisfying

ax + by > c¢
so that ao + by>c
= ad + by > ao + b (Why?)
= v>B (as b>0)

This means that the point (o, Y) lies in the half plane II.

Thus, any point in the half plane II satisfies ax + by > ¢, and conversely any point
satisfying the inequality ax + by > ¢ lies in half plane II.

In case b < 0, we can similarly prove that any point satisfying ax + by > ¢ lies in
the half plane I, and conversely.

Hence, we deduce that all points satisfying ax + by > c lies in one of the half
planes II or I according as & > 0 or b < 0, and conversely.

Thus, graph of the inequality ax + by > ¢ will be one of the half plane (called
solution region) and represented by shading in the corresponding half plane.

1 The region containing all the solutions of an inequality is called the
solution region.
2. Inorder to identify the half plane represented by an inequality, it is just sufficient
to take any point (a, b) (not online) and check whether it satisfies the inequality or
not. If it satisfies, then the inequality represents the half plane and shade the region
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which contains the point, otherwise, the inequality represents that half plane which
does not contain the point within it. For convenience, the point (0, 0) is preferred.
3. [If an inequality is of the type ax + by = ¢ or ax + by < ¢, then the points on the
line ax + by = c are also included in the solution region. So draw a dark line in the
solution region.

4. If an inequality is of the form ax + by > c or ax + by < c, then the points on the
line ax + by = c are not to be included in the solution region. So draw a broken or
dotted line in the solution region.

In Section 6.2, we obtained the following linear inequalities in two variables
x and y: 40x +20y < 120 .. (1)
while translating the word problem of purchasing of registers and pens by Reshma.

Let us now solve this inequality keeping in mind that x and y can be only whole
numbers, since the number of articles cannot be a fraction or a negative number. In
this case, we find the pairs of values of x and y, which make the statement (1) true. In
fact, the set of such pairs will be the solution set of the inequality (1).

To start with, let x = 0. Then L.H.S. of (1) is

40x + 20y =40 (0) + 20y = 20y.
Thus, we have
20y<1200ry<6 .. (2)

For x = 0, the corresponding values of y can be 0, 1, 2, 3, 4, 5, 6 only. In this case, the
solutions of (1) are (0, 0), (0, 1), (0,2), (0,3), (0,4),

(0, 5) and (0, 6). ’%
Similarly, other solutions of (1), when t‘é

x=1,2 and 3 are: (1,0), (1,1),(1,2),(1, <

3), (1,4, (2,0),(2,1),(2,2),(3,0)

This is shown in Fig 6.6.

Let us now extend the domain of x and y
from whole numbers to real numbers, and see
what will be the solutions of (1) in this case.
You will see that the graphical method of solution
will be very convenient in this case. For this
purpose, let us consider the (corresponding)
equation and draw its graph.

40x + 20y = 120 .3 X
In order to draw the graph of the inequality
(1), we take one point say (0, 0), in half plane I
and check whether values of x and y satisfy the Y’
inequality or not. Fig 6.6

- N W A Py
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We observe that x = 0, y = 0 satisfy the
inequality. Thus, we say that the half plane I is the
graph (Fig 6.7) of the inequality. Since the points on
the line also satisfy the inequality (1) above, the line
is also a part of the graph.

Thus, the graph of the given inequality is half
plane I including the line itself. Clearly half plane II
is not the part of the graph. Hence, solutions of
inequality (1) will consist of all the points of its graph
(half plane I including the line).

We shall now consider some examples to
explain the above procedure for solving a linear
inequality involving two variables.

Example 9 Solve 3x + 2y > 6 graphically.

This line divides the xy-plane in two half
planes I and II. We select a point (not on the
line), say (0, 0), which lies in one of the half "QX

satisfies the given inequality, we note that
300)+2(0)>6

or 0>6, whichis false.
X' €

Y Fig6.7
Solution Graph of 3x + 2y = 6 is given as dotted line in the Fig 6.8.

Hence, half plane L is not the solution region of
the given inequality. Clearly, any point on the
line does not satisfy the given strict inequality.
In other words, the shaded half plane II
excluding the points on the line is the solution
region of the inequality.

Example 10 Solve 3x — 6 = 0 graphically in
two dimensional plane.

Solution Graph of 3x — 6 = 0 is given in the
Fig 6.9.
We select a point, say (0, 0) and substituting it in
given inequality, we see that:

3(0)-62=0 or—6 =0 which is false.
Thus, the solution region is the shaded region on
the right hand side of the line x = 2.

2020-21
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Example 11 Solve y < 2 graphically. Y
Solution Graph of y =2 is given in the Fig 6.10.
Let us select a point, (0, 0) in lower half 4 I
plane I and putting y = 0 in the given inequality, 3 _,
we see that < . >
1x0<2o0r 0<2 whichis true. 1 I
Thus, the solution region is the shaded region x' < — > X
below the line y = 2. Hence, every point below Of 12 345
the line (excluding all the points on the line) Y’
determines the solution of the given inequality. Fig 6.10
EXERCISE 6.2
Solve the following inequalities graphically in two-dimensional plane:
1. x+y<5 2. 2x+y=6 3. 3x+4y<12
4. y+8=22x 5. x—-y<2 6. 2x-3y>6
7. =3x+2y=2-6 8. 3y-5x<30 9. y<=-2
10. x>-3.

6.5 Solution of System of Linear Inequalities in Two Variables

In previous Section, you have learnt how to solve linear inequality in one or two variables
graphically. We will now illustrate the method for solving a system of linear inequalities
in two variables graphically through some
examples.

Example 12 Solve the following system

of linear inequalities graphically.
x+y=5 .. (1)
x—y<3 .. (2)

Solution The graph of linear equation
x+y=5

isdrawn in Fig 6.11.

We note that solution of inequality
(1) is represented by the shaded region
above the line x + y = 5, including the
points on the line.

On the same set of axes, we draw
the graph of the equation x — y = 3 as Y’
shown in Fig 6.11. Then we note that inequality (2) represents the shaded region above

Fig 6.11
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the line x — y = 3, including the points on the line.
Clearly, the double shaded region, common to the above two shaded regions is
the required solution region of the given system of inequalities.

Example 13 Solve the following system Y
of inequalities graphically

N A

S5x + 4y < 40 (D \

x=2 .. (2) 10 ~

y=3 .. (3) 9 \ =
Solution We first draw the graph of 8T
the line ™ Y

Sx+4y=40, x=2andy=3 6
Then we note that the inequality (1) i
represents shaded region below the line =
5x + 4y =40 and inequality (2) represents ’2’ 1 \
the shaded region right of line x = 2 but 1
inequality (3) represents the shaded region X< , NN —>x
above the line y = 3. Hence, shaded region Ol 1 3 4567 N
(Fig 6.12) including all the point on the lines v
are also the solution of the given system Y' Fig 6.12
of the linear inequalities.

In many practical situations involving Y
system of inequalities the variable x and y 0\
often represent quantities that cannot have '\
negative values, for example, number of Al
units produced, number of articles
purchased, number of hours worked, etc.
Clearly, in such cases, x > 0, y = 0 and the 25 +
solution region lies only in the first quadrant.

v

30T

Example 14 Solve the following system 27

of inequalities 54+ %
8x + 3y <100 .. (1) E
x2>0 (2) 10 + \\';
y=0 .. (3)

Solution We draw the graph of the line 5T

X' € + t t t —>X

8x + 3y =100 of 5 10 \15 20 25

The inequality 8x + 3y < 100 represents the v

shaded region below the line, including the Fig 6.13
points on the line 8x +3y =100 (Fig 6.13).
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Since x 20, y 2 0, every point in the Y
shaded region in the first quadrant,
including the points on the line and
the axes, represents the solution of

the given system of inequalities. 8
7

Example 15 Solve the following 6
system of inequalities graphically 5
x+2y<8 .. (1) 4
2x+y<8 .. (2) 3
x>0 .. (3) 2
y>0 v (@) 1

’

Solution We draw the graphs of X
the lines x + 2y = 8 and 2x + y = 8.
The inequality (1) and (2) represent
the region below the two lines,
including the point on the respective lines.

Since x = 0,y 2 0, every point in the shaded region in the first quadrant represent
a solution of the given system of inequalities (Fig 6.14).

123 4567 8%

Fig 6.14

EXERCISE 6.3
Solve the following system of inequalities graphically:
1. x=>23,y=22 2. 3x+2y<12, x21,y22
3. 2x+y=26,3x+4y<12 4. x+y=24, 2x-y<0
5. 2x—-y>lL,x-2y<-1 6. xX+y<6, x+y=>4
7. 2x+ y=28, x+2y=>10 8. x+y<9, y>x, x=20
9.

Sx+4y<20, x>1,y>2

10. 3x+4y £60,x +3y<30,x=0, y=0

11. 2x+y=24, x+y<3, 2x-3y<6

120 x—-2y<3,3x+4y 212, x=20,y2>1

13. 4x+3y <60,y>2x, x=23, x,y2>0

14. 3x+2y<150, x+4y <80, x<15, y=20,x=>0
15 x+2y<10,x+y=21,x—y<0,x=20,y=>0
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Miscellaneous Examples
Example 16 Solve -8 <5x-3 < 7.

Solution In this case, we have two inequalities, — 8 <5x — 3 and 5x— 3 <7, which we
will solve simultaneously. We have —8<5x-3<7

or -5<5x< 10 or -1<x<?2
5-3x

Example 17 Solve — 5 < 5 <8.
5-3x

Solution We have —5 < ) <8

or -10<5-3x<16 or -15<-3x<11

5525 11
or >x2 - 3

-11
which can be written as T <x <5

Example 18 Solve the system of inequalities:
3x-7<5+x .. (1)
11-5x<1 .. (2)
and represent the solutions on the number line.

Solution From inequality (1), we have
3x-7<5+x

or x<6
. (3)
Also, from inequality (2), we have
11-5x<1
or -5x<-10 Le.,x=>2 . (@)

If we draw the graph of inequalities (3) and (4) on the number line, we see that the
values of x, which are common to both, are shown by bold line in Fig 6.15.
© >

< O

&—Ft—+—+—o I I O—4——t+—>
-1 01 23 456 7 89

Fig 6.15

Thus, solution of the system are real numbers x lying between 2 and 6 including 2, i.e.,
2<x<6
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Example 19 In an experiment, a solution of hydrochloric acid is to be kept between
30° and 35° Celsius. What is the range of temperature in degree Fahrenheit if conversion

formula is given by C = — (F - 32), where C and F represent temperature in degree

9

Celsius and degree Fahrenheit, respectively.

Solution It is given that 30 < C < 35.

5
Putting C= § (F - 32), we get

5
30< = (F-32) <35,

9
9 9
or g x 30)<F-32)< g x (35)
or 54<(F-32)<63
or 86 <F < 95.

Thus, the required range of temperature is between 86° F and 95° F.

Example 20 A manufacturer has 600 litres of a 12% solution of acid. How many litres
of a 30% acid solution must be added to it so that acid content in the resulting mixture
will be more than 15% but less than 18%?

Solution Let x litres of 30% acid solution is required to be added. Then
Total mixture = (x + 600) litres

Therefore 30% x + 12% of 600 > 15% of (x + 600)

and 30% x + 12% of 600 < 18% of (x + 600)
30x 12 15

or m + ﬁ (600) > ﬁ (x + 600)
30x 12 18

and m + ﬁ (600) < ﬁ (x + 600)

or 30x + 7200 > 15x + 9000

and 30x + 7200 < 18x + 10800

or 15x> 1800 and 12x < 3600

or x> 120 and x < 300,

ie. 120 < x < 300
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Thus, the number of litres of the 30% solution of acid will have to be more than
120 litres but less than 300 litres.

Miscellaneous Exercise on Chapter 6

Solve the inequalities in Exercises 1 to 6.

1. 2<3x_4<5 2. 6<-3(2x—4)<12

5 _3<4-T%<ig 4 —15<2X=2) g
2 5

5. —12<4—3—’;sz 6. 73(3’6—;11)311,

Solve the inequalities in Exercises 7 to 10 and represent the solution graphically on
number line.

7. Sx+1>-24, 5x—-1<24

8. 2(x-1)<x+5, 3(x+2)>2-x

9. 3x-7>2x-6), 6 —x>11-2x

100 52x-7) =3 2x+3)<0, 2x+19 <6x+47.

11. Asolution is to be kept between 68° F and 77° F. What is the range in temperature
in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by

9
F = g C+327?
12. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to
it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have

640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

13. How many litres of water will have to be added to 1125 litres of the 45% solution
of acid so that the resulting mixture will contain more than 25% but less than 30% acid
content?

14. 1Q of a person is given by the formula

1 M—A 100
Q= ca *100.

where MA is mental age and CA is chronological age. If 80 <1Q < 140 for a group of
12 years old children, find the range of their mental age.
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Summary

® Two real numbers or two algebraic expressions related by the symbols <, >, <
or = form an inequality.

# Equal numbers may be added to (or subtracted from ) both sides of an inequality.

# Both sides of an inequality can be multiplied (or divided ) by the same positive
number. But when both sides are multiplied (or divided) by a negative number,
then the inequality is reversed.

# The values of x, which make an inequality a true statement, are called solutions
of the inequality.

@ To represent x < a (or x > a) on a number line, put a circle on the number a and
dark line to the left (or right) of the number a.

@ To represent x < a (or x > a) on a number line, put a dark circle on the number
a and dark the line to the left (or right) of the number x.

@ If an inequality is having < or > symbol, then the points on the line are also
included in the solutions of the inequality and the graph of the inequality lies left
(below) or right (above) of the graph of the equality represented by dark line
that satisfies an arbitrary point in that part.

@ If an inequality is having < or > symbol, then the points on the line are not
included in the solutions of the inequality and the graph of the inequality lies to
the left (below) or right (above) of the graph of the corresponding equality
represented by dotted line that satisfies an arbitrary point in that part.

@ The solution region of a system of inequalities is the region which satisfies all
the given inequalities in the system simultaneously.

4

> —

o,
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Chapter 7

11076CHOT7

‘ PERMUTATIONS AND COMBINATIONS ’

s*Every body of discovery is mathematical in form because there is no
other guidance we can have — DARWIN %*

7.1 Introduction

Suppose you have a suitcase with a number lock. The number
lock has 4 wheels each labelled with 10 digits from O to 9.
The lock can be opened if 4 specific digits are arranged in a
particular sequence with no repetition. Some how, you have
forgotten this specific sequence of digits. You remember only
the first digit which is 7. In order to open the lock, how
many sequences of 3-digits you may have to check with? To
answer this question, you may, immediately, start listing all

possible arrangements of 9 remaining digits taken 3 at a

Jacob Bernoulli
(1654-1705)

time. But, this method will be tedious, because the number
of possible sequences may be large. Here, in this Chapter,
we shall learn some basic counting techniques which will enable us to answer this
question without actually listing 3-digit arrangements. In fact, these techniques will be
useful in determining the number of different ways of arranging and selecting objects
without actually listing them. As a first step, we shall examine a principle which is most
fundamental to the learning of these techniques.

7.2 Fundamental Principle of Counting

Let us consider the following problem. Mohan has 3 pants and 2 shirts. How many
different pairs of a pant and a shirt, can he dress up with? There are 3 ways in which
a pant can be chosen, because there are 3 pants available. Similarly, a shirt can be
chosen in 2 ways. For every choice of a pant, there are 2 choices of a shirt. Therefore,
there are 3 x 2 = 6 pairs of a pant and a shirt.
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Let us name the three pants as P, P,, P, and the two shirts as S, S,. Then,
these six possibilities can be illustrated in the Fig. 7.1.

Let us consider another problem 6 Possibilities

of the same type. S, P,S,
Sabnam has 2 school bags, 3 tiffin boxes
and 2 water bottles. In how many ways
can she carry these items (choosing one
each).

A school bag can be chosen in 2
different ways. After a school bag is
chosen, a tiffin box can be chosen in 3
different ways. Hence, there are
2 x 3 =6 pairs of school bag and a tiffin
box. For each of these pairs a water
bottle can be chosen in 2 different ways. Fig7.1
Hence, there are 6 x 2 = 12 different ways in which, Sabnam can carry these items to
school. If we name the 2 school bags as B, B,, the three tiffin boxes as T, T,, T, and
the two water bottles as W, W, these possibilities can be illustrated in the Fig. 7.2.

12 Possibilities
B 1 T 1 A 1

P,S,

ﬁpzsl
S
N> p.s,

S P.S,

P38,

B, T,W,
B, T,W,

B,T,W,
B,T;W,

B, T;W,
B,T,W,

B, T,W,
B,T,W,

B,T,W,
B,T;W,

B,T;W,

Fig 7.2
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In fact, the problems of the above types are solved by applying the following
principle known as the fundamental principle of counting, or, simply, the multiplication
principle, which states that

“If an event can occur in m different ways, following which another event
can occur in n different ways, then the total number of occurrence of the events
in the given order is mxn.”

The above principle can be generalised for any finite number of events. For
example, for 3 events, the principle is as follows:

‘If an event can occur in m different ways, following which another event can
occur in n different ways, following which a third event can occur in p different ways,
then the total number of occurrence to ‘the events in the given order is m X n x p.”

In the first problem, the required number of ways of wearing a pant and a shirt
was the number of different ways of the occurence of the following events in succession:

(1) the event of choosing a pant
(i) the event of choosing a shirt.

In the second problem, the required number of ways was the number of different
ways of the occurence of the following events in succession:
(i) the event of choosing a school bag

(i) the event of choosing a tiffin box
(iii)) the event of choosing a water bottle.

Here, in both the cases, the events in each problem could occur in various possible
orders. But, we have to choose any one of the possible orders and count the number of
different ways of the occurence of the events in this chosen order.

Example 1 Find the number of 4 letter words, with or without meaning, which can be
formed out of the letters of the word ROSE, where the repetition of the letters is not
allowed.

Solution There are as many words as there are ways of filling in 4 vacant places

D I:I |:| D by the 4 letters, keeping in mind that the repetition is not allowed. The

first place can be filled in 4 different ways by anyone of the 4 letters R,O,S,E. Following
which, the second place can be filled in by anyone of the remaining 3 letters in 3
different ways, following which the third place can be filled in 2 different ways; following
which, the fourth place can be filled in 1 way. Thus, the number of ways in which the
4 places can be filled, by the multiplication principle, is 4 x 3 x 2 x 1 = 24. Hence, the
required number of words is 24.
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If the repetition of the letters was allowed, how many words can be formed?

One can easily understand that each of the 4 vacant places can be filled in succession
in 4 different ways. Hence, the required number of words =4 x 4 x 4 x 4 = 256.

Example 2 Given 4 flags of different colours, how many different signals can be
generated, if a signal requires the use of 2 flags one below the other?

Solution There will be as many signals as there are ways of filling in 2 vacant places

in succession by the 4 flags of different colours. The upper vacant place can

be filled in 4 different ways by anyone of the 4 flags; following which, the lower vacant
place can be filled in 3 different ways by anyone of the remaining 3 different flags.
Hence, by the multiplication principle, the required number of signals =4 x 3 =12.

Example 3 How many 2 digit even numbers can be formed from the digits
1, 2, 3, 4, 5 if the digits can be repeated?

Solution There will be as many ways as there are ways of filling 2 vacant places

|:||:| in succession by the five given digits. Here, in this case, we start filling in unit’s

place, because the options for this place are 2 and 4 only and this can be done in 2
ways; following which the ten’s place can be filled by any of the 5 digits in 5 different
ways as the digits can be repeated. Therefore, by the multiplication principle, the required
number of two digits even numbers is 2 x 5, i.e., 10.

Example 4 Find the number of different signals that can be generated by arranging at
least 2 flags in order (one below the other) on a vertical staff, if five different flags are
available.

Solution A signal can consist of either 2 flags, 3 flags, 4 flags or 5 flags. Now, let us
count the possible number of signals consisting of 2 flags, 3 flags, 4 flags and 5 flags
separately and then add the respective numbers.

There will be as many 2 flag signals as there are ways of filling in 2 vacant places

in succession by the 5 flags available. By Multiplication rule, the number of

ways is 5 x 4 = 20.
Similarly, there will be as many 3 flag signals as there are ways of filling in 3

vacant places in succession by the 5 flags.
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The number of ways is 5 x 4 x 3 = 60.
Continuing the same way, we find that
The number of 4 flag signals =5 x4 x3x2 =120
and the number of 5 flag signals =5 x4 x3 x2x1=120
Therefore, the required no of signals =20 + 60 + 120 + 120 = 320.

I[EXERCISE 7.1]

1.  How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5
assuming that

(1) repetition of the digits is allowed?
(i) repetition of the digits is not allowed?

2. How many 3-digit even numbers can be formed from the digits 1, 2, 3,4, 5, 6 if the
digits can be repeated?

3. How many 4-letter code can be formed using the first 10 letters of the English
alphabet, if no letter can be repeated?

4.  How many 5-digit telephone numbers can be constructed using the digits O to 9 if
each number starts with 67 and no digit appears more than once?

5. A coin is tossed 3 times and the outcomes are recorded. How many possible
outcomes are there?

6.  Given 5 flags of different colours, how many different signals can be generated if
each signal requires the use of 2 flags, one below the other?

7.3 Permutations

In Example 1 of the previous Section, we are actually counting the different possible
arrangements of the letters such as ROSE, REOS, ..., etc. Here, in this list, each
arrangement is different from other. In other words, the order of writing the letters is
important. Each arrangement is called a permutation of 4 different letters taken all
at a time. Now, if we have to determine the number of 3-letter words, with or without
meaning, which can be formed out of the letters of the word NUMBER, where the
repetition of the letters is not allowed, we need to count the arrangements NUM,
NMU, MUN, NUB, ..., etc. Here, we are counting the permutations of 6 different
letters taken 3 at a time. The required number of words = 6 x 5 x 4 = 120 (by using
multiplication principle).

If the repetition of the letters was allowed, the required number of words would
be 6 x 6 x 6 =216.
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Definition 1 A permutation is an arrangement in a definite order of a number of
objects taken some or all at a time.

In the following sub-section, we shall obtain the formula needed to answer these
questions immediately.

7.3.1 Permutations when all the objects are distinct

Theorem 1 The number of permutations of n different objects taken r at a time,
where 0 < r <n and the objects do not repeat isn (n—-1)(n—-2)...(n—-r+1),
which is denoted by "P .

Proof There will be as many permutations as there are ways of filling in r vacant

places ce by

« r vacant places —

the n objects. The first place can be filled in n ways; following which, the second place
can be filled in (n — 1) ways, following which the third place can be filled in (n — 2)
ways,..., the rth place can be filled in (n — (r — 1)) ways. Therefore, the number of
ways of filling in r vacant places in successionis n(n — 1) (n—2) ... (n—(r—1)) or
n(n-1)mn-2)..(n—-r+1)

This expression for "P_is cumbersome and we need a notation which will help to
reduce the size of this expression. The symbol n! (read as factorial n or n factorial )
comes to our rescue. In the following text we will learn what actually n! means.

7.3.2 Factorial notation The notation n! represents the product of first n natural
numbers, i.e., the product 1 x 2 x 3 x...x (n— 1) x nis denoted as n!. We read this
symbol as ‘n factorial’. Thus, I x2x3x4... x(n—-1)xn=n

1=1"

1x2=21

Ix2x3=3"

1x2x3x4=4"!andsoon.

We define 0! =1
Wecanwrite 5! =5x4!=5%x4x3!=5%x4x3x2!

=5x4x3x2x1!
Clearly, for a natural number n
n!=nmn - 1)!
=nn - 1)n - 2)! [provided (n = 2)]
=nn - 1m-2) (n - 3)! [provided (n = 3)]

and so on.
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Example 5 Evaluate (i) 5! @{11) 7! (i) 7!-15!

Solution (1) 5!'=1x2x3x4x5=120
(i) 7!'=1x2x3x4x5x%x6x7=5040
and @) 7! — 5!'=5040 — 120 =4920.

7! 12!
Example 6 Compute (i) ; (i1) (10!) 21

71 TxX6x5!
Solution (i) We have 5 = 51 =7x6=42
; ) 12! 12x11x(10!) 6 1l 66
o W oy 2y = (ox(z) “oxt=ee
n!

Example 7 Evaluate r!(n—r)!’ whenn=>5,r=2.

5!
Solution ~ We have to evaluate 2!(5 D 2)! (sincen=15,r=2)

51 5! 5x4
21(5-2)!7 2131 2

We have 10

1 1 X

Example 8 If Q! + 91 = 101 find x.

1 1 X
. —+ =
Solution We have 8! 9x8! 10x9x8!

Therefore 14+~ =—> LU
eretore 9 10x9 %" 9 10x9

So x =100.

|EXERCISE 7.2

1. Evaluate
(1) 8! @{i)4!-3!
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8! 1 1 x
!7

2. Is3!+4!=717 3.Computem 4.Ifa+$:8_ find x

n!
5. Evaluate (n_r),,when

)n=6,r=2 (i)n=9,r=5.
7.3.3 Derivation of the formula for "P,

"p = n!
(n—r)”
Let us now go back to the stage where we had determined the following formula:
"P=nn-1H)(n-2)... n-r+1)

Multiplying numerator and denomirator by (n—r) (n—r—1)...3 x2 x 1, we get

0<r<n

"p :n(n—l) (n=2)...(n=r+1)(n—r)(n-r-1)..3x2x1 _ n!
" (n—r)(n—r—l)...3><2><1 - (n—r)!’

n n!
Thus Pr:(n_r),,wher60<r£n

This is a much more convenient expression for "P_than the previous one.

. n!
In particular, when r=n, "P, = ot
Counting permutations is merely counting the number of ways in which some or
all objects at a time are rearranged. Arranging no object at all is the same as leaving
behind all the objects and we know that there is only one way of doing so. Thus, we

can have

n!

n! n!

Po=1= T ooy (D

Therefore, the formula (1) is applicable for r = 0 also.

np = )
Thus r (n_r)!
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Theorem 2 The number of permutations of n different objects taken r at a time,
where repetition is allowed, is n".
Proof is very similar to that of Theorem 1 and is left for the reader to arrive at.
Here, we are solving some of the problems of the pervious Section using the
formula for "P to illustrate its usefulness.
In Example 1, the required number of words = P, = 4! = 24. Here repetition is
not allowed. If repetition is allowed, the required number of words would be 4* = 256.
The number of 3-letter words which can be formed by the letters of the word

6!
6
NUMBER = P :§ =4 x5 x 6 = 120. Here, in this case also, the repetition is not

allowed. If the repetition is allowed,the required number of words would be 6° = 216.
The number of ways in which a Chairman and a Vice-Chairman can be chosen
from amongst a group of 12 persons assuming that one person can not hold more than

.. 12 12!
one position, clearly “P, :1_0' =11x12 =132.

7.3.4 Permutations when all the objects are not distinct objects Suppose we have
to find the number of ways of rearranging the letters of the word ROOT. In this case,
the letters of the word are not all different. There are 2 Os, which are of the same kind.
Let us treat, temporarily, the 2 Os as different, say, O, and O,. The number of
permutations of 4-different letters, in this case, taken all at a time
is 41. Consider one of these permutations say, RO O,T. Corresponding to this
permutation,we have 2 ! permutations RO,0,T and RO,0O, T which will be exactly the
same permutation if O, and O, are not treated as different, i.e., if O, and O, are the
same O at both places.

4!
Therefore, the required number of permutations = 91 = 3x4=12
Permutations when O,, O, are Permutations when O, O, are
different. the same O.

RO,0,T

RO,0,T > ROOT

TO,0,R

TO,0R s TOOR
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ROTO; | ROTO
RO,T O, | >
TORO, | TORO
TO,RO, | >
RTO,0,] RTOO
RTO,O0, | >
TRO,O, | TROO
TRO,O, | >
01 0; RT] OORT
0, O, TR | >
OiRO,T | OROT
O,RO,T | 8
01 T0, R| OTOR
0, TO, R| >
O RTO, ORTO
O,RTO, | >
0/ TRO, | OTRO
0, TRO, | >
0, O, TR | 0OTR
0, O, TR | >

Let us now find the number of ways of rearranging the letters of the word
INSTITUTE. In this case there are 9 letters, in which I appears 2 times and T appears
3 times.

Temporarily, let us treat these letters different and name themas 1,1, T, T, T,.
The number of permutations of 9 different letters, in this case, taken all at a time is 9 !.
Consider one such permutation, say, I NT SI, T, U ET,. Here if I, I, are not same
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and T|, T,, T, are not same, then I, I, can be arranged in 2! ways and T, T,, T, can

be arranged in 3! ways. Therefore, 2! x 3! permutations will be just the same permutation
corresponding to this chosen permutation [ NT SL T UET,. Hence, total number of

!
different permutations will be 2?—3'

We can state (without proof) the following theorems:
Theorem 3 The number of permutations of n objects, where p objects are of the

n!
same kind and rest are all different = F .

In fact, we have a more general theorem.

Theorem 4 The number of permutations of n objects, where p, objects are of one

kind, p, are of second kind, ..., p, are of k™ kind and the rest, if any, are of different
!

kind is ———— .

plp,l... p!

Example 9 Find the number of permutations of the letters of the word ALLAHABAD.

Solution Here, there are 9 objects (letters) of which there are 4A’s, 2 L’s and rest are
all different.

9! 5X6XTx8x9

= =7560
412! 2

Therefore, the required number of arrangements =

Example 10 How many 4-digit numbers can be formed by using the digits 1 to 9 if
repetition of digits is not allowed?

Solution Here order matters for example 1234 and 1324 are two different numbers.
Therefore, there will be as many 4 digit numbers as there are permutations of 9 different
digits taken 4 at a time.

9! 9!

Therefore, the required 4 digit numbers = °P, = (90— = i 9x8x%x7x6=3024.

Example 11 How many numbers lying between 100 and 1000 can be formed with the
digits 0, 1, 2, 3, 4, 5, if the repetition of the digits is not allowed?

Solution Every number between 100 and 1000 is a 3-digit number. We, first, have to
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count the permutations of 6 digits taken 3 at a time. This number would be °P.. But,
these permutations will include those also where 0 is at the 100’s place. For example,
092, 042, . . ., etc are such numbers which are actually 2-digit numbers and hence the
number of such numbers has to be subtracted from P, to get the required number. To
get the number of such numbers, we fix 0 at the 100’s place and rearrange the remaining

5 digits taking 2 at a time. This number is °P,. So

151
The required number =%p,-°P, =%_%
=4x5%x6 — 4x5=100

Example 12 Find the value of n such that

"P, 5
(i) "Py=42"P,, n>4 (i) W=§’”>4
Solution (i) Given that
"Py=42"P,
or nn-1)(n-2yn-3y(n-4)=42nn-1)(n-2)
Since n>4 so nn—1)(n-2)#0

Therefore, by dividing both sides by n(n—1) (n —2), we get
nm-3(mn-4)=42

or n —7n - 30=0
or n?—10n + 3n - 30
or n-10)(n+3)=0
or n—-10=0or n+3=0
or n=10 or n=-3

As n cannot be negative, so n = 10.

n

(N P, _5
(i) Given that ”’1P4 3

Therefore 3n(n—1)(n—-2) (n-3)=5n—-1)(n-2) (n—-3) (n—4)
or 3n=5mn-4) [as(-1)n-2)m-3)#0,n>4]

or n=10.
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Example 13 Find r, if 5*P, =6°P_ .

Solution We have 5 *P. =6 °P_|

4 5!

5% =6X—"—

o (4-r)! (5-r+1)!
50 6 x5!

or (4=r) (5-r+1)(5-r)(5-r-1)
or 6 -6 -rnN==06
or - 11r+24=0
or rr—=8r-3r+24=0
or r-8-3=0
or r=8 or r=3.

Hence r=238, 3.

Example 14 Find the number of different 8-letter arrangements that can be made
from the letters of the word DAUGHTER so that
(1) all vowels occur together (i) all vowels do not occur together.

Solution (i) There are 8 different letters in the word DAUGHTER, in which there
are 3 vowels, namely, A, U and E. Since the vowels have to occur together, we can for
the time being, assume them as a single object (AUE). This single object together with
5 remaining letters (objects) will be counted as 6 objects. Then we count permutations
of these 6 objects taken all at a time. This number would be °P, = 6!. Corresponding to
each of these permutations, we shall have 3! permutations of the three vowels A, U, E
taken all at a time . Hence, by the multiplication principle the required number of
permutations = 6 | x 3 | =4320.

@) If we have to count those permutations in which all vowels are never
together, we first have to find all possible arrangments of 8 letters taken all at a time,
which can be done in 8! ways. Then, we have to subtract from this number, the number
of permutations in which the vowels are always together.

Therefore, the required number 8!-6!x3!= 6! (7x8 — 6)
2x6!((28-3)

= 50x6!=50x720=36000
Example 15 In how many ways can 4 red, 3 yellow and 2 green discs be arranged in
arow if the discs of the same colour are indistinguishable ?

Solution Total number of discs are 4 + 3 + 2 =9. Out of 9 discs, 4 are of the first kind

2020-21



PERMUTATIONS AND COMBINATIONS 147
(red), 3 are of the second kind (yellow) and 2 are of the third kind (green).

1260.

Therefore, the number of arrangements =
4131 21
Example 16 Find the number of arrangements of the letters of the word
INDEPENDENCE. In how many of these arrangements,

(1) do the words start with P

(i) do all the vowels always occur together

(iii) do the vowels never occur together

(iv)  do the words begin with I and end in P?

Solution There are 12 letters, of which N appears 3 times, E appears 4 times and D
appears 2 times and the rest are all different. Therefore

12!

The required number of arrangements ~ 3141 21 =1663200

(i) Let us fix P at the extreme left position, we, then, count the arrangements of the
remaining 11 letters. Therefore, the required number of words starting with P

!
= wLy =138600
31214 :
(i) There are 5 vowels in the given word, which are 4 Es and 1 I. Since, they have
to always occur together, we treat them as a single object |[EEEEI| for the time

being. This single object together with 7 remaining objects will account for 8
objects. These 8 objects, in which there are 3Ns and 2 Ds, can be rearranged in

8!
311 Ways. Corresponding to each of these arrangements, the 5 vowels E, E, E,

5!
E and I can be rearranged in oy ways. Therefore, by multiplication principle,

the required number of arrangements

! !
= 8L X Rl =16800
3121 4
@ii) The required number of arrangements
= the total number of arrangements (without any restriction) — the number

of arrangements where all the vowels occur together.
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=1663200- 16800 = 1646400
Let us fix I and P at the extreme ends (I at the left end and P at the right end).
We are left with 10 letters.
Hence, the required number of arrangements

10!

=S4~ 12600

|EXERCISE 7.3 |

How many 3-digit numbers can be formed by using the digits 1 to 9 if no digit is
repeated?

How many 4-digit numbers are there with no digit repeated?

How many 3-digit even numbers can be made using the digits
1,2,3,4,6,7,if no digit is repeated?

Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4,
5 if no digit is repeated. How many of these will be even?

From a committee of 8 persons, in how many ways can we choose a chairman
and a vice chairman assuming one person can not hold more than one position?
Findnif"~'P,:"P,=1:09.

Find rif i) °P =2°P_,  (ii) °P.= °P_, .
How many words, with or without meaning, can be formed using all the letters of
the word EQUATION, using each letter exactly once?
How many words, with or without meaning can be made from the letters of the
word MONDAY, assuming that no letter is repeated, if.
(1) 4 letters are used at a time, (ii) all letters are used at a time,
(i) all letters are used but first letter is a vowel?
In how many of the distinct permutations of the letters in MISSISSIPPI do the
four I’s not come together?
In how many ways can the letters of the word PERMUTATIONS be arranged if the
(1) words start with P and end with S, (i) vowels are all together,
(iii) there are always 4 letters between P and S?

Combinations

Let us now assume that there is a group of 3 lawn tennis players X, Y, Z. A team
consisting of 2 players is to be formed. In how many ways can we do so? Is the team
of X and Y different from the team of Y and X ? Here, order is not important.
In fact, there are only 3 possible ways in which the team could be constructed.
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Fig.7.3
These are XY, YZ and ZX (Fig 7.3).
Here, each selection is called a combination of 3 different objects taken 2 at a time.
In a combination, the order is not important.

Now consider some more illustrations.

Twelve persons meet in a room and each shakes hand with all the others. How do
we determine the number of hand shakes. X shaking hands with Y and Y with X will
not be two different hand shakes. Here, order is not important. There will be as many
hand shakes as there are combinations of 12 different things taken 2 at a time.

Seven points lie on a circle. How many chords can be drawn by joining these
points pairwise? There will be as many chords as there are combinations of 7 different
things taken 2 at a time.

Now, we obtain the formula for finding the number of combinations of n different
objects taken r at a time, denoted by "C...

Suppose we have 4 different objects A, B, C and D. Taking 2 at a time, if we have
to make combinations, these will be AB, AC, AD, BC, BD, CD. Here, AB and BA are
the same combination as order does not alter the combination. This is why we have not
included BA, CA, DA, CB, DB and DC in this list. There are as many as 6 combinations
of 4 different objects taken 2 at a time, i.e., 4C2 =6.

Corresponding to each combination in the list, we can arrive at 2! permutations as
2 objects in each combination can be rearranged in 2! ways. Hence, the number of
permutations = *C, x 2!.

On the other hand, the number of permutations of 4 different things taken 2 at
a time = “P,.
4l 4
Therefore P,=*C,x2! or m =G

Now, let us suppose that we have 5 different objects A, B, C, D, E. Taking 3 at a
time, if we have to make combinations, these will be ABC, ABD, ABE, BCD, BCE,
CDE, ACE, ACD, ADE, BDE. Corresponding to each of these 5C3 combinations, there
are 3! permutations, because, the three objects in each combination can be
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rearranged in 3 ! ways. Therefore, the total of permutations = 5C, x 3!

500 s
Therefore °P,=°C,x 3! or (5-3)! 3! =G

These examples suggest the following theorem showing relationship between
permutaion and combination:

Theorem 5 "P ="C, rl, O<r<n.

Proof Corresponding to each combination of "C , we have r | permutations, because
r objects in every combination can be rearranged in r | ways.
Hence, the total number of permutations of n different things taken r at a time

is "C_X r!. On the other hand, it is "P, . Thus

"P ="C,xrl, 0<r<n.

n! 0 n!
= I "nCo=—
Remarks 1. From above (n—r)! Cxrlje, "G r(n—r)

u n!

"l

In particular, if r =n,

2. We define "CO = 1, i.e., the number of combinations of n different things taken
nothing at all is considered to be 1. Counting combinations is merely counting the
number of ways in which some or all objects at a time are selected. Selecting
nothing at all is the same as leaving behind all the objects and we know that there
is only one way of doing so. This way we define "C, = 1.

| !
3. As—1 _=]= "C,, the formula "C, = g applicable for =0 also.
0!(n—0)! ri(n-r)!
Hence
n!
rlc —
r r!(n_r)!,OSrSn.
- n! n!
4. C = = = nC 5

T =) =) T e TG
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i.e., selecting r objects out of n objects is same as rejecting (n — r) objects.
5. "C,="C,= a=b ora=n-bie,n=a+b

Theorem 6 "C, +"C,_ = ""'C,

Proof We have "C,+"C._ = —+

- (r—l)!n(!n—r)! BU-LJ

n! ><n—r+l+r (n+1)! _m o
- (r—l)!(n—r)! r(n—r+1) v r!(n+1—r)!_ r

Example 17 If "Cy = "Cy, find "C,,.

Solution We have "C, = "Cq

n! n!

Le., 9l(n—9)!  (n-8)8

1
n—_8

or or n —-8=9 or n=17

O | —

Therefore  "C,, = 17C17 =1.

Example 18 A committee of 3 persons is to be constituted from a group of 2 men and
3 women. In how many ways can this be done? How many of these committees would
consist of 1 man and 2 women?

Solution Here, order does not matter. Therefore, we need to count combinations.
There will be as many committees as there are combinations of 5 different persons
5! 4x5

= = 10,
3212

. . 5
taken 3 at a time. Hence, the required number of ways = ~C;

Now, 1 man can be selected from 2 men in *C, ways and 2 women can be
selected from 3 women in *C, ways. Therefore, the required number of committees
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2! !
- ’C,x°C, -2 3 s
nn o2
Example 19 What is the number of ways of choosing 4 cards from a pack of 52
playing cards? In how many of these

(1) four cards are of the same suit,

(i) four cards belong to four different suits,
(i) are face cards,
(iv) two are red cards and two are black cards,
(v) cards are of the same colour?

Solution There will be as many ways of choosing 4 cards from 52 cards as there are
combinations of 52 different things, taken 4 at a time. Therefore

5 52! 49x50x51%x52
The required number of ways = C,= 41 48! = % 3% 4
=270725

(i) There are four suits: diamond, club, spade, heart and there are 13 cards of each
suit. Therefore, there are "*C, ways of choosing 4 diamonds. Similarly, there are
C, ways of choosing 4 clubs, °C, ways of choosing 4 spades and °C, ways of
choosing 4 hearts. Therefore
The required number of ways

PC, + PC,+ °C,+ “C,.

|
4x£=2860
41 9!

(i1) There arel3 cards in each suit.

Therefore, there are C, ways of choosing 1 card from 13 cards of diamond,
C, ways of choosing 1 card from 13 cards of hearts, *C, ways of choosing 1
card from 13 cards of clubs, °C, ways of choosing 1 card from 13 cards of

spades. Hence, by multiplication principle, the required number of ways
= BC, xBC xBCx"C, = 13*
(i) There are 12 face cards and 4 are to be selected out of these 12 cards. This can be

12!

done in *C, ways. Therefore, the required number of ways = 41 8!

=495
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(iv) There are 26 red cards and 26 black cards. Therefore, the required number of
ways = *°C, X *C,

2
26! 2
= [m} =(325)" = 105625

(v) 4 red cards can be selected out of 26 red cards in 26C4 ways.
4 black cards can be selected out of 26 black cards in *°C,ways.

Therefore, the required number of ways = *°C, + *C,

2% 20! 29900
4122 '

EXERCISE 7.4 |

1. If "C,="C, find "C,.

2. Determine n if
(i)*C,:"C,=12:1 (i) C,:"C,=11:1

3. How many chords can be drawn through 21 points on a circle?

4. In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and
4 girls?

5. Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5
blue balls if each selection consists of 3 balls of each colour.

6.  Determine the number of 5 card combinations out of a deck of 52 cards if there
is exactly one ace in each combination.

7. In how many ways can one select a cricket team of eleven from 17 players in
which only 5 players can bowl if each cricket team of 11 must include exactly 4
bowlers?

8. A bag contains 5 black and 6 red balls. Determine the number of ways in which
2 black and 3 red balls can be selected.

9. In how many ways can a student choose a programme of 5 courses if 9 courses
are available and 2 specific courses are compulsory for every student?

Miscellaneous Examples

Example 20 How many words, with or without meaning, each of 3 vowels and 2
consonants can be formed from the letters of the word INVOLUTE ?

Solution In the word INVOLUTE, there are 4 vowels, namely, [,O,E,Uand 4
consonants, namely, N, V, L and T.
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The number of ways of selecting 3 vowels out of 4 =*C, = 4.
The number of ways of selecting 2 consonants out of 4 =*C, = 6.

Therefore, the number of combinations of 3 vowels and 2 consonants is
4 x6=24.

Now, each of these 24 combinations has 5 letters which can be arranged among
themselves in 5 ! ways. Therefore, the required number of different words is
24 x 5 1 =2880.

Example 21 A group consists of 4 girls and 7 boys. In how many ways can a team of
5 members be selected if the team has (i) no girl ? (ii) at least one boy and one girl ?
(iii) at least 3 girls ?

Solution (i) Since, the team will not include any girl, therefore, only boys are to be

selected. 5 boys out of 7 boys can be selected in "C, ways. Therefore, the required

; 7 _6x7 _

number of ways = -5 TS5 2 21

(i) Since, at least one boy and one girl are to be there in every team. Therefore, the
team can consist of

(a) 1boy and 4 girls (b) 2 boys and 3 girls
(c) 3 boys and 2 girls (d) 4 boys and 1 girl.
1 boy and 4 girls can be selected in 'C, x “C, ways.
2 boys and 3 girls can be selected in 'C, X “C, ways.
3 boys and 2 girls can be selected in 'C, X ‘C, ways.
4 boys and 1 girl can be selected in 'C, X ‘C, ways.
Therefore, the required number of ways
='C, X *C,+'C, x*C,+'C, x *C,+'C, x *C,
=7+ 84 +210+ 140 =441
(i) Since, the team has to consist of at least 3 girls, the team can consist of
(a) 3 girls and 2 boys, or  (b) 4 girls and 1 boy.
Note that the team cannot have all 5 girls, because, the group has only 4 girls.

3 girls and 2 boys can be selected in ‘C, X 'C, ways.
4 girls and 1 boy can be selected in ‘C, X 'C, ways.

Therefore, the required number of ways
=4C3><7C2+4C4><7C1=84+7=91

2020-21



PERMUTATIONS AND COMBINATIONS 155

Example 22 Find the number of words with or without meaning which can be made
using all the letters of the word AGAIN. If these words are written as in a dictionary,
what will be the 50" word?

Solution There are 5 letters in the word AGAIN, in which A appears 2 times. Therefore,
5!

the required number of words = 2 60

To get the number of words starting with A, we fix the letter A at the extreme left
position, we then rearrange the remaining 4 letters taken all at a time. There will be as
many arrangements of these 4 letters taken 4 at a time as there are permutations of 4

different things taken 4 at a time. Hence, the number of words starting with

4!
A = 4! =24 Then, starting with G, the number of words = o= 12 as after placing G

at the extreme left position, we are left with the letters A, A, I and N. Similarly, there
are 12 words starting with the next letter I. Total number of words so far obtained
=24+12+12=48.

The 49" word is NAAGI. The 50" word is NAAIG.

Example 23 How many numbers greater than 1000000 can be formed by using the
digits 1, 2,0,2,4,2,4?

Solution Since, 1000000 is a 7-digit number and the number of digits to be used is also
7. Therefore, the numbers to be counted will be 7-digit only. Also, the numbers have to
be greater than 1000000, so they can begin either with 1, 2 or 4.

6!  4x5x6
The number of numbers beginning with 1 = 312 = 5 =60, as when 1 is

fixed at the extreme left position, the remaining digits to be rearranged will be 0, 2, 2, 2,
4, 4, in which there are 3, 2s and 2, 4s.

Total numbers begining with 2

_ 6l 3x4x5%X6
S 2

=180

!

- . 6
and total numbers begining with 4 = 3 4x5%6 =120
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Therefore, the required number of numbers = 60 + 180 + 120 = 360.
Alternative Method

7!
The number of 7-digit arrangements, clearly, 3121 =420 But, this will include those

numbers also, which have 0 at the extreme left position. The number of such

6!
arrangements 3, (by fixing 0 at the extreme left position) = 60.

Therefore, the required number of numbers = 420 — 60 = 360.

If one or more than one digits given in the list is repeated, it will be
understood that in any number, the digits can be used as many times as is given in
the list, e.g., in the above example 1 and 0 can be used only once whereas 2 and 4
can be used 3 times and 2 times, respectively.

Example 24 In how many ways can 5 girls and 3 boys be seated in a row so that no
two boys are together?

Solution Let us first seat the 5 girls. This can be done in 5! ways. For each such
arrangement, the three boys can be seated only at the cross marked places.
xGxGxGxGxGx.
There are 6 cross marked places and the three boys can be seated in °P, ways.
Hence, by multiplication principle, the total number of ways
6!
— 51 % 6P — 5lx —
=51 x P, = 5!x 2y
=4x5%x2x3x4x5x%x6 =14400.

Miscellaneous Exercise on Chapter 7

1. How many words, with or without meaning, each of 2 vowels and 3 consonants
can be formed from the letters of the word DAUGHTER ?

2. How many words, with or without meaning, can be formed using all the letters of
the word EQUATION at a time so that the vowels and consonants occur together?

3. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways
can this be done when the committee consists of:

(1) exactly 3 girls ? (ii) atleast 3 girls ?  (iii) atmost 3 girls ?
4. If the different permutations of all the letter of the word EXAMINATION are
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listed as in a dictionary, how many words are there in this list before the first
word starting with E ?

How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9
which are divisible by 10 and no digit is repeated ?

The English alphabet has 5 vowels and 21 consonants. How many words with
two different vowels and 2 different consonants can be formed from the
alphabet ?

In an examination, a question paper consists of 12 questions divided into two
partsi.e., Part I and Part II, containing 5 and 7 questions, respectively. A student
is required to attempt 8 questions in all, selecting at least 3 from each part. In
how many ways can a student select the questions ?

Determine the number of 5-card combinations out of a deck of 52 cards if each
selection of 5 cards has exactly one king.

It is required to seat 5 men and 4 women in a row so that the women occupy the
even places. How many such arrangements are possible ?

From a class of 25 students, 10 are to be chosen for an excursion party. There
are 3 students who decide that either all of them will join or none of them will
join. In how many ways can the excursion party be chosen ?

In how many ways can the letters of the word ASSASSINATION be arranged
so that all the S’s are together ?

Summary

® Fundamental principle of counting If an event can occur in m different

ways, following which another event can occur in n different ways, then the
total number of occurrence of the events in the given order is m X n.

® The number of permutations of n different things taken r at a time, where

n!
repetition is not allowed, is denoted by "P_ and is given by "P, = (n—r)!’

where 0 < r < n.

Onl=1x2x3x%x..xn
®nl=nxm-1)!

@ The number of permutations of n different things, taken r at a time, where
repeatition is allowed, is n".
# The number of permutations of 7 objects taken all at a time, where p, objects
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are of first kind, p, objects are of the second kind, ..., p, objects are of the kP
n!
plp,Lopl

# The number of combinations of n different things taken r at a time, denoted by

kind and rest, if any, are all different is

n!

"C_, is given by "C, = pETEE 0<r<n

Historical Note

The concepts of permutations and combinations can be traced back to the advent
of Jainism in India and perhaps even earlier. The credit, however, goes to the
Jains who treated its subject matter as a self-contained topic in mathematics,
under the name Vikalpa.

Among the Jains, Mahavira, (around 850) is perhaps the world’s first
mathematician credited with providing the general formulae for permutations and
combinations.

In the 6th century B.C., Sushruta, in his medicinal work, Sushruta Samhita,
asserts that 63 combinations can be made out of 6 different tastes, taken one at a
time, two at a time, etc. Pingala, a Sanskrit scholar around third century B.C.,
gives the method of determining the number of combinations of a given number
of letters, taken one at a time, two at a time, etc. in his work Chhanda Sutra.
Bhaskaracharya (born 1114) treated the subject matter of permutations and
combinations under the name Anka Pasha in his famous work Lilavati. In addition
to the general formulae for "C and "P, already provided by Mahavira,
Bhaskaracharya gives several important theorems and results concerning the
subject.

Outside India, the subject matter of permutations and combinations had its
humble beginnings in China in the famous book I-King (Book of changes). It is
difficult to give the approximate time of this work, since in 213 B.C., the emperor
had ordered all books and manuscripts in the country to be burnt which fortunately
was not completely carried out. Greeks and later Latin writers also did some
scattered work on the theory of permutations and combinations.

Some Arabic and Hebrew writers used the concepts of permutations and
combinations in studying astronomy. Rabbi ben Ezra, for instance, determined
the number of combinations of known planets taken two at a time, three at a time
and so on. This was around 1140. It appears that Rabbi ben Ezra did not know
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the formula for "C . However, he was aware that "C = "C _ for specific values
n and r. In 1321, Levi Ben Gerson, another Hebrew writer came up with the
formulae for "P , "P and the general formula for "C.

The first book which gives a complete treatment of the subject matter of
permutations and combinations is Ars Conjectandi written by a Swiss, Jacob
Bernoulli (1654 — 1705), posthumously published in 1713. This book contains
essentially the theory of permutations and combinations as is known today.

4

® —

o,

2020-21

159



[=] Chapter

11076CHOS

‘ BINOMIAL THEOREM )

** Mathematics is a most exact science and its conclusions are capable of
absolute proofs. — C.P. STEINMETZ*®

8.1 Introduction

In earlier classes, we have learnt how to find the squares
and cubes of binomials like a + b and a — b. Using them, we
could evaluate the numerical values of numbers like
(98)% = (100 — 2)%, (999)° = (1000 — 1)%, etc. However, for
higher powers like (98)°, (101)®, etc., the calculations become
difficult by using repeated multiplication. This difficulty was
overcome by a theorem known as binomial theorem. It gives
an easier way to expand (a + b)", where n is an integer or a
rational number. In this Chapter, we study binomial theorem
for positive integral indices only.

Blaise Pascal
(1623-1662)

8.2 Binomial Theorem for Positive Integral Indices

Let us have a look at the following identities done earlier:

(a+ b) =1 a+b=0
(a+ b)''=a+b
(a+ b)Y = a*> + 2ab + b?

(a+ by = @ + 3a*b + 3ab*+ b®
(a+ b)* = (a + b)’ (a + b) = a* + 4a*b + 6a*b* + 4ab® + b*
In these expansions, we observe that
(1) The total number of terms in the expansion is one more than the index. For
example, in the expansion of (a + b)*, number of terms is 3 whereas the index of
(a + b)*is 2.
(i) Powers of the first quantity ‘a’ go on decreasing by 1 whereas the powers of the
second quantity ‘b’ increase by 1, in the successive terms.
(iii)) In each term of the expansion, the sum of the indices of @ and b is the same and
is equal to the index of a + b.
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We now arrange the coefficients in these expansions as follows (Fig 8.1):

Index Coefficients
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
Fig 8.1

Do we observe any pattern in this table that will help us to write the next row? Yes we
do. It can be seen that the addition of 1’s in the row for index 1 gives rise to 2 in the row
for index 2. The addition of 1, 2 and 2, 1 in the row for index 2, gives rise to 3 and 3 in
the row for index 3 and so on. Also, 1 is present at the beginning and at the end of each
row. This can be continued till any index of our interest.

We can extend the pattern given in Fig 8.2 by writing a few more rows.

Index Coefficients
0 1
1 1 1

Pascal’s Triangle
The structure given in Fig 8.2 looks like a triangle with 1 at the top vertex and running
down the two slanting sides. This array of numbers is known as Pascal’s triangle,
after the name of French mathematician Blaise Pascal. It is also known as Meru
Prastara by Pingla.

Expansions for the higher powers of a binomial are also possible by using Pascal’s
triangle. Let us expand (2x + 3y)° by using Pascal’s triangle. The row for index 5 is

1 5 100 10 5 1
Using this row and our observations (i), (ii) and (iii), we get
(2x +3y)° = (2x)° + 52x)* By) + 10(2x)* 3y)* +10 (2x)* 3y)* + 52x)(3y)* +(3y)’
=32 + 240x*y + 720x%y? + 1080x%y® + 810xy* + 243y°.
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Now, if we want to find the expansion of (2x + 3y)'%, we are first required to get
the row for index 12. This can be done by writing all the rows of the Pascal’s triangle
till index 12. This is a slightly lengthy process. The process, as you observe, will become
more difficult, if we need the expansions involving still larger powers.

We thus try to find a rule that will help us to find the expansion of the binomial for
any power without writing all the rows of the Pascal’s triangle, that come before the
row of the desired index.

For this, we make use of the concept of combinations studied earlier to rewrite

" n!
the numbers in the Pascal’s triangle. We know that C = m ,0< r<nand
n is a non-negative integer. Also, "C =1="C
The Pascal’s triangle can now be rewritten as (Fig 8.3)
Index Coefficients
0 ‘'c,
=D
1 'c, ¢
EH =
2 ‘¢, ¢, g
EH = =D
3 ‘c, ‘¢, ¢, ‘c,
=1 = = D
4 ‘e, ‘¢ ‘¢ o, e
EH = =) =) D
5 ’c, °c 'c, ‘¢, °C °C,

1 4
=D =) 10 =100 =5
Fig 8.3 Pascal’s triangle
Observing this pattern, we can now write the row of the Pascal’s triangle for any index

without writing the earlier rows. For example, for the index 7 the row would be

7C0 7C1 7C2 7C3 7C4 7C5 7C6 7C

7.

Thus, using this row and the observations (i), (i1) and (iii), we have

(a+b) ="C ja’+7C,a%b + 'Ca’b* + 'Ca'b’ + 1Ca’b* + 'C.a’h’ + 'C.ab® + 'C_b’
An expansion of a binomial to any positive integral index say n can now be visualised

using these observations. We are now in a position to write the expansion of a binomial
to any positive integral index.
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8.2.1 Binomial theorem for any positive integer n,
(@ +b)y'="Ca"+"Ca"'b+"Ca’b>+ .+"C _ab""' +"Ch"
Proof The proof is obtained by applying principle of mathematical induction.
Let the given statement be
P(n) : (a+ by'="Ca"+"Ca" 'b+"Ca" b+ ..+"C_ab'~'+"Cb
For n =1, we have
P(M):(a+b)="Ca' +'Ch'=a+b
Thus, P (1) is true.
Suppose P (k) is true for some positive integer k, i.e.
(@a+b)="Ca" +'Ca"'b+"'Ca*" b + .+ 'Ch' . (D)
We shall prove that P(k + 1) is also true, i.e.,
(@a+b)*'=1Cjd*" +**'C d'b + *+'C,d" " '0* + .+ *1'C D!
Now, (a + b)**! = (a + b) (a + b)

=(@+b) (‘Cjd*+'Ca*""'b+'C,d *b’+.+'C__ ab~'+'Cb")
[from (1)]

=IC " +1C, b +'Cd B 4.+ 'C,_ @B 1+ 'C abt +'C, b

+'Cd '+ 'Cd~+.+ 'C _abt + *C P!
[by actual multiplication]
='Cd*' + ({C+'C) d'b + (\C,+'C)a* " 'b’+ ...
+ (C+*'C_) ab* +*Cp**! [grouping like terms]
=EIC @k A IC aR + K IC, @ b IC b A IC, B
(by using “*'C =1, *C +'C_ = **'C and ‘C_=1=*"'C_ )

Thus, it has been proved that P (k + 1) is true whenever P(k) is true. Therefore, by
principle of mathematical induction, P(n) is true for every positive integer 7.

We illustrate this theorem by expanding (x + 2)°:
(x+2)° =°Cx®+°Cx°2 +°Cx'2* +°Cx’2° +°Cpx*2* + °Cx.2° + °C,.2°
=x° 4+ 12 + 60x* + 160x° +240x* + 192x + 64
Thus (x +2)°® =x°+ 12x° + 60x* + 160x° + 240x* + 192x + 64.
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Observations

- n n—ky k
1.  The notation Z C,a""b" stands for

k=0
"Ca'b® +"Ca'b' + ..+ "Ca'b" + ..+'C a*"b", where b’= 1 = a"".
Hence the theorem can also be stated as
n
(a+b)"=) "C,a""b"
k=0
2. The coefficients "C_ occuring in the binomial theorem are known as binomial
coefficients.
There are (n+1) terms in the expansion of (a+b)", i.e., one more than the index.
4.  In the successive terms of the expansion the index of a goes on decreasing by
unity. It is # in the first term, (n—1) in the second term, and so on ending with zero
in the last term. At the same time the index of b increases by unity, starting with
zero in the first term, 1 in the second and so on ending with n in the last term.
5. In the expansion of (a+b)", the sum of the indices of @ and b is n + O = n in the
first term, (n — 1) + 1 = n in the second term and so on 0 + n = n in the last term.
Thus, it can be seen that the sum of the indices of a and b is n in every term of the
expansion.

w9

8.2.2 Some special cases In the expansion of (a + b)",
(i) Takinga =x and b =-y, we obtain
(x=y) =k+Enr"
="Cx" + "Cx" (=) + "Cx"X(—y)* + "Cx"(=y)’ + ... + "C_(-y)"
="Cpx" —"Cx" 'y + "Cx" "2y = "Cx"’y + ... + (-1)* "C_y"
Thus (x-y)' ="Cpx" = "Cx" 'y + "Cx" "2 y* + ... + (=1)" "C _»y"
Using this, we have (x=2y)y’ = C x> = °Cx* (2y) + °Cx* (2y)* —°Cx* (2y)* +
C,x(2y)" -~ C,(2y)
= x° —10x"y + 40x°y? — 80x%y + 80xy* — 32y°.
(i) Taking a =1, b = x, we obtain
(I +xy="C(D)"+"C(1)" 'x + "C(1)" *x* + ... + "C x"
="C,+"Cx +"Cx*+"Cx’+ ... + "C x"

Thus (I +xy="C,+"Cx+"Cx*+"Cx’+ ... +"Cx"
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In particular, for x = 1, we have
2"="C,+"C, +"C, + .. +"C_
@) Taking a =1, b =—x, we obtain
(1I-x) = "C,—"Cx+"Cx*— ...+ (- 1) "Cx"
In particular, for x = 1, we get
0="C,-"C, +"C,— ... + (-1)""C,

4
3
Example 1 Expand (xz +;) ,x#0

Solution By using binomial theorem, we have

(=3 (1) (3o e G (3]
X +—| = 4C0(x2)4 + 4C1(x2)3 — | + 4C2(x2)2 — | + 4c3(x2) — | + 4C4 —
X X X X X

3 9 27 81
=xX83+4x°. —+6x. S +4x 5+
X X XX
108 81
=X+ 12X + 542 + —+—.
X X

Example 2 Compute (98)°.
Solution We express 98 as the sum or difference of two numbers whose powers are
easier to calculate, and then use Binomial Theorem.
Write 98 =100 -2
Therefore, (98)° = (100 - 2)°
=°C, (100)’ - °C, (100)*.2 + °C, (100)*2>
- °C, (100)* (2)* +°C, (100) (2)* =°C, 2y
=10000000000 — 5 x 100000000 x 2 + 10 x 1000000 x 4 — 10 x10000
x8+5x100x16-32

= 10040008000 — 1000800032 =9039207968.
Example 3 Which is larger (1.01)!%0%° or 10,000?

Solution Splitting 1.01 and using binomial theorem to write the first few terms we
have
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(1.01)1000000 = (] 4 (.01)"000000
= 100000C 4 10099%C (0.01) + other positive terms
=1+ 1000000 x 0.01 + other positive terms
=1+ 10000 + other positive terms
> 10000
Hence (1.01)1000000 > 10000

Example 4 Using binomial theorem, prove that 6"'-5n always leaves remainder
1 when divided by 25.

Solution For two numbers a and b if we can find numbers ¢ and r such that
a = bq + r, then we say that b divides a with g as quotient and r as remainder. Thus, in
order to show that 6"— 5n leaves remainder 1 when divided by 25, we prove that
6"— 5n = 25k + 1, where k is some natural number.

We have
(I1+ay="C,+"Ca+"Ca +..+"Ca"
Fora =5, we get

(1+5y="C/+"C5+"C,5*+..+"C5"

ie. 6)'=1+5n+5."C,+5C, +..+5"

ie. 6" - 5n=1+5* ("C,+"C;5 + ... + 5?)

or 6" —Sn=1+25 ("C,+ 5."C, + ... + 5"%)

or 6" — Sn=25k+1  where k= "C,+5."C, + ... + 5"~

This shows that when divided by 25, 6" — Snleaves remainder 1.

| EXERCISE 8.1 |

Expand each of the expressions in Exercises 1 to 5.

1. (1-2x) 2. |——= 3. 2x-=3)
x 2
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(x 1)5 ( 1 T
4= 5 | x+—
3 x X

Using binomial theorem, evaluate each of the following:

6.

9.
10.

11.

12.
13.

14.

(96)° 7. (102) 8. (101)*
99y’
Using Binomial Theorem, indicate which number is larger (1.1)'%% or 1000.

Find (a + b)* — (a — b)*. Hence, evaluate (ﬁ +\/§)4— (\/? - x/i)4.
Find (x + 1)® + (x — 1)%. Hence or otherwise evaluate (ﬁ + 1) + (ﬁ —1)S.
Show that 9! — 8n — 9 is divisible by 64, whenever n is a positive integer.

Prove that 23’ "C,=4"

r=0

General and Middle Terms

In the binomial expansion for (a + b)", we observe that the first term is
"C,a", the second term is "C,a""'b, the third term is "C,a"*b*, and so on. Looking
at the pattern of the successive terms we can say that the (r + 1)" term is
"C a™'b’. The (r + 1)"term is also called the general term of the expansion
(a + b). It is denoted by T . Thus T ="C a"'b"
Regarding the middle term in the expansion (a + b)", we have

(1) If niseven, then the number of terms in the expansion will be n + 1. Since

n+1+1)"

> J ,1.e.,

nis even so n + 1 is odd. Therefore, the middle term is (

" h
(54‘1} term.

3 th
For example, in the expansion of (x + 2y)*, the middle term is (E +1 J ie.,

5% term.

(i) If n is odd, then n +1 is even, so there will be two middle terms in the
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n+1Y" n+1 .
expansion, namely, > term and > +1] term. So in the expansion

7+1Y)" 7+1 )"
(2x —y)’, the middle terms are T ,1.e., 4" and T +1| e, 5%term.
1) 2n+1+1Y"
3. In the expansion of (X‘F—J , where x # 0, the middle term is ( > J ,
X

ie., (n+ 1)® term, as 2n is even.

1 n
It is given by *"C x" (—J = >C _(constant).
X

This term is called the term independent of x or the constant term.
Example 5 Find a if the 17" and 18" terms of the expansion (2 + a)*° are equal.
Solution The (r + 1)" term of the expansion (x + y)" is given by T  ,="Cx7y".
For the 17" term, we have, r+ 1 =17, ie., r=16

Therefore, T,=T,,, =%C, ¥ 'a'
- soc16 234 4l6.
Similarly, T18 £ soc17 233 417

Given that T17 = T18
SO 50C16 (2)34 a16 - 50C17 (2)33 a17

50 34
C,.2 a"

Therefore 00 o :aT
_ N, x 2 S0t 1733 |
Moo A= 500  T 16134) 50! -

Example 6 Show that the middle term in the expansion of (1+x)>" is

1.3.5.2n-1)

| 2n x", where n is a positive integer.
n!
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th
n
Solution As 2n is even, the middle term of the expansion (1 + x)*' is (7+ lj ,

i.e., (n + 1)™ term which is given by,
@Cm! ,
X

n! n!

T — 2ncn(1)2n - n(x)n — 2ncnxn —

n+l

_ 2n(2n-1) (2n-2) ...4.3.2.1xn

n! n!

n

_1.234..2n- 2)(2n- 1)(2n)x

n'n!

_ [1.3.5..(2n - D][2.4.6...(2n)]

n'n!

x)‘l

n

_ [1.3.5.2n-D]2"[1.2.3..n]

n'n!

[1.3.5..2n-D]n! ., .,
= 2" x

n! n!

1.35...2n- 1
_135.Cn-1) .
n!
Example 7 Find the coefficient of x°y? in the expansion of (x + 2y)°.

Solution Suppose x%* occurs in the (r + 1)™ term of the expansion (x + 2y)°.
Now T, =°C X "2y ="°C2" .x".y".
Comparing the indices of x as well as y in x°y* and in T, we getr=3.

Thus, the coefficient of x°y? is

9 5 987 5
9 3 - — [ —
C2=307 =32 7 702

Example 8 The second, third and fourth terms in the binomial expansion (x + a)" are
240, 720 and 1080, respectively. Find x, a and n.

Solution Given that second term T,= 240
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We have T,="Cx""'.a
So "Cx'. a =240 .. (D
Similarly "sz"‘z a*> =720 .. (2)
and "Cx"? a’ = 1080 .. (3)
Dividing (2) by (1), we get

"Cox"a 720 (n- 1! a_

"cx'la 240 M (n-2)! x

a _ 6

or X (n-1) .. (@)

Dividing (3) by (2), we have

9
= 2 2) . (5)

= |2

From (4) and (5),
6 9

n-1 201-2) Thus,n =35

a
Hence, from (1), 5x*a = 240, and from (4),;=5

Solving these equations for a and x, we get x =2 and a = 3.

Example 9 The coefficients of three consecutive terms in the expansion of (1 + a)"
are in the ratiol: 7 : 42. Find n.

Solution Suppose the three consecutive terms in the expansion of (1 + a)" are
(r = 1" r*and (r + 1) terms.

The (r— )" term is "C__,a"~?, and its coefficient is "C, _,. Similarly, the coefficients
of r* and (r + 1)" terms are "C__ and "C,, respectively.

Since the coefficients are in the ratio 1 : 7 : 42, so we have,

G L 8r+9=0 1
C 7-1.e,n-8r+9= .. (1)
C _ T

and e 0 ,e,n=-Tr+1=0 .. 2)

r

Solving equations(1) and (2), we get, n = 55.
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EXERCISE 8.2
Find the coefficient of
1. Xin (x + 3)8 2. a°b" in (a — 2b)"2 .
Write the general term in the expansion of
3. (x2—-y)® 4. (*—yx)'2, x #0.
5. Find the 4™ term in the expansion of (x —2y)!2.
;s
6. Find the 13" term in the expansion of | 9X——=| , x = 0.
3/x
Find the middle terms in the expansions of
%3 7 4 10
3-— —+9
 (-2) s (5o
9. In the expansion of (1 + a)™™, prove that coefficients of a” and a" are equal.
10. The coefficients of the (r— 1), r* and (r + 1) terms in the expansion of (x + 1)"
are in the ratio 1 : 3 : 5. Find n and r.
11. Prove that the coefficient of x" in the expansion of (1 +x)*'is twice the coefficient
of x" in the expansion of (1 + x)*' 1.
12. Find a positive value of m for which the coefficient of x* in the expansion
(1 +x)"1is 6.
Miscellaneous Examples
3 1Y
Example 10 Find the term independent of x in the expansion of (E X - a) .

6—r r
Solution We have T = °C, (—x j [——)

3>

1

2
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6-2r
— (_l)r 6 Cr (3) x12—3r

The term will be independent of x if the index of x is zero, i.e., 12 —3r=0. Thus, r=4

(3) 68 5
Hence 5" term is independent of x and is given by (- 1)* °C, W:E.

Example 11 If the coefficients of "', a” and @’ *" in the expansion of (1 + a)" are in
arithmetic progression, prove that n*—n(4r + 1) + 4r*-2 = 0.

Solution The (r + 1)™ term in the expansion is "C a". Thus it can be seen that a” occurs
in the (r + 1) term, and its coefficient is "C.. Hence the coefficients of a’~ ! a" and
a*'are"C _,"C and"C__ ,respectively. Since these coefficients are in arithmetic
progression, so we have, "C__ +"C__ =2."C. This gives

n! n! n!
+ =2X
(r=D!(n—r+1)! (r+DHl(n-—r-1) ri(n—r)!

1 1
Le. (r—l)!(n—r+1)(n—r)(n—r—l)!+(r+1)(r)(r—1)!(n—r—1)!
1
=2X
r(r=D'(n=r)y(n—r—-1)!
1 [ 1 1 }
or +
(r=-n! (n—-r-1n! n-ry(n-r+1 (r+1) (r)
1
=2x
(r=D!" (n—-r-Dr(n-r)]
1 1 2
ie. + = ,
(mn—r+)(n-r) r(r+1) r(n-r)
rr+D)+(n-r)in-r+1) 2
or n-rYin-r+1r(r+1) _r(n—r)
or rr+D)+(n-rnNn-r+H)=2r+1)mn-r+1)
or r+r+n’—nr+n—-nr+r—-r=2mr-r+r+n-r+1)
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or n—4nr-n+4r-2=0
1e., n-n@r+1)+4r-2=0

Example 12 Show that the coefficient of the middle term in the expansion of (1 + x)*" is
equal to the sum of the coefficients of two middle terms in the expansion of (1 + x)*"~'.

Solution As 2n is even so the expansion (1 + x)** has only one middle term which is

o th
(7+1j ie., (n+ 1)* term.

The (n + 1)" term is *C x". The coefficient of x" is *'C,
Similarly, (2n — 1) being odd, the other expansion has two middle terms,

2n—1+1Y" am—1+1 ' .

Y and T—H ie., n®" and (n + 1) terms. The coefficients of
these terms are >~ 'C _ and > ~'C , respectively.
Now

m-lc 4 MoIC =2C [As "C  +"C ="*!C]. as required.
n-1 n n r—1 r r

Example 13 Find the coefficient of a* in the product (1 + 2a)* (2 — @)’ using binomial
theorem.

Solution We first expand each of the factors of the given product using Binomial
Theorem. We have

(1 +2a)* =*C,+*C, (2a) + ‘C, 2a)® + *C, (2ay + ‘C, 2a)*
=1+4 Qa)+ 6(4d® + 4 (8a®) + 16a*.
=1+ 8a + 244’ + 324° + 16a*
and 2-a) =°C, 2y-°C, 2) (a) +°C,(2)’ (a)’*-"°C, (2)*(a)’
+°C,(2) (a)*-°C, (a)y
=32 — 80a + 80a*- 40a*+ 10a* - &’
Thus (1 + 2a)* 2 — a)®
=(1 + 8a + 24a> + 32a°+ 164a*) (32 —80a + 804>~ 404’ + 10a*~ a’)

The complete multiplication of the two brackets need not be carried out. We write only
those terms which involve a*. This can be done if we note that a". a*~"= a*. The terms
containing a*are

1 (10a*) + (8a) (40a*) + (244a*) (80a?) + (32a®) (- 80a) + (16a*) (32) = — 438a*
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Thus, the coefficient of a* in the given product is — 438.
Example 14 Find the " term from the end in the expansion of (x + a)".

Solution There are (n + 1) terms in the expansion of (x + a)". Observing the terms we
can say that the first term from the end is the last term, i.e., (n + 1)™ term of the
expansion and n + 1 = (n + 1) — (1 — 1). The second term from the end is the n™ term
of the expansion, and n= (n+ 1) — (2 —1). The third term from the end is the (n — 1)®
term of the expansion and n— 1 =(n+ 1) — (3 — 1) and so on. Thus 7" term from the
end will be term number (n + 1) — (r — 1) = (n — r + 2) of the expansion. And the

(n—r+2)"term is "C x -ttt
n—r+1

18
1
Example 15 Find the term independent of x in the expansion of [%/; + 7 j ,x>0.
X

1

18- 1
Solution We have T | = Bc, (3/;) [ ! J

18—r 1 18-2r
= 18C, x3 ——= 18C,—.x 3
r 2r
2"x
. . . . . 18-2r
Since we have to find a term independent of x, i.e., term not having x, so take =0.

We get r = 9. The required term is **C, 2—9 .

Example 16 The sum of the coefficients of the first three terms in the expansion of

3 ug
(x - —2) , x # 0, m being a natural number, is 559. Find the term of the expansion
X

containing x°.
. . 3 Y
Solution The coefficients of the first three terms of | X—— | are "C, (-3) "C,
X

and 9 "C,. Therefore, by the given condition, we have

I9m (m—1) _

"C, -3 "C + 9 "C, =559, i.e., | - 3m + 559
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which gives m = 12 (m being a natural number).
3 r
Now T — 12Cr xi2-r _? — lzcr (_ 3)r xl2-ar

Since we need the term containing x°, so put 12 - 3r=3i.e., r=3.
Thus, the required term is °C, (- 3)* x°, i.e., — 5940 x°.

Example 17 If the coefficients of (r — 5)™ and (2r — 1) terms in the expansion of

(1 + x)** are equal, find r.

Solution The coefficients of (r — 5)™ and (2r — 1)™ terms of the expansion (1 + x)*
are *C___and *C, _, respectively. Since they are equal so *C__ =*C,

Therefore, either r —6 =2r—-2 or r—6 =34 - (2r-2)
[Using the fact that if "CF"C,,’ then either r =p or r =n — p]

2

So, we get r = — 4 or r = 14. r being a natural number, r = — 4 is not possible.
So, r=14.
Miscellaneous Exercise on Chapter 8

1. Find a, b and n in the expansion of (a + b)" if the first three terms of the expansion
are 729, 7290 and 30375, respectively.

2. Find a if the coefficients of x* and x* in the expansion of (3 + ax)’ are equal.
3. Find the coefficient of x° in the product (1 + 2x)® (1 —x)” using binomial theorem.

4. If a and b are distinct integers, prove that a — b is a factor of a" — b", whenever
n is a positive integer.

[Hint write @" = (a — b + b)" and expand]

5. Evaluate (\/5 + \/5)6 - (\/5 - \/5)6 .
4 4
6. Find the value of (a2+\/a2—1) +(a2—\/a2—1) .

7. Find an approximation of (0.99)° using the first three terms of its expansion.
8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the

1 n
end in the expansion of [4/5 + %) is \/6;1.

2020-21



176 MATHEMATICS

9

10.

R x_2Y
. Expand using Binomial Theorem | 1 + D x#0,

Find the expansion of (3x* — 2ax + 3a4*)? using binomial theorem.

Summary

# The expansion of a binomial for any positive integral n is given by Binomial
Theorem, which is (a + b)" = "Cja* + "Ca"~'b + "C,a" ~*b* + ..+
"C _ab' '+ "Chb"

@ The coefficients of the expansions are arranged in an array. This array is
called Pascal’s triangle.

¢ The general term of an expansion (a + b)"is T, ="Ca"~". b".

1

h
n
¢ In the expansion (a + b)", if n is even, then the middle term is the [E—H)

n+1 5 n+l {
term.If n is odd, then the middle terms are [ > ) and [7“‘1] terms.

Historical Note

The ancient Indian mathematicians knew about the coefficients in the
expansions of (x + y)", 0 < n < 7. The arrangement of these coefficients was in
the form of a diagram called Meru-Prastara, provided by Pingla in his book
Chhanda shastra (200B.C.). This triangular arrangement is also found in the
work of Chinese mathematician Chu-shi-kie in 1303. The term binomial coefficients
was first introduced by the German mathematician, Michael Stipel (1486-1567) in
approximately 1544. Bombelli (1572) also gave the coefficients in the expansion of
(a+ by, forn=1,2 ...,7 and Oughtred (1631) gave them for n =1, 2,..., 10. The
arithmetic triangle, popularly known as Pascal’s triangle and similar to the Meru-
Prastara of Pingla was constructed by the French mathematician Blaise Pascal
(1623-1662) in 1665.

The present form of the binomial theorem for integral values of n appeared in
Trate du triange arithmetic, written by Pascal and published posthumously in
1665.
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11076CH0S

SEQUENCES AND SERIES

** Natural numbers are the product of human spirit. - DEDEKIND +#

9.1 Introduction

In mathematics, the word, “sequence” is used in much the
same way as it is in ordinary English. When we say that a
collection of objects is listed in a sequence, we usually mean
that the collection is ordered in such a way that it has an
identified first member, second member, third member and
so on. For example, population of human beings or bacteria
at different times form a sequence. The amount of money
deposited in a bank, over a number of years form a sequence.
Depreciated values of certain commodity occur in a
sequence. Sequences have important applications in several Fibonacci
spheres of human activities. (1175-1250)
Sequences, following specific patterns are called progressions. In previous class,
we have studied about arithmetic progression (A.P). In this Chapter, besides discussing
more about A.P.; arithmetic mean, geometric mean, relationship between A.M.

and G.M., special series in forms of sum to n terms of consecutive natural numbers,
sum to n terms of squares of natural numbers and sum to n terms of cubes of
natural numbers will also be studied.

9.2 Sequences

Let us consider the following examples:

Assume that there is a generation gap of 30 years, we are asked to find the
number of ancestors, i.e., parents, grandparents, great grandparents, etc. that a person
might have over 300 years.

300 _
30

Here, the total number of generations _ 10
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The number of person’s ancestors for the first, second, third, ..., tenth generations are
2,4,8,16,32, ..., 1024. These numbers form what we call a sequence.

Consider the successive quotients that we obtain in the division of 10 by 3 at
different steps of division. In this process we get 3,3.3,3.33,3.333, ... and so on. These
quotients also form a sequence. The various numbers occurring in a sequence are
called its rerms. We denote the terms of a sequence by a,, a,, a,, ..., a, ..., etc., the
subscripts denote the position of the term. The n'" term is the number at the n™ position
of the sequence and is denoted by @, The n™ term is also called the general term of the
sequence.

Thus, the terms of the sequence of person’s ancestors mentioned above are:
a =2a,=4,a,=8, .., a,=1024.
Similarly, in the example of successive quotients
a, =3,a,=33,a,=3.33, ..., a,=3.33333, etc.

A sequence containing finite number of terms is called a finite sequence. For
example, sequence of ancestors is a finite sequence since it contains 10 terms (a fixed
number).

A sequence is called infinite, if it is not a finite sequence. For example, the
sequence of successive quotients mentioned above is an infinite sequence, infinite in
the sense that it never ends.

Often, it is possible to express the rule, which yields the various terms of a sequence
in terms of algebraic formula. Consider for instance, the sequence of even natural
numbers 2,4, 6, ...

Here a=2=2x1 a,=4=2x2

a,=6=2x3 a,=8=2x4

a,, =46 =2x123,a, =48 =2 x 24, and so on.

In fact, we see that the n™ term of this sequence can be written as a, = 2n,
where 7 is a natural number. Similarly, in the sequence of odd natural numbers 1,3,5, ...,
the n™ term is given by the formula, @ = 2n — 1, where 7 is a natural number.

In some cases, an arrangement of numbers such as 1, 1, 2, 3, 5, 8,.. has no visible
pattern, but the sequence is generated by the recurrence relation given by

a =a,=1
a,=a, +a,
a =a

n-2 + an—l’ n>?2

This sequence is called Fibonacci sequence.
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In the sequence of primes 2,3,5,7,..., we find that there is no formula for the n™®
prime. Such sequence can only be described by verbal description.

In every sequence, we should not expect that its terms will necessarily be given
by a specific formula. However, we expect a theoretical scheme or a rule for generating
the terms a, a,, a,,...,a ,... in succession.

In view of the above, a sequence can be regarded as a function whose domain
is the set of natural numbers or some subset of it. Sometimes, we use the functional
notation a(n) for a,,.

9.3 Series
Leta,a,a,....a, be a given sequence. Then, the expression
a +a,+a, +,...+a +..

is called the series associated with the given sequence .The series is finite or infinite
according as the given sequence is finite or infinite. Series are often represented in

compact form, called sigma notation, using the Greek letter Y (sigma) as means of
indicating the summation involved. Thus, the series a, + a, + a; + ... + a,, is abbreviated

n
as Zak
=1

Remark When the series is used, it refers to the indicated sum not to the sum itself.
For example, 1 + 3 + 5 + 7 is a finite series with four terms. When we use the phrase
“sum of a series,” we will mean the number that results from adding the terms, the
sum of the series is 16.

We now consider some examples.

Example 1 Write the first three terms in each of the following sequences defined by
the following:

n-3

i) a,=2n+5, @) a,= 1

Solution (i) Here a, =2n + 5
Substitutingn =1, 2, 3, we get
a =2(1)+5=7,a,=9,a,=11

Therefore, the required terms are 7, 9 and 11.

B n-— -3 1 1

(i) Here a, = T Thus, @ :T:_E’ a, =—Z, a; =0
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Hence, the first three terms are _ l _l and 0.

’

2 4

Example 2 What is the 20™ term of the sequence defined by
a,=n-1)2-n) G+n)?

Solution Putting n = 20 , we obtain
a,,=(20-1) (2-20) (3 +20)
= 19 x (= 18) x (23) =— 7866.
Example 3 Let the sequence a,, be defined as follows:
a=1,a=a, +2fornz2.

Find first five terms and write corresponding series.
Solution We have

a1=1,a2=a1+2=1+2=3,a3=a2+2=3+2=5,

a=a,+2=5+2=7,a;,=a,+2=7+2=9.

Hence, the first five terms of the sequence are 1,3,5,7 and 9. The corresponding series
IS1+3+5+7+9+...

EXERCISE 9.1

Write the first five terms of each of the sequences in Exercises 1 to 6 whose nt
terms are:

n
1. a=nn+2) 2. a = n+l 3. a =2
2n-3 n’+5
4. a = 5. a ="' 5 6. a=n .

n 6 n 4
Find the indicated terms in each of the sequences in Exercises 7 to 10 whose n™®
terms are:

n
7. a=4n-3;a.,a, 8. a= E;a7
9 a _( 1))1—1n3. a 10 a :M'a
. S 5 d,y . n n+3 sUrg .
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Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the
corresponding series:

11. a,=3,a,=3a,_ +2foralln>1 12. a,=-1,a,= " ,n=>2
13. a,=a,=2,a,=a, ~1,n>2
14. The Fibonacci sequence is defined by
l=a =a,anda =a,  +a, ,,n>2.

Find %, forn=1,2,3,4,5
9.4 Arithmetic Progression (A.P.)
Let us recall some formulae and properties studied earlier.

A sequence a, a,, a,..., a,... is called arithmetic sequence or arithmetic

progression if a . =a + d, n € N, where a, is called the first term and the constant
term d is called the common difference of the A.P.

Let us consider an A.P. (in its standard form) with first term @ and common
difference d, 1.e.,a,a+d, a + 2d, ...

Then the n™ term (general term) of the AP.isa =a+ (n—-1) d.

We can verify the following simple properties of an A.P. :
(1) If a constant is added to each term of an A.P., the resulting sequence is

also an A.P.

(i) If a constant is subtracted from each term of an A.P., the resulting
sequence is also an A.P.

(i) If each term of an A.P. is multiplied by a constant, then the resulting
sequence is also an A.P.

(iv) If each term of an A.P. is divided by a non-zero constant then the
resulting sequence is also an A.P.

Here, we shall use the following notations for an arithmetic progression:
a = the first term, [ = the last term, d = common difference,

n = the number of terms.
Sn= the sum to »n terms of A.P.

Leta,a+d a+2d, ..., a+ (n—-1)dbe an A.P. Then
Il =a+n-1d
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S, =%[2a+(n—l)d]

n
We can also write, S, = 5 [a + l]

Let us consider some examples.

Example 4 In an A.P. if mt term is n and the nt term is m, where m = n, find the pth
term.

Solution We have a =a+ (m-1)d=n, .. (1)
and a=a+n-1)d=m .. (2)
Solving (1) and (2), we get
m-nyd=n-m,or d=-1, ... 3)
and a=n+m-1 . @)

Therefore a=a+ (- 1)d
=n+m-1+(p=-1)(l)=n+m-p
Hence, the p™ term is n + m — p.

1
Example 5 If the sum of n terms of an A.P. is nP+§n(n —1)Q, where P and Q

are constants, find the common difference.

Solution Let a,, a,, ... a, be the given A.P. Then

1
S =a, +a,+a,+..+a_ +a =nP+ En n-1Q
Therefore S =a=PS,=a+a,=2P+Q
So that a,=S,-S =P+Q
Hence, the common difference is givenby d=a,-a, =P +Q)-P=Q.
Example 6 The sum of n terms of two arithmetic progressions are in the ratio

(3n + 8) : (7n + 15). Find the ratio of their 12" terms.

Solution Let a,a, and dl, d2 be the first terms and common difference of the first
and second arithmetic progression, respectively. According to the given condition, we
have
Sumtontermsof firstA.P. _ 3n+8
Sumtontermsof second A.P. 7n+15
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%[2a1+(n—1)d1]

_ 3n+8
or n Tn+1
"4y +(n-1)a,] T >
2a,+(n—-1d, 3n+8
or 2a,+(n—-Dd, Tn+15 - (D
12" termof first A.P. _ a,+11d,
Now 12" termof second A.P  a, +11d,
2a,+22d, 3%23+8 _ .
2a,+22d, Tx23+15 [By putting n.=23 in (1)]
a,+11d, 12" term of first AP. 7
Therefore = =

a,+11d, 12™ term of second A.P. 16
Hence, the required ratio is 7 : 16.

Example 7 The income of a person is Rs. 3,00,000, in the first year and he receives an
increase of Rs.10,000 to his income per year for the next 19 years. Find the total
amount, he received in 20 years.

Solution Here, we have an A.P. with a = 3,00,000, d = 10,000, and n = 20.
Using the sum formula, we get,

20
S, = > [600000 +19x10000] = 10 (790000) = 79,00,000.

Hence, the person received Rs. 79,00,000 as the total amount at the end of 20 years.

9.4.1 Arithmetic mean Given two numbers a and b. We can insert a number A
between them so that a, A, b is an A.P. Such a number A is called the arithmetic mean
(A.M.) of the numbers a and b. Note that, in this case, we have
a+b
2

We may also interpret the A.M. between two numbers a and b as their

A-a=b-A, ie,A =

a+b

average . For example, the A.M. of two numbers 4 and 16 is 10. We have, thus

constructed an A.P. 4, 10, 16 by inserting a number 10 between 4 and 16. The natural
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question now arises : Can we insert two or more numbers between given two numbers
so that the resulting sequence comes out to be an A.P. ? Observe that two numbers 8
and 12 can be inserted between 4 and 16 so that the resulting sequence 4, 8, 12, 16
becomes an A.P.

More generally, given any two numbers a and b, we can insert as many numbers
as we like between them such that the resulting sequence is an A.P.

Let Al, Az, A3, s An be n numbers between a and b such that a, Al, Az, A3, e
An, b is an A.P.

Here, bis the (n + 2)® term, ie., b=a+[(n+2)-1ld =a+m+1)d
_b-a
n+l

This gives d

Thus, n numbers between a and b are as follows:

b—a
A =a+d=a+ e+l
2(b—a)
Ay=a+2d=a+" "
3(b—a)
A3=a+3d=a+ﬁ
nb—a)
A =a+nd=a+ n+l

Example 8 Insert 6 numbers between 3 and 24 such that the resulting sequence is

an A.P.

Solution Let A, A, A,, A,, A, and A be six numbers between 3 and 24 such that

3,ALALALALALA 24 arein AP Here,a=3,b=24,n=238.

Therefore, 24 =3 + (8 1) d, so that d = 3.

Thus A =a+d=3+3=6; Aj=a+2d=3+2x3=09;
Aj=a+3d=3+3x3=12; A ,=a+4d=3+4x3=15;
Aj=a+5d=3+5%x3=18;, A,=a+6d=3+6x3=21.

Hence, six numbers between 3 and 24 are 6, 9, 12, 15, 18 and 21.
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| EXERCISE 9.2 |

Find the sum of odd integers from 1 to 2001.

Find the sum of all natural numbers lying between 100 and 1000, which are
multiples of 5.

In an A.P., the first term is 2 and the sum of the first five terms is one-fourth of
the next five terms. Show that 20™ term is —112.

How many terms of the A.P. — 6, _E ,—35, ... are needed to give the sum —25?

2

In an A.P, if p™ term is l and g™ term is l, prove that the sum of first pg
q p

terms is l(pq +1), where p # q.

If the sumzof a certain number of terms of the A.P. 25, 22, 19, ... is 116. Find the
last term.

Find the sum to n terms of the A.P., whose k" term is 5k + 1.

If the sum of n terms of an A.P. is (pn + gn?), where p and g are constants,
find the common difference.

The sums of n terms of two arithmetic progressions are in the ratio
S5n+ 4 :9n + 6. Find the ratio of their 18™ terms.

If the sum of first p terms of an A.P. is equal to the sum of the first g terms, then
find the sum of the first (p + ¢) terms.

Sum of the first p, g and r terms of an A.P. are a, b and c, respectively.

a b c
Prove that —(@—1r+—(r=p)+—(p—¢q)=0
14 q r

The ratio of the sums of m and n terms of an A.P. is m?: n?. Show that the ratio
of m™ and n® term is 2m — 1) : 2n - 1).

If the sum of n terms of an A.P. is 3n*> + 5n and its m™ term is 164, find the value
of m.

Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

n + n
If al—lgl is the A.M. between a and b, then find the value of n.
aﬂ— + n—
Between 1 and 31, m numbers have been inserted in such a way that the resulting
sequence is an A. P. and the ratio of 7" and (m — 1)™ numbers is 5 : 9. Find the

value of m.
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17. A man starts repaying a loan as first instalment of Rs. 100. If he increases the
instalment by Rs 5 every month, what amount he will pay in the 30™ instalment?

18. The difference between any two consecutive interior angles of a polygon is 5°.
If the smallest angle is 120°, find the number of the sides of the polygon.

9.5 Geometric Progression (G. P.)

Let us consider the following sequences:

1 -1 1 -1
(1) 2,4,8,16,..., (ii) 9278 23 (iii) .01,.0001,.000001,...
In each of these sequences, how their terms progress? We note that each term, except
the first progresses in a definite order.

. a, a, a,
In (i), we have ¢, =2,—==2,—=2,—=2 and so on.
a, a, a,

.. 1 a, 1 a, 1 a, 1
In (i1), we observe, ¢, ==, —=—,—=—,—=— and so on.

9 aq 3 a 3 a 3

Similarly, state how do the terms in (iii) progress? It is observed that in each case,
every term except the first term bears a constant ratio to the term immediately preceding

it. In (i), this constant ratio is 2; in (ii), it is _g and in (iii), the constant ratio is 0.01.

Such sequences are called geometric sequence or geometric progression abbreviated
as GP.
A sequence A, Ay Uy ooy s . is called geometric progression, if each term is
A 41
= r (constant), for k > 1.

non-zero and

k
By letting a, = a, we obtain a geometric progression, a, ar, ar’, ar’,...., where a
is called the first term and r is called the common ratio of the GP. Common ratio in

3
As in case of arithmetic progression, the problem of finding the n™ term or sum of n

terms of a geometric progression containing a large number of terms would be difficult
without the use of the formulae which we shall develop in the next Section. We shall
use the following notations with these formulae:

geometric progression (i), (i1) and (iii) above are 2, —7 and 0.01, respectively.

a = the first term, r = the common ratio, [ = the last term,

n = the numbers of terms,
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n = the numbers of terms,
S = the sum of first n terms.

9.5.1 General term of a G.P. Let us consider a G.P. with first non-zero term ‘a’ and
common ratio ‘r’. Write a few terms of it. The second term is obtained by multiplying
a by r, thus a, = ar. Similarly, third term is obtained by multiplying a, by r. Thus,
a, = a,r = ar’, and so on.

We write below these and few more terms.
IMterm =a, =a = ar™, 2" term = a, = ar = ar*”', 3" term = a, = ar’ = ar’”'
4" term = a, = ar’ = ar*’', 5" term = a, = ar* = ar’’
Do you see a pattern? What will be 16™ term?

a,=ar'®' = ar®
Therefore, the pattern suggests that the n™ term of a G.P. is given by

n-1

a, =ar
Thus, a, GP. can be written as a, ar, ar’, ar’, ... ar"~'; a, ar, ar’,...,ar"~'...;according
as G.P. is finite or infinite, respectively.

The series a + ar + ar* + ... + ar' or a + ar + ar’ + ... + ar’™' +...are called
finite or infinite geometric series, respectively.

9.5.2. Sum to n terms of a G.P. Let the first term of a G.P. be a and the common
ratio be r. Let us denote by S the sum to first n terms of G.P. Then

S =a+ar+ar+.+ar' . (1)
Case 1 If r=1,wehave S, =a+a+a+..+a(nterms) =na

Case 2 If r+#1, multiplying (1) by r, we have
1S =ar+ar +ar + .. +ar" .. (2)
Subtracting (2) from (1), we get (1 =r) S =a—ar" =a(l -r")

This gives S, =M or S =M
I=r ! r—1
Example 9 Find the 10* and n® terms of the G.P. 5, 25,125,... .
Solution Here @ = 5 and r = 5. Thus, a,, = 5(5)'"" = 5(5)° = 5"
and a =ar'=5(5)"=5".
Examplel0 Which term of the GP, 2,8,32, ... up to n terms is 1310727
Solution Let 131072 be the n™ term of the given G.P. Here a = 2 and r = 4.
Therefore 131072 =a, =2(4)""" or 65536 = 4!
This gives 43 = 4r-1
Sothatn —1=28,ie.,n=9. Hence, 131072 is the 9" term of the GP.
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Examplell In a GP,, the 3“term is 24 and the 6™ term is 192.Find the 10" term.

Solution Here, a, = ar’ =24

and a,=ar’ =192

. (1)
. (2)

Dividing (2) by (1), we get r = 2. Substituting r =2 in (1), we geta = 6.

Hence a,=6(2)=3072.

Examplel2 Find the sum of first n terms and the sum of first 5 terms of the geometric

fos 1424+
SErics 39 oo

Solution Herea=1and r = 5 Therefore
R = _ = = 3
1-r l_g
3
In particular, S. =31 2y 3><E E
PAEAL 5 =2 T 3 1 T a3 T s
33 )
Example 13 How many terms of the G.P. 3,5,2,... are needed to give the
3069 )
sum 512 :
] 1 3069
Solution Let n be the number of terms needed. Given thata =3, r= 5 and D, =E
Since S, = ad-r)
1-r
3 —i)
Therefore 3069 = 2" =6 1_L
512 1_1 2"
2
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3069 l—i
o 302 - 2
1 3069 3 1
or - =1- = =
2 3072 3072 1024
or 2" = 1024 =2'°, which gives n = 10.

13
Example 14 The sum of first three terms of a G.P. is D and their product is — 1.

Find the common ratio and the terms.

a
Solution Let —, a, ar be the first three terms of the G.P. Then
r

4 +ar+a= E (D)
r - 12 ). B
a
and [7)“‘) (ar)=-1 - @)
From (2), we get a®> = -1, i.e., a = — 1 (considering only real roots)

Substituting a=-11in (1), we have

1 13
———l-r=—or 12+ 25r + 12 = 0.
r 12
.. .. . 3 4
This is a quadratic in r, solving, we get r=——0r—§.
Thus. the th f G.P. 1,— for - and > 1 4 for =
t t t L. s,/ r=— EREE T r=_7
us, the three terms o are 3 1 1 1 3 3

Examplel5 Find the sum of the sequence 7, 77, 777, 7777, ... to n terms.

Solution This is not a G.P., however, we can relate it to a GP. by writing the terms as

S;; = 7+77T+7T77T+ 7777 + ... to n terms

7
= 5[9+99+999+9999+ ...tonterm]

[10-D)+10* =1)+10* =)+ (10* = 1) +...n terms]

NN N
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[10+10% +10° +...nterms) — (1+1+1+...n terms)]

N=J BN

7 {10(10" —1) } 7 {10 10" -1 }
=—|———-n| ==|———7—-n| .
9| 10-1 9 9

Example 16 A person has 2 parents, 4 grandparents, 8 great grandparents, and so on.
Find the number of his ancestors during the ten generations preceding his own.

Solution Herea=2,r=2and n = 10

. a@"=1)
Using the sum formula S = e
We have S, = 22" —1)=2046

Hence, the number of ancestors preceding the person is 2046.

9.5.3 Geometric Mean (G.M.) The geometric mean of two positive numbers a

and b is the number [}, . Therefore, the geometric mean of 2 and 8 is 4. We
observe that the three numbers 2,4,8 are consecutive terms of a G.P. This leads to a
generalisation of the concept of geometric means of two numbers.

Given any two positive numbers a and b, we can insert as many numbers as
we like between them to make the resulting sequence in a GP.

Let G,, G,...., G, be n numbers between positive numbers a and b such that
a,G,G,,G,,...,G b is a GP. Thus, b being the (n + 2)" term,we have

\n-+1 2
H G = = — s n \ 1
ence \=ar a(aj G2=ar2=a[éj +1 ’ G3=ar3=a[éj"+l’

Examplel7 Insert three numbers between 1 and 256 so that the resulting sequence

isaGP.

Solution Let G, G,,G, be three numbers between 1 and 256 such that
1,G,,G,G,,256 is a GP.
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Therefore 256 = r* giving r = £+ 4 (Taking real roots only)

For r =4, we have G, =ar=4,G, =ar’ = 16, G, = ar’ = 64

Similarly, for r = — 4, numbers are — 4,16 and — 64.

Hence, we can insert 4, 16, 64 between 1 and 256 so that the resulting sequences are
in GP.

9.6 Relationship Between A.M. and G.M.

Let Aand G be A.M. and GM. of two given positive real numbers a and b, respectively.
Then

A=“J2“b and G =/ab

Thus, we have

A-G=

a+b_\/E _ a+b—22\/E

2

R0,
= TZO .. (D

From (1), we obtain the relationship A>G.

Example 18 If A.M. and GM. of two positive numbers a and b are 10 and 8,
respectively, find the numbers.

a+b

Solution Given that AM.= 7 10 .. (1)

and GM.=ab =8 ()
From (1) and (2), we get

a+b=20 .. (3)

ab =64 .. (@)

Putting the value of a and b from (3), (4) in the identity (a — b)* = (a + b)*— 4ab,
we get
(a—b)*=400-256 =144

or a-b==%x12
. (5)
Solving (3) and (5), we obtain

a=4,b=160ora=16,b=4
Thus, the numbers a and b are 4, 16 or 16, 4 respectively.
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| EXERCISE 9.3 |

Find the 20™ and n™ terms of the G.P. 2 > g

Find the 12 term of a G.P. whose 8" term is 192 and the common ratio is 2.
The 5%, 8™ and 11" terms of a G.P. are p, ¢ and s, respectively. Show
that ¢* = ps.

The 4™ term of a G.P. is square of its second term, and the first term is — 3.
Determine its 7® term.

Which term of the following sequences:

(a) 2,24/2.,4,..is128? () /3,3,3/3,...is729 2
l l L b
© 35277 9683 °

For what values of x, the numbers — 7, X, — % are in G.P.?

Find the sum to indicated number of terms in each of the geometric progressions in
Exercises 7 to 10:

7.

8.

9.
10.

11.

12.

13.
14.

15.
16.

17.

0.15,0.015, 0.0015, ... 20 terms.

\/7, \/5,3\/—,...nterms.

1,—a,a® —-ad, ..nterms (if a # - 1).
X3, x, x7, . nterms (if x #+ 1).

Evaluate Z 2+ 3k
k=1

The sum of first three terms of a G.P. is % and their product is 1. Find the

common ratio and the terms.

How many terms of G.P. 3, 3%, 33, ... are needed to give the sum 120?

The sum of first three terms of a GP. is 16 and the sum of the next three terms is
128. Determine the first term, the common ratio and the sum to n terms of the GP.
Given a G.P. with @ = 729 and 7" term 64, determine S..

Find a G.P. for which sum of the first two terms is — 4 and the fifth term is
4 times the third term.

If the 4% 10™ and 16™ terms of a GP. are x, y and z, respectively. Prove that x,
y, z are in GP.
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18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

SEQUENCES AND SERIES 193

Find the sum to n terms of the sequence, 8, 88, 888, 8888... .
Find the sum of the products of the corresponding terms of the sequences 2, 4, 8,

16,32 and 128, 32, 8, 2, %

Show that the products of the corresponding terms of the sequences a, ar, ar’,
...ar'~'and A, AR, AR?, ... AR""! form a G.P, and find the common ratio.
Find four numbers forming a geometric progression in which t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>