DRACADEMUNE DO RIGHT FOR GENUINE EDUCATION KCET EXAMINATION - 2020 SUBJECT : CHEMISTRY

DATE :- 31-07-2020

TIME : 02.30 PM TO 03.50 PM

1.	Copper is extracted from copper pyrites by	7.	Phosphorus pentachloride	
	b) Reduction by coke		a) On hydrolysis gives an oxo acid of	
	c) Electrometallurgy		b) On hydrolysis gives an oxo acid of	
	d) Auto reduction		phosphorus which is a good reducing agent	
Ans.	d		c) Has all the five equivalent bonds	
0	Function of notoesium ethyl yonthate in froth		d) Exists as an ionic solid in which cation has	
4.	floatation process is to make the ore		octahedral structure and anion has	
	a) Lighter b) Hydrophobic	A ma	tetrahedral structure	
	c) Hydrophilic d) Heavier	Alls.	a	
Ans.	b	8.	Identify the set of paramagnetic ions among	
3	Sulphide ore on roasting gives a gas X. X reacts with Cl_2 in the presence of activated charcoal to give Y. Y is:		the following:	
5.			a) $V^{2_+}, Co^{2_+}, Ti^{4_+}$ b) $Ni^{2_+}, Cu^{2_+}, Zn^{2_+}$	
			c) $Ti^{3+}, Cu^{2+}, Mn^{3+}$ d) Sc^{3+}, Ti^{3+}, V^{3+}	
	a) SO_2Cl_2 b) S_2Cl_2 c) SCl_6 d) $SOCl_2$	Ans.	c	
Ans.	a			
		9.	How many moles of acidified $K_2 Cr_2 O_7$ is	
4.	Aqueous solution of a salt (A) forms a dense		required to liberate 6 moles of $I_{\rm 2}$ from an	
	white precipitate with $BaCl_2$ solution. The		aqueous solution of I^- ?	
	gas (B) which decolourises acidified KMnO.		a) 2 b) 1 c) 0.25 d) 0.5	
	solution	Ans.	a	
	A and B respectively are:	10	Cu Cl and CuCl in aqueous medium	
	a) $BaSO_3$, SO_2 b) $BaSO_4$, H_2S	10.	$c_1 c_2 c_2$ and $c_2 c_2$ in aqueous incurain	
	c) $BaSO_3$, H_2S d) $BaSO_4$, SO_2		b) Stability of Cu_2Cl_2 is equal to stability of	
Ans.	a		$CuCl_2$	
			c) Both are unstable	
5.	Bond angle in $PH_4^{\scriptscriptstyle+}$ is more than that of PH_3 .		d) Cu_2Cl_2 is more stable than $CuCl_2$	
	This is because	Ans.	a	
	a) Lone pair – bond pair repulsion exists in $\ensuremath{\text{PH}}_3$	11	The Co ordination number of Fe and Co in the	
	b) PH_4^+ has square planar structure	11.	The co-ordination number of Fe and co in the $\begin{bmatrix} p & (p, q) \end{bmatrix}^{3^{-}}$	
	c) PH ₃ has planar trigonal structure		complex ions, $[Fe(C_2O_4)_3]$ and	
	d) Hypfidisation of P changes when PH_3 is converted to PH^+		$\left[\text{Co}(\text{SCN})_4 \right]^{2-}$ are respectively:	
Ans.	a		a) 3 and 4 b) 6 and 8	
111.5.	u di		c) 4 and 6 d) 6 and 4	
6.	Incorrectly matched pair is:	Ans.	d	
	a) XeO ₃ – pyramidal	10	Nambar of standing 111111	
	b) XeF_4 – tetrahedral	12.	Number of stereoisomers exhibited by \Box^+	
	c) XeF_6 – disorted octahedral		$\lfloor Co(en)_2 Cl_2 \rfloor$ is	
	d) VeOF square pyramidal		a) 4 b) 2 c) 5 d) 3	
	u) Xeor ₄ – square pyramuai			

DR ACADEMY

2

	CHT FOR GENUINE EDUCATION KCET EX	AM J	ULY, 2020 CHEMISTRY 3		
21.	Which of the following has the lowest boiling point? a) CH_3CH_2OH b) $CH_3 - CH_2 - NH_2$	26.	Hypothyroidism is caused by the deficiency ofa) Vitamin B-12b) Adrenalinc) Thyroxined) Glucocorticoidcc		
Ans.	c) $CH_3 - O - CH_3$ d) HCOOH	27.	C_1 - C_4 glycosidic bond is NOT found in		
22.	The carbonyl compound that does not undergo aldol condensation is a) Acetone	Ans.	a) Maltose b) Sucrose c) Lactose d) Starch b		
Ans.	 b) Di chloro acetaldenyde c) Tri chloro acetaldehyde d) Acetaldehyde c 	28.	Which of the following polymer has strongest intermolecular forces of attraction? a) Neoprene b) Terylene c) Polythene d) Polystyrene		
Sol.	Aldehydes and ketones containing alpha hydrogens will undergo aldol condensation	Ans.	b		
23.	$\bigcup_{\text{Br}_2/\text{FeBr}_3} P \xrightarrow{\text{Sn/con.HCl}} Q$	29. Ans.	 Which of the following monomers can undergo condensation polymerization? a) Styrene b) Glycine c) Isoprene d) Propene 		
	(i) NaNO2, 273K + dil.Hcl (ii) water, warm Product is	30. Ans.	A food additive that acts as an antioxidant is a) BHA b) Saccharin c) Sugar syrup d) Salt a		
	a) NO2 b) OH	31. Ans.	 Which of the following is not related to drug- enzyme interaction? a) Allosteric site b) Antagonist c) Co-enzymes d) Enzyme inhibitor b 		
Ans.	c) $\overset{\text{Br}}{\underset{N_2Cl^-}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}}{\overset{\text{H}_2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	32.	.4 g of dihydrogen is made to react with 7.4 g f dichlorine to form hydrogen chloride. The olume of hydrogen formed at 273K and 1 bar ressure is) 9.08L b) 4.54L c) 90.8L d) 45.4L		
24.	Hinsberg's reagent is	33.	With regard to photoelectric effect, identify the		
Ans.	 a) (CH₃CO)₂ O / pyridine b) C₆H₅SO₂Cl c) C₆H₅SO₂NH₂ d) CH₃COCl / pyridine b 		correct statement among the following a) Energy of e ⁻ ejected increases with the increase in the intensity of incident light b) Number of e ⁻ ejected increases with the increase in the frequency of incident light c) Number of e ⁻ ejected increases with the increase in work function		
25. Ans.	Which one of the following vitamins is not stored in adipose tissue? a) A b) B ₆ c) D d) E b	Ans.	 d) Number of e⁻ ejected increases with the increase in the intensity of incident light d 		

DR ACADEMY DO RIGHT FOR GENUINE EDUCATION

KCET EXAM JULY, 2020 CHEMISTRY

DO RIGHT FOR GENUINE EDUCATION

KCET EXAM JULY, 2020 CHEMISTRY

A metal exists as an oxide with formula $M_{0.96}O$. 47. Metal M can exist as M⁺² and M⁺³ in its oxide $M_{0.96}O$. The percentage of M^{+3} in the oxide is nearly a) 8.3% b) 4.6% c) 5% d) 9.6% Ans. a **Sol.** M₀.96[°] No. of M^{+2} ions = x No. of M^{+3} ions = 0.96 - x Total positive charges = Total negative charge (in magnitude) x(2) + (0.96 - x)(3) = 1(2)2x + 2.88 - 3x = 2-x = 2 - 2.88∴x = 0.88 No. of M^{+3} ions = 0.96 - 0.88 = 0.08Percentage of $M^{+3} = \frac{0.08}{0.96} \times 100$ =8.33 % A metal crystallises in face centred cubic 48. structure with metallic radius $\sqrt{2}A^0$. The volume of the unit cell (in m³) is a) 4x10-10 b) 6.4x10-29 d) 6.4x10-30 c) 4x10-9 Ans. b Sol. For FCC Atomic radius(r) = $\frac{\sqrt{2}a}{r}$ $\sqrt{2} \times 10^{-10} = \frac{\sqrt{2}a}{4}$ $a = \frac{4 \times \sqrt{2} \times 10^{-10}}{\sqrt{2}}$ $a = 4 \times 10^{-10} \, m$ Volume of unit cell = a^3 $= (4 \times 10^{-10})^{3}$ $= 64 \times 10^{-30}$ $= 6.4 \times 10^{-29} \,\mathrm{m}^3$ 49. Silicon doped with gallium forms a) n-type semiconductor b) both n and p type semiconductor c) an intrinsic semiconductor d) p-type semiconductor Ans. d

50. The pair of electrolytes that posses same value for the constant (A) in the Debye - Huckel -Onsagar equation, $\lambda_m = \lambda_m^e - A\sqrt{C}$ is a) MgSO₄, NaSO₄ b) NH₄Cl, NaBr c) NaBr, MgSO₄ d) NaCl, CaCl₂ Ans. b 51. Which of the following pair of solutions is isotonic? a) 0.01M BaCl₂ and 0.015M NaCl b) 0.001M Al₂(SO₄)₃ and 0.01 M BaCl₂ c) 0.001M CaCl₂ and 0.001M Al₂(SO₄)₃ d) 0.01M BaCl₂ and 0.001M CaCl₂ Ans. a When solute particle concentration is same Sol. then they are isotonic 52. Solute 'X' dimerises in water to the extent of 80%. 2.5g of 'X' in 100g of water increases the boiling point by 0.3 °C. The molar mass of 'X' is $[K_b=0.52K \text{ kg mol}^{-1}]$ a) 13 b) 52 c) 65 d) 26 Ans. d **Sol.** $i = 1 + \alpha \left(\frac{1}{n} - 1 \right)$ $i = 1 + 0.8 \left(\frac{1}{2} - 1 \right)$ i = 1 - 0.4 = 0.6 $\Delta T_{\rm b} = k_{\rm b} \times \frac{W}{m} \times \frac{100}{W(\text{gm})} \times i$ $0.3 = 0.52 \times \frac{2.5}{m} \times \frac{1000}{100} \times 0.6$ Molar mass of $x(m) = \frac{0.52 \times 2.5 \times 10 \times 0.6}{0.3}$ = 26 $E^{0}_{_{\rm Fe}^{+3}/_{\rm Fe}^{+2}}$ = +0.76V and $E^{0}_{_{\rm I_2}/\!\!/}$ =+0.55V. 53. Given The equilibrium constant for the reaction taking place in galvanic cell consisting of above two electrodes is $\left[\frac{2.303\text{RT}}{\text{F}} = 0.06\right]$ b) $1x10^9$ c) $3x10^8$ d) $5x10^{12}$ a) 1x10⁷ Ans. a $E^{0}_{Fe^{+3}/Fe^{+2}} = +0.76$ (cathode) Sol. $E^{0}_{I_{2}/I^{-}} = +0.55 (Anode)$ $E_{cell}^0 = E_{\ C}^0 - E_{\ A}^o$

= 0.76 - 0.55 = 0.21

5

KCET EXAM JULY, 2020 CHEMISTRY

Eff for Genuine Education _____

$$2Fe^{+3} + 2I^- \rightarrow 2Fe^{+2} + I_2$$

 $E^0_{Cell} = \frac{0.059}{n} \log k_c$
 $0.21 = \frac{0.059}{2} \log k_c$

$$0.21 = \frac{0.039}{2}$$
$$\log k_c = 7$$
$$k_c = 10^7$$

 $2Fe^{+3} + 2I^{-} \rightarrow$

54. If an aqueous solution of NaF is electrolyzed between inert electrodes, the product obtained at anode is

a) F2	b) H2	c) Na	d) O ₂
d			

- 55. In which of the following cases a chemical reaction is possible ? a) $ZnSO_{4(aq)}$ is placed in a copper vessel b) AgNO₃ solution is stirred with a copper spoon c) Conc. HNO₃ is stored in a platinum vessel d) gold ornaments are washed with dil HCl Ans. b
- 56. The time required for 60% completion of a first order reaction is 50 min. The time required for 93.6% completion of the same reaction will be b) 83.8 min a) 100 min d) 150 min
 - c) 50 min
- Ans. d

Ans.

Sol. 60% completion

 $K = \frac{2.303}{t} \log \frac{[R_0]}{[R]}$ $K = \frac{2.303}{50} \log \frac{100}{40}$ $K = \frac{2.303}{50} \times 0.397$ 93.6% completion $K = \frac{2.303}{t} \log \frac{[R_0]}{[P]}$

$$\frac{2.303}{50} \times 0.397 = \frac{2.303}{t} \log \frac{100}{6.4}$$

t = 150 min

57. For an elementary reaction $2A+3B \rightarrow 4C+D$ the rate of appearance of C at time 't' is 2.8x10⁻³ mol L⁻¹S⁻¹. Rate of disappearance of B at 't' t will he

a)
$$\frac{4}{3}(2.8 \times 10^{-3}) \text{ mol } \text{L}^{-1} \text{ S}^{-1}$$

b) $\frac{3}{4}(2.8 \times 10^{-3}) \text{ mol } \text{L}^{-1} \text{ S}^{-1}$
c) $2(2.8 \times 10^{-3}) \text{ mol } \text{L}^{-1} \text{ S}^{-1}$
d) $\frac{1}{4}(2.8 \times 10^{-3}) \text{ mol } \text{L}^{-1} \text{ S}^{-1}$
Ans. b
Sol. $-\frac{1}{3}\frac{d(\text{B})}{dt} = +\frac{1}{4}\frac{d(\text{C})}{dt}$
 $\frac{-d(\text{B})}{dt} = +\frac{3}{4}\frac{d(\text{C})}{dt}$
 $= \frac{+3}{4}(2.8 \times 10^{-3}) \text{ mol } \text{L}^{-1} \text{ S}^{-1}$

The rate constant of a reaction is given by 58. k=P Ze-Ea/RT under standard notation. In order to speed up the reaction, which of the following factors has to be decreased ? a) Z b) Both Z and T

59. A sol of AgI is prepared by mixing equal volumes of 0.1M AgNO3 and 0.2M KI, which of the following statement is correct ? a) Sol obtained is a negative sol with $NO_3^$ adsorbed on AgI b) Sol obtained is a positive sol with Ag⁺ adsorbed on AgI

d) T

c) Sol obtained is a positive sol with K⁺ adsorbed on AgI d) Sol obtained is a negative sol with I-

adsorbed on AgI

Ans. d

60. During Adsorption of a gas on a solid

a) $\Delta G < 0$, $\Delta H < 0$, $\Delta S < 0$ b) $\Delta G>0$, $\Delta H>0$, $\Delta S>0$ c) $\Delta G < 0$, $\Delta H < 0$, $\Delta S > 0$

d) $\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$

Ans. a