VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

Scheme of Teaching and Examination and Syllabus B.E. **AERONAUTICAL ENGINEERING** III-VIIISEMESTER (Effective from Academic year 2018-19)

B. E. AERONATICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III				
TRANSFORM CALCULU	S, FOURIER SERIES A (Common to all Program	ND NUMERICAL TECH nmes)	NIQUES	
Course Code	18MAT31	CIE Marks	40	
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:				
 To have an insight into Fourier and Z-transforms. To develop the proficiency in a combination proficiency in a second second	r series, Fourier transformation variational calculus and so	s, Laplace transforms, Diff lving ODE's arising in engi	erence equations	
applications, using numerical i	methods.			
Module-1 Laplace Transform: Definition and transforms of Periodic functions (state) Inverse Laplace Transform: Defini transforms (without Proof) and problem Module-2	Laplace transforms of ele ment only) and unit-step fu tion and problems, Conv ns. Solution of linear diffe	ementary functions (stateme unction – problems. volution theorem to find the erential equations using Lap	ents only). Laplace he inverse Laplace lace transforms.	
Fourier Series : Periodic functions, D arbitrary period. Half range Fourier ser	irichlet's condition. Four ries. Practical harmonic an	ier series of periodic functi alysis.	ons period 2π and	
Fourier Transforms: Infinite Fourier transforms. Problems. Difference Equations and Z-Trans Standard z-transforms, Damping and s problems, Inverse z-transform and app	ier transforms, Fourier s forms: Difference equat shifting rules, initial value lications to solve difference	sine and cosine transform ions, basic definition, z-tr e and final value theorems (ce equations.	s. Inverse Fourier ansform-definition, (without proof) and	
Module-4				
Numerical Solutions of Ordinary Dif Numerical solution of ODE's of first of Runge -Kutta method of fourth orde derivations of formulae)-Problems.	fferential Equations(OD) order and first degree- Tay or, Milne's and Adam-Ba	E's): /lor's series method, Modifi sh forth predictor and cor	ed Euler's method. rector method (No	
Module-5				
Numerical Solution of Second Ord method. (No derivations of formulae). Calculus of Variations: Variation Geodesics, hanging chain, problems.	er ODE's: Runge-Kutta of function and functio	method and Milne's pred nal, variational problems,	ictor and corrector Euler's equation,	
Course outcomes: At the end of the co	ourse the student will be a	bie to:		
 CO1: Use Laplace transform and inverse Laplace transform in solving differential/ integral equation arising in network analysis, control systems and other fields of engineering. CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system communications, digital signal processing and field theory. 				
• CO3: Make use of Fourier tra	• CO3: Make use of Fourier transform and Z-transform to illustrate discrete/continuous function arising			
 m wave and heat propagation, signals and systems. CO4: Solve first and second order ordinary differential equations arising in engineering problems using single step and multistep numerical methods. 				
• CO5:Determine the externals arising in dynamics of rigid bo	of functionals using codies and vibrational analy	alculus of variations and vsis.	d solve problems	
Question paper pattern:	full quantions as	ual marks		
• I ne question paper will have ten	i un questions carrying eq	uai marks.		

- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbo	ooks				
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2016	
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017	
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition, 2016	
Refere	ence Books				
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C. Barrett	McGraw-Hill Book Co	6 th Edition, 1995	
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010	
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010	
4	A Textbook of Engineering Mathematics	N.P.Bali and Manish Goyal	Laxmi Publications	6 th Edition, 2014	
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018	
Web links and Video Lectures:					
1. http	1. http://nptel.ac.in/courses.php?disciplineID=111				
2. http	://www.class-central.com/subject/ma	th(MOOCs)			
3. http	o://academicearth.org/				

4. VTU EDUSAT PROGRAMME - 20

B. E. AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Aero Thermodynamics				
Course Code	18AS32/18AE32	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Understand various concepts and definitions of thermodynamics.
- Comprehend the I-law and II-law of thermodynamics.
- Acquire the knowledge of various types of gas cycles

Module-1

Fundamental Concepts & Definitions:

Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and Modules, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium. Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points and measurements.

Work and Heat:

Mechanics-definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems.

Module-2

First Law of Thermodynamics:

Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, pure substance; definition, two-property rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications, analysis of unsteady processes such as film and evacuation of vessels with and without heat transfer.

Module-3

Second Law of Thermodynamics:

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics; Reversible and Irreversible processes; factors that make a process irreversible, reversible heat engines, Carnot cycle, Carnot principles.

Entropy: Clasius inequality; Statement, proof, application to a reversible cycle. Entropy; definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate. Available and unavailable energy.

Module-4

Pure Substances & Ideal Gases: Mixture of ideal gases and real gases, ideal gas equation, compressibility factor use of charts. P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid, Saturated liquid, mixture of saturated liquid and vapour, saturated vapour and superheated vapour states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and H-S diagrams, representation of various processes on these diagrams.

Thermodynamic relations

Maxwell's equations, Tds relations, ratio of heat capacities, evaluation of thermodynamic properties from an equation of state.

Module-5

Gas Power Cycles: Efficiency of air standard cycles, Carnot, Otto, Diesel cycles, P-V & T-S diagram, calculation of efficiency.

Vapour power cycle:

Simple Rankine cycle, Analysis and performance of Rankine Cycle, Ideal and practical regenerative Rankine cycles –Reheat and Regenerative Cycles, Binary vapour cycle.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply the concepts and definitions of thermodynamics.
- CO2: Differentiate thermodynamic work and heat and apply I law and II law of thermodynamics to different process.
- CO3: Apply the principles of various gas cycles.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
		Textbooks		
1	Basic and Applied	P K Nag	Tata McGraw Hill	2 nd Ed , 2002
	Thermodynamics			
2.	Basic Engineering	A Venkatesh	Universities Press,	2007
	Thermodynamics		India	
		Reference Books		
1	Thermodynamics: An	Yunus A. Cenegal and	Tata McGraw Hill	2002
	Engineering Approach	Michael A. Boles		
2	Engineering	J.B. Jones and G.A. Hawkins,	Wiley	1986
	Thermodynamics	John Wiley and Sons		
3	Fundamentals of	G. J. Van Wylen and R.E.	Wiley Eastern, Wiley	1985
	Classical	Sonntag		
	Thermodynamics			
4	An Introduction to	Y.V.C. Rao	Wiley Eastern	1993
	Thermodynamics			
5	Basic Thermodynamics	B. K Venkanna, Swati B.	PHI, New Delhi	2010
		Wadavadagi		

B. E. AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

SEMIESTER - III				
Mechanics of Materials				
Course Code	18AS33/18AE33	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:2:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Comprehend the basic concepts of strength of materials.
- Acquire the knowledge of stress, strain under different loadings.
- Understand the properties of materials.

Module-1

Basics of linear elasticity: The concept of stress & strain, state of stress & Strain at a point, Equilibrium equations, The state of plane stress and plane strain. Compatibility equations, Constitutive Laws (Hooke's Law), Stress-strain curves for brittle and ductile materials, Allowable stress, Material selection for structural performance.

Simple & Compound Stresses: Extension / Shortening of a bar, bars with cross sections varying in steps, bars with continuously varying cross sections. Elongation due to self-weight. Volumetric strain, expression for volumetric strain, elastic constants, simple shear stress, shear strain, temperature stresses, Introduction to Plane stress, stresses on inclined sections, principal stresses & strains, Analytical & graphical method (Mohr's Circle) to find principal stresses & strains.

Module-2

Bending Moment and Shear Force in Beams: Introduction, Types of beams, loads and reactions, shear forces and bending moments, rate of loading, sign conventions, relationship between shear force and bending moments. Shear force and bending moment diagrams for different beams subjected to concentrated loads, uniformly distributed load, (UDL) uniformly varying load (UVL) and couple for different types of beams.

Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications of the Euler-Bernoulli assumptions, the Euler-Bernoulli Beam theory derivation, Bending stress equation, Moment carrying capacity of a section. Shearing stresses in beams, shear stress across rectangular, circular, symmetrical I and T sections (Only Numerical).

Module-3

Deflection of Beams: Introduction, Differential equation for deflection. Equations for deflection, slope and bending moment. Double integration method for cantilever and simply supported beams for point load, UDL, UVL and Couple. Macaulay's method.

Torsion of Circular Shafts and Elastic Stability of Columns: Introduction. Pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts. Power transmitted by solid and hollow circular shafts.

Module-4

Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids.

Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle.

Module-5

Mechanical Properties of materials:

Fracture: Type I, Type II and Type III.

Creep: Description of the phenomenon with examples. Three stages of creep, creep properties, stress relaxation.

Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue properties, fatigue testing and S-N diagram.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Apply the basic concepts of strength of materials.
- CO2: Compute stress, strain under different loadings.
- CO3: Distinguish the properties of different materials.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

C1		Nome of the	Nome of the	Edition
51.	Title of the Book	Name of the	Name of the	Ealtion
No.	The of the book	Author/s	Publisher	and Year
Textbo	ok/s			
1	Strength of Materials	S. S. Bhavaikatii	Vikas Publications	2012
			House, New Delhi	
2	Strength of Materials	S. Ramamrutham	Dhanapath Rai	2012
			Publishing Company	
Refere	nce Books	•	· · · · ·	•
1	Introduction to Aircraft Structural	T. H. G Megson	Butterworth-	2007
	Analysis	-	Heinemann	
2	Mechanics of Materials	Beer. F. P. and	McGraw Hill	2006
		Johnston. R	Publishers	
3	Elements of Strength of Materials	Timoshenko and	East-West Press	1976
		Young		
4	Structural Analysis	O. A. Bauchau and J.	Springer	
		I. Craig	Dordrecht Heidelberg	
		-	London New York	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Elements of Aeronautics			
Course Code	18AE34	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To know the history and basic principle of aviation.
- To understand the foundation of flight, aircraft structures, material aircraft propulsion.
- To develop an understanding stability of an aircraft along with its different systems.

Module-1

Introduction to Aircrafts

History of aviation; Atmosphere and its properties; Classification of aircrafts; Basic components of an aircraft; aircraft axis system; aircraft motions; control surfaces and high lift devices; conventional design configurations; principle of operation of each major part; Helicopters, their parts and functions.

Aircraft Structures and Materials:

Introduction; structural members; general types of construction; monocoque, semi-monocoque and geodesic structures; typical wing and fuselage structure; metallic and non-metallic materials for aircraft application. **Module-2**

Basic principles of flight – significance of speed of sound; airspeed and groundspeed; standard atmosphere; Bernoulli's theorem and its application for generation of lift and measurement of airspeed; forces over wing section, aerofoil nomenclature, pressure distribution over a wing section.Lift and drag components – generation of lift and drag; lift curve, drag curve, types of drag, factors affecting lift and drag; centre of pressure and its significance; aerodynamic centre, aspect ratio, Mach number and supersonic flight effects; simple problems on lift and drag.

Module-3

Aircraft Propulsion:

Aircraft power plants, classification based on power plant and location and principle of operation. Turboprop, turbojet and turbofan engines; ramjets and scramjets; performance characteristics. Aircraft power plants – basic principles of piston, turboprop and jet engines; Brayton cycle and its application to gas turbine engines; use of propellers and jets for production of thrust; comparative merits and limitations of different types of propulsion engines; principle of thrust augmentation.

Module-4

Aircraft Stability:

Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral and roll stability; necessary conditions for longitudinal stability; basics of aircraft control systems. Effect of flaps and slats on lift, control tabs, stalling, gliding, landing, turning, aircraft manoeuvres; stalling, gliding, turning. Simple problems on these. Performance of aircraft – power curves, maximum and minimum speeds for horizontal flight at a given altitude; effect of changes in engine power and altitude on performance; correct and incorrect angles of bank; aerobatics, inverted manoeuvre, manoeuvrability. Simple problems.

Module-5

Introduction to Aircraft Systems:

Aircraft systems (Mechanical) – hydraulic and pneumatic systems and their applications; environment control system; fuel system, oxygen system.

Aircraft systems (Electrical) – flight control system, cockpit instrumentation and displays; communication systems; navigation systems; power generation systems – engine driven alternators, auxiliary power Module, ram air turbine; power conversion, distribution and management.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1 : Appreciate and apply the basic principle of aviation
- 2. CO2 : Apply the concepts of fundaments of flight, basics of aircraft structures, aircraft propulsion and aircraft materials during the development of an aircraft
- 3. CO3: Comprehend the complexities involved during development of flight vehicles.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

			•	-
SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Introduction to Flight	John D. Anderson	McGraw-Hill Education	2011
2	Fundamentals of Flight Vol-I to Vol-IV	Lalit Gupta and O P Sharma	Himalayan Books	2006
Refe	rence Books			
1	Flight without formulae	A.C. Kermode	Pearson Education India	1989
2	Flight stability and automatic control	Nelson R.C	McGraw-Hill International Editions	1998
3	Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration	Ian Moir, Allan Seabridge	John Wiley & Sons	2011

B. E. AEROSPACE ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

D	CO I	ICK	- 11	J
	•	0.7		

Mechanics of Fluids			
Course Code	18AS35/18AE35	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basic fluid properties.
- Understand the governing laws of fluid flow.
- Acquire the knowledge of types of fluid flows.

Module-1

Basic Considerations:

Introduction, Dimensions- Modules and physical quantities, Continuum view of gases and liquids, Pressure and Temperature scales, Physical properties of fluids.

Fluid Statics:

Pressure distribution in a static fluid, Pressure and its measurement, hydrostatic forces on plane and curved surfaces, buoyancy, illustration by examples.

Module-2

Fluids in motion:

Methods of describing fluid motion, types of fluid flow, continuity equation in 3 dimensions, velocity potential function and stream function. Types of motion, Source sink, doublet, plotting of stream lines and potential lines Numerical problems.

Fluid Kinematics:

Kinematics of fluid motion and the constitutive equations, Integral (global) form of conservation equations (mass, momentum, energy) and applications, Differential form of conservation equations (continuity, Navier-Stokes equations, energy equation).

Module-3

Fluid Dynamics:

Equations of motion: Euler's and Bernoulli's equation of motion for ideal and real fluids. Momentum equation, Fluid flow measurements. Numerical problems.

Dimensional analysis and similarity:

Dimensional homogeneity, methods of dimensional analysis, model analysis, types of similarity and similitude. Dimensionless numbers. Model laws. Numerical problems.

Module-4

Flow past Immersed bodies:

Introduction to boundary layer, boundary layer thickness, karman's integral momentum theory, drag on a flat plate for laminar and turbulent flow, Drag on immersed bodies. Expression for drag and lift. Kutta – joukowsky theorem; Fundamentals of aerofoil theory Numerical problems.

Module-5

Compressible flow and Boundary Layers theory:

Steady, one-dimensional gas dynamics, Propagation of pressure waves in a compressible medium, velocity of sound, Mach number, Mach cone, Stagnation properties, Bernoulli's eqn for isentropic flow, normal shock waves. Numerical Problem; Laminar and turbulent boundary layers.

Course Outcomes: At the end of the course the student will be able to:

- CO1: Evaluate the effect of fluid properties.
- CO2: Apply the governing laws of fluid flow.
- CO3: Classify different types of fluid flows.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Text	Textbook/s				
1	Fluid Mechanics and Hydraulics Machines	Bansal, R.K	Laxmi Publications (P) Ltd., New Delhi	2015	
2	Fluid Mechanics	Rathakrishnan. E	Prentice-Hall of India Pvt. Ltd	2010	
Refe	rence Books	·			
1	Fluid Mechanics and Applications	Yunus A. Cengel & John M Cimbala	McGraw Hill Education;	3 rd edition,2013	
2	Hydraulic Fluid Mechanics and Fluid Machines	Ramamritham. S	Dhanpat Rai& Sons, Delhi	1988	
3	Engineering Fluid Mechanics	Kumar. K.L	Eurasia Publishing House (P) Ltd., New Delhi	VII Ed.,1995	
4	Fluid Mechanics	Streeter. V. L., and Wylie, E.B	McGraw Hill	1983	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III

Measurement and Metrology				
Course Code	18AE36	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the standards of measurement, system of limits, fits, tolerances and gauging.
- Understand the principles of measuring instruments.
- Acquire the knowledge on measurement and measurement systems.

Module-1

Standards of measurement: Definition and Objectives of metrology, Standards of length - International prototype meter, Imperial standard yard, Wave length standard, subdivision of standards, line and end standard, comparison, transfer from line standard to end standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena, Indian Standards (M-81, M-112), Numerical problems on building of slip gauges.

Module-2

System of limits, Fits, Tolerances and gauging: Definition of tolerance, Specification in assembly, Principle of inter changeability and selective assembly limits of size, Indian standards, concept of limits of size and tolerances, compound tolerances, accumulation of tolerances, definition of fits, types of fits and their designation (IS 919 -1963), geometrical tolerance, positional - tolerances, hole basis system, shaft basis of system, classification of gauges, brief concept of design of gauges (Taylor's principles), Wear allowance on gauges, Types of gauges -plain plug gauge, ring Gauge, snap gauge, limit gauge and gauge materials.

Module-3

Comparators and Angular measurement: Introduction to Comparator, Characteristics, classification of comparators, mechanical comparators - Sigma Comparators, dial indicator, Optical Comparators -principles, Zeiss ultra optimeter, Electric and Electronic Comparators -principles, Pneumatic Comparators, back pressure gauges, Solex Comparators. Angular measurements, Bevel Protractor, Sine Principle and. use of Sine bars, Sine center, use of angle gauges, Clinometers,

Screw thread gear measurement: Terminology of screw threads, measurement of major diameter, minor diameter pitch, angle and effective diameter of screw threads by 2-wire and 3-wire methods, Best size wire. Gear tooth vernier.

Module-4

Measurements and Measurement systems: Definition, Significance of measurement, generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysteresis, repeatability, linearity, loading effect, system response-times delay. Errors in Measurements, Classification of Errors. Transducers, Transfer efficiency, Primary and Secondary transducers, electrical, Mechanical, electronic transducers, advantages of each type transducers.

Module-5

Measurement of quantities: Principle, analytical balance, platform balance, proving ring, Torque measurement, Prony brake, hydraulic dynamometer. Pressure Measurements, Principle, use of elastic members, Bridgeman gauge, Mcloed gauge, Pirani Gauge.

Temperature and strain measurement: Resistance thermometers, thermocouple, law of thermocouple, materials used for construction, pyrometer, Optical Pyrometer. Strain Measurements, Strain gauge, preparation and mounting of strain gauges, gauge factor, methods of strain measurement

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the standards of measurement, system of limits, fits, tolerances and gauging.
- 2. CO2: Identify and use appropriate measuring instruments.
- 3. CO3 : Acquire the knowledge on measurement and measurement systems

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Mechanical Measurements	Beckwith Marangoni and Lienhard, John H. Lienhard V	6th Ed.,	2006
2	Engineering Metrology	R.K.Jain	Khanna Publishers	1994
Refe	rence Books			
1	Engineering Metrology	I.C.Gupta	Dhanpat Rai Publications	2013
2	Industrial Instrumentation	Alsutko, Jerry. D.Faulk	Thompson Asia Pvt. Ltd	2002

B.E AERONAUTICAL ENGINEERING						
	Choice Based Credit S	System (CBCS) and Outcom	ne Based Education (OBI	E)		
	SEMESTER - III					
Cour	MEASU	REMENTS AND METRO	CIE Marila	40		
Cour	se Code	18AEL37A	CIE Marks	40		
Crad	hing Hours/ week (L:1:P)	(1:0:2)	SEE Marks	60		
Cou	us so Loorning Objectives:	02	Examinouis	03		
Cour	Learn the concepts of mechani	cal measurements and metrol	OGV			
	Use the concept of accuracy e	ror and calibration	logy			
	Use the basic metrological inst	ruments				
C1						
51. No.		Experiments				
1	Calibration of Pressure Gauge					
2	Calibration of Thermocouple					
3	Calibration of LVDT					
4	Calibration of Load cell					
5	5 Determination of modulus of elasticity of a mild steel specimen using strain gauges.					
6	6 Comparison and measurements using vernier caliper and micrometer					
7	Measurement of vibration param	eters using vibration setup.				
8	Measurements using Optical Pro	jector / Toolmaker Microsco	pe.			
9	Measurement of angle using Sine	e Center / Sine bar / bevel pro	otractor			
10	Measurement of alignment using	Autocollimator / Roller set				
11	Measurement of Screw thread Pa	arameters using Two-wire or	Three-wire method.			
12	Measurements of Surface rough	ness, Using Tally Surf/Mecha	anical Comparator			
13	Measurement of gear tooth profi	le using gear tooth vernier /C	ear tooth micrometer			
14	Calibration of Micrometer using	slip gauges.				
Cour	se Outcomes: At the end of the c	ourse the student will be able	e to:			
1	. CO1: Identify and classify diff	erent measuring tools related	to experiments.			
2. CO2: Identify, define, and explain accuracy, precision, and some additional terminology.						
3. CO3: Conduct, Analyze, interpret, and present measurement data from measurements experiments.						
	luct of Practical Examination:	included for prestical arrest	nation			
1. Al	1. All laboratory experiments are to be included for practical examination.					
the e	carup of marks and the mstruction	ins printed on the cover page	or answer script to be str	icity autored by		
2. Students can nick one experiment from the questions let prepared by the exeminers						

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

	B.E AERONAUTICAL ENGINEERING						
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
	MATERIAL TESTING LAB						
Cour	se Code	18AEL37B	CIE Marks	40			
Teac	hing Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60			
Cred	its	02	Exam Hours	03			
Cour	rse Learning Objectives:						
•	Understand the relations amon	ng materials and their pr	operties.				
•	Understand the formation, pro	perties and significance	of the alloys through differen	nt experiments.			
•	Understand the types, advanta	ges and applications of	various NDT methods.				
Sl.		Experime	ents				
1	Hardness Testing – Vicker's B	rinell Rockwell					
2	Tensile Test						
3	Flexural Test						
4	Torsional Test						
5	Impact Test						
6	Shear Test						
7	Fatigue Test						
8	Preparation of specimen for me	tallograpic examination	of different engineering mate	rials. Identification			
	of microstructures of plain carb	on steel, tool steel, gray	C.I, SG iron, Brass, Bronze &	k metal matrix			
	composites						
0	Heat the strength Annealing the	malining handening of	d tommoning of steel Handu	and studies of heat			
9	treated samples	rmanzing, nardening ar	id tempering of steel. Hardn	less studies of neat-			
	treated samples.						
10	To study the wear character	istics of ferrous, non-	ferrous and composite mat	erials for different			
	parameters.						
11	Visual Testing Technique Dye	penetration testing. To	tudy the defects of Cast and V	Welded specimens			
11	visual resting reeninque, Dye	penetration testing. 10 s	addy the defects of Cast and	wended specificity.			
12	Magnetic Particle Inspection.						
13	Ultrasonic Inspection.						
1.4							
14	Eddy Current Inspection						
Coui	rse outcomes:						
At th	e end of the course the student w	ill be able to:					
•	Apply the relations among ma	terials and their propert	les.				
•	• Differentiate the formation, properties and significance of the allows through different experiments.						
•	• Differentiate the types, advantages and applications of various NDT methods.						
Cond	duct of Practical Examination:	• • • •					
1. Al	l laboratory experiments are to be	e included for practical e	examination.				
2. Br	eakup of marks and the instructi	ons printed on the cove	r page of answer script to be	strictly adhered by			
the e	xaminers.	-	_	- •			
3. Stu	3. Students can pick one experiment from the questions lot prepared by the examiners.						

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

	B.E AERONAUTICAL ENGINEERING					
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III					
		MACHINE SHOP	LAB			
Cour	se Code	18AEL38	CIE Marks	40		
Teac	Teaching Hours/Week (L:T:P)(1:0:2)SEE Marks60					
Cred	its	02	Exam Hours	03		
Cour	se Learning Objectives:					
•	Practice general-purpose mach	ine tools and manufactu	ring process.			
•	Operate the special purpose ma	ichine tools				
•	Prepare physical models using	different manufacturing	, processes.			
SI. No.		Experime	nts			
1	Introduction to Machining operation	tions & tools (Lathe ma	chine.)			
2	Introduction to Machining operation	tions & tools (Shaper m	achine)			
3	Machining of plain turning and facing					
4	Machining of taper turning & step turning					
5	5 Machining of knurling operation					
6	6 Machining of drilling operation					
7	Machining of boring operation					
8	Machining of internal thread cut	ing				
9	Machining of external thread cut	ting				
10	Machining of eccentric turning					
11	Machining of hexagon in shaping	g machine				
12	Machining of square in shaping i	nachine				
13	Cutting of gear teeth using millin	ng machine				
14	Grinding operations using grindi	ng machine.				
Cour	rse Outcomes: At the end of the c	ourse the student will be	e able to:			
1. CO1: Demonstrate the operation of general purpose machine tools and manufacturing process.						
2. CO2: Identify the special purpose machine tools for specific requirements						
3. CO3: Develop physical models using different manufacturing processes.						
Conc	luct of Practical Examination:					
I. Al	1. All laboratory experiments are to be included for practical examination.					
2. Br	eakup of marks and the instructio	is printed on the cover	page of answer script to be str	icuy adhered by		
3. Sti	3. Students can pick one experiment from the questions lot prepared by the examiners.					

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

B. E. (Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER –II / III / IV Aadalitha Kannada

17

	Aadalitha Kannada				
Course Code	18KAK28/39/49				
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100		
Credits	01				
ಆಡಳಿತ ಕನ್ನಡ ಕಲಿಕೆಯ ಉದ್ದೇಶಗಳ	°:				
 ಪದವಿ ವಿದ್ಯಾರ್ಥಿಳಾಗಿರುವುದರಿಂದ 	 ಪದವಿ ವಿದ್ಯಾರ್ಥಿಳಾಗಿರುವುದರಿಂದ ಆಡಳಿತ ಕನ್ನಡದ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು. 				
 ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡ ಭಾಷೆಯ ನ 	ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡಿಸುವುದು.				
 ಕನ್ನಡ ಭಾಷಾ ರಚನೆಯಲ್ಲಿನ ನಿಯ 	ಮಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.		• • • • • • • •		
● ಕನ್ನಡ ಭಾಷಾ ಬರಹದಲ್ಲಿ ಕಂಡು ಪರಿಚಯಿಸುವುದು.	ಬರುವ ದೋಷಗಳು ಹಾಗೂ ಅವುಗಳ	ನಿವಾರಣೆ. ಮತ್ತು	ಲೇಖನ ಚಿಹ್ನೆಗಳನ್ನು		
 ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮ 	ತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರವ್ಯವಹಾರದ ಬಗ್ಗೆ	ಅರಿವು ಮೂಡಿಸುವು	ಮ.		
• ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ	ಬಗ್ಗೆ ಅಸಕ್ತಿ ಮೂಡಿಸುವುದು.				
• ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಸಾಮನ	ಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದ	ಗಗಳ ಪರಿಚಯ ಮಾ	ಾಡಿಕೊಡುವುದು.		
ಪರಿವಿಡಿ (ಪಠ್ಯಮಸ್ತಕದಲ್ಲಿರುವ ವಿಷಂ	ುಗಳ ಪಟ್ಟಿ)				
ಅಧ್ಯಾಯ — 1 ಕನ್ನಡಭಾಷೆ — ಸಂಕ್ಷಿಪ್ತ ವಿನ	ವರಣೆ.				
ಅಧ್ಯಾಯ – 2 ಭಾಷಾ ಪ್ರಯೋಗದಲ್ಲಾಗುವ	ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿಕ	ವಾರಣೆ.			
ಅಧ್ಯಾಯ – 3 ಲೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು 🤉	ಅವುಗಳ ಉಪಯೋಗ.				
ಅಧ್ಯಾಯ – 4 ಪತ್ರ ವ್ಯವಹಾರ.					
ಅಧ್ಯಾಯ — 5 ಆಡಳಿತ ಪತ್ರಗಳು.					
ಅಧ್ಯಾಯ – 6 ಸರ್ಕಾರದ ಆದೇಶ ಪತ್ರಗಳು	ı.				
ಅಧ್ಯಾಯ – 7 ಸಂಕ್ಷಿಪ್ತ ಪ್ರಬಂಧ ರಚನೆ (ಕ್ಷಿ	್ರಸೈಸ್ ರೈಟಿಂಗ್), ಪ್ರಬಂಧ ಮತ್ತು ಭಾಷಾ	ಾಂತರ.			
ಅಧ್ಯಾಯ — 8 ಕನ್ನಡ ಶಬ್ದಸಂಗ್ರಹ.					
ಅಧ್ಯಾಯ – 9 ಕಂಪ್ಯೂಟರ್ ಹಾಗೂ ಮಾಹಿ	್ರತಿ ತಂತ್ರಜ್ಞಾನ.				
ಅಧ್ಯಾಯ – 10 ಪಾರಿಭಾಷಿಕ ಆಡಳಿತ ಕನ್ನ	ತ ಪದಗಳು ಮತ್ತು ತಾಂತ್ರಿಕ/ ಕಂಪ್ಯೂಟರ	್ ಪಾರಿಭಾಷಿಕ ಪದ	ಗಳು.		
ಆಡಳಿತ ಕನ್ನಡ ಕಲಿಕೆಯ ಫಲಿತಾಂಶಗ	ಗಳು:				
 ಆಡಳಿತ ಭಾಷೆ ಕನ್ನಡದ ಪರಿಚಯಾ 	ವಾಗುತ್ತದೆ.				
 ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಕನ್ನಡ ಭಾಷೆಯ ನ 	ವ್ಯಾಕರಣದ ಬಗ್ಗೆ ಅರಿವು ಮೂಡುತ್ತದೆ.				
• ಕನ್ನಡ ಭಾಷಾ ರಚನೆಯಲ್ಲಿನ ನಿಯ	ಮಗಳು ಮತ್ತು ಲೇಖನ ಚಿಹ್ನೆಗಳು ಪರಿಚ	ಯಿಸಲ್ಪಡುತ್ತವೆ.			
• ಸಾಮಾನ್ಯ ಅರ್ಜಿಗಳು, ಸರ್ಕಾರಿ ಮ	ತ್ತು ಅರೆ ಸರ್ಕಾರಿ ಪತ್ರವ್ಯವಹಾರದ ಬಗ್ಗೆ 🖞	ಅರಿವು ಮೂಡುತ್ತದೆ.			
• ಭಾಷಾಂತರ ಮತ್ತು ಪ್ರಬಂಧ ರಚನೆ	ಬಗ್ಗೆ ಅಸಕ್ತಿ ಮೂಡುತ್ತದೆ.				
• ಕನ್ನಡ ಭಾಷಾಭ್ಯಾಸ ಮತ್ತು ಸಾಮಾ	ಾನ್ಯ ಕನ್ನಡ ಹಾಗೂ ಆಡಳಿತ ಕನ್ನಡದ ಪದ	ರಗಳು ಪರಿಚಯಿಸಲ್ನ	್ರಡುತ್ತವೆ.		
ಪರೀಕ್ಷ್ಮೆಯ ವಿಧಾನ : ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನ – ಅಖಇ (ಅಡುಣಟಿಣಾ ಖಟಣಜಾಟಿಚಿಟ ಇಷಚಿಟಣಚಿಣುಟಿ): ಕಾಲೇಜು ಮಟ್ಟದಲ್ಲಿಯೆ ಆಂತರಿಕ ಪರೀಕ್ಷೆಯನ್ನು 100 ಅಂಕಗಳಿಗೆ ವಿಶ್ವವಿದ್ಯಾಲಯದ ನಿಯಮಗಳು ಮತ್ತು ನಿರ್ದೇಶನದಂತೆ ನಡೆಸತಕ್ಕದ್ದು.					
ಪಠ್ಯಮಸ್ತಕ : ಆಡಳಿತ ಕನ್ನಡ ಪಠ್ಯ ಮಸ್ತಕ (ಏಚಿಟಿಟಿಚಿಜಚಿ ಜಿಂಡಿ ಂಜಟಿಭೋಡಿಚಿಣುಟೆ) ಸೆಂಪಾದಕರು					
ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ					
ಪ್ರೊ. ವಿ. ಕೇಶವಮೂರ್ತಿ					
ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.					

B. E. (Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER –II & III/IV				
	Vyavaharika Kannada			
Course Code	18KVK28/39/49			
Teaching Hours/Week (L:T:P)	(0:2:0)	CIE Marks	100	
Credits	01			
Course Learning Objectives:				
The course will enable the students	to understand Kannada and comm	nunicate in Kann	ada language.	
Table of Contents: Chapter - 1: Vyavaharika kannada – Parichaya (Introduction to Vyavaharika Kannada).Chapter - 2: Kannada Aksharamale haagu uchcharane (Kannada Alpabets and Pronunciation).Chapter - 3: Sambhashanegaagi Kannada Padagalu (Kannada Vocabulary for Communication).Chapter - 4: Kannada Grammar in Conversations (Sambhashaneyalli Kannada Vyakarana).Chapter - 5: Activities in Kannada.				
Course Outcomes: At the end of the course, the student will be able to understand Kannada and communicate in Kannada				
ಪರೀಕ್ಷೆಯ ವಿಧಾನ : ನಿರಂತರ ಆಂತರಿಕ	ಮೌಲ್ಯಮಾಪನ – ಅಖಇ (ಅಡಬಿಣುಬಿಷಾ	න්ඩ්ශක්ඩ්ඩ්ස් පුෂ	ತಿಟಷಟಿಣುಹಟಿ):	
ಕಾಲೇಜು ಮಟ	ೈದಲ್ಲಿಯೆ ಆಂತರಿಕ ಪರೀಕ್ಷೆಯನ್ನು 100 ಆ	ಂಕಗಳಿಗೆ ವಿಶ್ವವಿದ್ಯಾಣ	ಲಯದ	
ನಿಯಮಗಳು ಮತ್ತು ನಿರ್ದೇಶನದಂತೆ ನಡೆಸತಕ್ಕದ್ದು.				
ಖಿಷಾಣಭಾಷ್ (ಪಠ್ಯಮಸ್ತಕ): ವ್ಯಾವಹಾರಿಕ ಕನ್ನಡ ಪಠ್ಯ ಮಸ್ತಕ (ಗಿಥಿಚಿತಿಸಿಚಿಡಿಜ್ಞಾಚಿ ಏಚಿಟಿಟಿಚಿಜಚಿ ಖಿಷಾಣ :ಹ್ಞಾ) ಸುಂಪಾದಕರು ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಪ್ರ. ವಿ. ಕೇಶವಮೂರ್ತಿ ಪ್ರಕಟಣೆ : ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ.				

B. E. (Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - III				
CONSTITUTION OF IND	IA, PROFESSIONAL ETHICS A	ND CYBER LA	W (CPC)	
Course Code	18CPC39/49	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE Marks	60	
Credits	01	Exam Hours	02	
Course Learning Objectives: To				
 know the fundamental political codes, structure, procedures, powers, and duties of Indian government institutions, fundamental rights, directive principles, and the duties of citizens Understand engineering ethics and their responsibilities; identify their individual roles and ethical responsibilities towards society. 				
Module-1				
Introduction to Indian Constitution: The Necessity of the Constitution, The Indian constitution, The Making of th Salient features of the Constitution of Complex Situations. Directive Prince society with examples. Fundamental	e Societies before and after the Com- ne Constitution, The Role of the C India. Fundamental Rights and its R ciples of State Policy (DPSP) Duties and its Scope and significant	stitution adoption. onstituent Assem Restriction and lim and its present ce in Nation build	Introduction to the bly - Preamble and hitations in different relevance in our ing.	
Wiodule-2				
Parliamentary System, Federal System, Centre-State Relations. Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism. State Executives – Governor, Chief Minister, State Cabinet, State Legislature, High Court and Subordinate Courts, Special Provisions (Articles 370.371,371J) for some States.				
Elections. Amendments and Emerge	ency Provisions:			
Elections, Amendments and Emergency Provisions: Elections, Electoral Process, and Election Commission of India, Election Laws. Amendments - Methods in Constitutional Amendments (How and Why) and Important Constitutional Amendments. Amendments – 7,9,10,12,42,44, 61, 73,74, ,75, 86, and 91,94,95,100,101,118 and some important Case Studies. Emergency Provisions, types of Emergencies and its consequences. Constitutional special provisions: Special Provisions for SC and ST, OPC, Wence, Children and Predemend Chapter				
Module-4				
 Professional / Engineering Ethics: Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India): Profession, Professionalism, and Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility. Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering 				
Internet Laws. Cyber Crimes and C	vber Laws:			
Internet and Need for Cyber Laws, In neutrality, Types of Cyber Crimes, In 2000, Internet Censorship. Cybercrime	Modes of Regulation of Internet, adia and cyber law, Cyber Crimes es and enforcement agencies.	Types of cyber te and the informati	rror capability, Net on Technology Act	
Course Outcomes: On completion of CO 1: Have constitutional knowled	this course, students will be able to, ge and legal literacy.	,		
CO 2: Understand Engineering and	Professional ethics and responsibili	ties of Engineers.		
CO 3: Understand the the cybercrit	mes and cyber laws for cyber safety	measures.		

Question	Question paper pattern for SEE and CIE:						
•	 The SEE question paper will be set for 100 marks and the marks scored by the students will proportionately be reduced to 60. The pattern of the question paper will be objective type (MCQ). For the award of 40 CIE marks, refer the University regulations 2018. 						
SI.	Title of the Book	Name of the	Name of the	Edition and Year			
No.		Author/s	Publisher				
Textboo	k/s						
1	Constitution of India,	Shubham Singles,		2018			
	Professional Ethics and Human	Charles E. Haries,	Cengage Learning				
	Rights	and et al	India				
2	Cyber Security and Cyber Laws	Alfred Basta and et	Cengage Learning	2018			
		al	India				
Referen	ce Books	•	•	•			
3	Introduction to the	Durga Das Basu	Prentice –Hall,	2008.			
	Constitution of India	C C					
4	Engineering Ethics	M. Govindarajan, S.	Prentice –Hall,	2004			
		Natarajan, V. S.					
		Senthilkumar					

BF (Common to all Programmes)						
Outcome Based Educ	Outcome Based Education (OBE) and Choice Based Credit System (CBCS)					
	SEMESTER - III	0	,			
Al	DDITIONAL MATHEMATICS -	- I				
(Mandatory	Learning Course: Common to All I	Programmes)				
(A Bridge course for Lateral)	Entry students under Diploma quota	a to BE/B. Tech. p	rogrammes)			
Course Code	18MATDIP31	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60			
Course Learning Objectives:	0	Exam Hours	03			
• To provide basic concents of	complex trigonometry vector algeb	ra differential and	l integral calculus			
To provide on insight into year	tor differentiation and first order O		i integral calculus.			
• To provide an insight into vec	tor differentiation and first order O	DE 8.				
Module-1						
Complex Trigonometry: Complex	Numbers: Definitions and prop	erties. Modulus	and amplitude of a			
complex number, Argand's diagram, I	De-Moivre's theorem (without proc	f).	$\mathbf{D} \leftarrow 1 \mathbf{C}$			
vector Algebra: Scalar and vectors.	Addition and subtraction and mul	tiplication of vect	cors- Dot and Cross			
Module-2						
Differential Calculus: Review of	successive differentiation-illustr	ative examples.	Maclaurin's series			
expansions-Illustrative examples. Par	tial Differentiation: Euler's theorem	m-problems on fir	st order derivatives			
only. Total derivatives-differentiation	of composite functions. Jacobians	of order two-Probl	ems.			
Module-3						
Vector Differentiation: Differentiation	on of vector functions. Velocity and	d acceleration of a	particle moving on			
a space curve. Scalar and vector point	functions. Gradient, Divergence,	Curl-simple proble	ems. Solenoidal and			
irrotational vector fields-Problems.						
Module-4						
Integral Calculus: Review of elemen	tary integral calculus. Reduction fo	rmulae for sin ⁿ x, c	os ⁿ x (with proof)			
and sin ^m xcos ⁿ x (without proof) and ev	aluation of these with standard limit	ts-Examples. Dou	ble and triple			
integrals-Simple examples.						
Module-5		1 1 0 1	1.00			
equations: exact, linear differential equations	Jet's. Introduction-solutions of first lations. Equations reducible to exact	order and first-deg et and Bernoulli's	equation.			
Course outcomes: At the end of the c	ourse the student will be able to:					
• CO1: Apply concepts of con	nplex numbers and vector algebra	a to analyze the j	problems arising in			
related area.						
• CO2: Use derivatives and par	tial derivatives to calculate rate of	change of multiva	riate functions.			
• CO3: Analyze position, velo	ocity and acceleration in two and	l three dimension	s of vector valued			
functions						
• CO4: Learn techniques of integration including the evaluation of double and triple integrals						
 CO5: Identify and solve first order ordinery differential equations 						
COS: Identify and solve first order ordinary differential equations.						
• The question paper will have for	full questions carrying equal mark	- c				
• Fach full question will be for 20	merte					
Each run question win be for 20	$\frac{1}{1}$	1				
• I nere will be two full questions	(with a maximum of four sub- que	suons) from each i	nodule.			
• Each full question will have sub	- question covering all the topics up	nder a module.				
• The students will have to answer five full questions, selecting one full question from each module.						

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ook			
1	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refere	ence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P. Bali and	Laxmi Publishers	7th Edition, 2007
		Manish Goyal		
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

B	E AFDOSDACE ENC	INFEDINC				
D. E. AEKOSPACE ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
SEMESTER - IV						
COMPLEX ANALYS	SIS, PROBABILITY A	ND STATISTICAL METH	ODS			
	(Common to all progr	ammes)				
[As per C	Thoice Based Credit Syste	em (CBCS) scheme]				
Course Code	18MAT41	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:	1' (' C 1		1 10 0			
• To provide an insight into app	onications of complex var	ables, conformal mapping and addition and field theory	nd special functions			
To develop probability distri	ibution of discrete con	inucuon and neid meory.	d joint probability			
• To develop probability distribution occurring in digit:	al signal processing desi	an engineering and microway	la joint probability			
Modulo 1	ar signar processing, desi	gir engineering and microway	e engineering.			
Calculus of complex functions:	Review of function of	a complex variable limit	ts continuity and			
differentiability Analytic functions	Cauchy-Riemann eq	uations in Cartesian and	polar forms and			
consequences.	equility recentaining eq	autons in curtosian and	polar forms and			
Construction of analytic functions:	Milne-Thomson method-	Problems.				
Module-2						
Conformal transformations: Introdu	ction. Discussion of tran	sformations: $w = Z^2$, $w = e^2$	z', w = z +			
$\frac{1}{z}$, $(z \neq 0)$. Bilinear transformations - P	roblems.					
Complex integration: Line integral of C	f a complex function-Ca	ichy's theorem and Cauchy's	s integral formula			
and problems.	I I I I I I I I I I I I I I I I I I I	, , , , , , , , , , , , , , , , , , ,				
Module-3						
Probability Distributions: Review of	of basic probability theor	v Random variables (discre	te and continuous)			
probability mass/density functions.	Binomial, Poisson, expo	nential and normal distributi	ons- problems (No			
derivation for mean and standard devi	iation)-Illustrative examp	les.	I v			
Module-4						
Statistical Methods: Correlation and	regression-Karl Pearson	s coefficient of correlation ar	nd rank correlation			
-problems. Regression analysis- lines	of regression –problems.					
Curve Fitting: Curve fitting by the m	ethod of least squares- fi	tting the curves of the form-				
$y = ax + b$, $y = ax^b$ and $y = ax^2 + b$	bx + c.					
Module-5						
Joint probability distribution: Joint	t Probability distribution	for two discrete random var	riables, expectation			
and covariance.						
Sampling Theory: Introduction to sa	impling distributions, sta	ndard error, Type-I and Typ	e-II errors. Test of			
hypothesis for means, student's t-dis	stribution, Chi-square di	stribution as a test of good	ness of fit.			
Course Outcomes:	ill ha abla ta					
At the end of the course the student will be able to:						
• Use the concepts of analytic function and complex potentials to solve the problems arising in						
• Utilize conformal transformation and complex integral origing in corofail theory fluid flow						
• Othize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.						
• Apply discrete and continuous engineering field.	• Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.					
• Make use of the correlation ar statistical data.	nd regression analysis to	fit a suitable mathematical mo	odel for the			
Construct joint probability di	stributions and demonstr	ate the validity of testing the	hypothesis.			
Question paper pattern:		· · · · · ·				

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	oks					
1	Advanced Engineering	E. Kreyszig	John Wiley & Sons	10 th Edition,2016		
	Mathematics					
2	Higher Engineering	B. S. Grewal	Khanna Publishers	44 th Edition, 2017		
	Mathematics					
3	Engineering Mathematics	Srimanta Pal et al	Oxford University	3 rd Edition,2016		
			Press			
Referen	ce Books					
1	Advanced Engineering	C. Ray Wylie,	McGraw-Hill	6 th Edition 1995		
	Mathematics	Louis C.Barrett				
2	Introductory Methods of	S.S.Sastry	Prentice Hall of	4 th Edition 2010		
	Numerical Analysis		India			
3	Higher Engineering	B. V. Ramana	McGraw-Hill	11 th Edition,2010		
	Mathematics					
4	A Text Book of Engineering	N. P. Bali and	Laxmi Publications	2014		
	Mathematics	Manish Goyal				
5	Advanced Engineering	Chandrika Prasad	Khanna	2018		
	Mathematics	and Reena Garg	Publishing,			
Web lin	ks and Video Lectures:	I		•		
1. http:/	1. http://nptel.ac.in/courses.php?disciplineID=111					
2. http:/	//www.class-central.com/subject/ma	th(MOOCs)				
3. http:/	3. http://academicearth.org/					

4. VTU EDUSAT PROGRAMME - 20

B.E AERONAUTICAL ENGINEERING						
Choice Based Credi	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER - IV					
Aerodynamics-I						
Course Code	18AE42/18AS42	CIE Marks	40			
Teaching Hours/Week (L:T:P)(3:1:0)SEE Marks60						
Credits	04	Exam Hours	03			

Course Learning Objectives:

- Understand the basics of fluid mechanics as a prerequisite to Aerodynamics
- Acquire knowledge on typical airfoil characteristics and two-dimensional flows over airfoil and study the incompressible over finite wings
- Assimilate the understanding of application of finite wing theory and high lift systems

Module-1

Review of Basic Fluid Mechanics

Continuity, momentum and energy equation, Control volume approach to Continuity, momentum and energy equation, Types of flow, pathlines, streamlines, and streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach number regimes. Vorticity, Angular velocity, Stream function, velocity potential function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.

Module-2

Airfoil Characteristics

Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.

Module-3

Two Dimensional Flows & Incompressible Flow Over Airfoil

Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift, D'Alembert's paradox, Numericals,

Incompressible flow over airfoils: Kelvin's circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical thin airfoil theory for symmetric and cambered airfoils. Numericals.

Module-4

Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-infinite vortex filament, Induced velocity. Prandtl's classical lifting line theory: Downwash and induced drag. Elliptical and modified elliptical lift distribution. Lift distribution on wings. Limitations of Prandtl's lifting line theory. Extended lifting line theory- lifting surface theory, vortex lattice method for wings. Lift, drag and moment characteristics of complete airplane.

Module-5

Applications of Finite Wing Theory & High Lift Systems

Simplified horse-shoe vortex model, formation flight, influence of downwash on tail plane, ground effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient, typical aerodynamic characteristics, Subsonic and Supersonic leading edges. Introduction to high-lift systems, flaps, leading-edge slats and typical high – lift characteristics. critical Mach numbers, Lift and drag divergence, shock induced separation, Effects of thickness, camber and aspect ratio of wings, Transonic area rule, Tip effects. Introduction to Source panel & vortex lattice method.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1 :Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
- 2. CO2 :Compute and analyse the incompressible flow over finite wings
- 3. CO3 : Apply finite wing theory and design high lift systems from the aerodynamics view point

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textl	book/s					
1	Fundamental of Aerodynamics	Anderson J.D	McGraw-Hill International Edition, New York	5th edition,2011		
2	Aerodynamics for Engineering Students	E. L. Houghton, P.W. Carpenter	Elsevier, New York	5th edition,2010		
Refe	rence Books					
3	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006		
4	Theoretical Aerodynamics	Louis M. Milne- Thomson	Dover Publications, USA	Imported Edition,2011		
			·			

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV

Aircraft Propulsion

And chart i i opuision				
Course Code	18AE43	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basic principle and theory of aircraft propulsion.
- Understand the purpose of a centrifugal, axial compressors, axial and radial turbines
- Acquire knowledge of importance of nozzles & inlets and combustion chamber

Module-1

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Working principles of internal combustion engine, Two – stroke and four – stroke piston engines, Gas- turbine engines, Cycle analysis of reciprocating engines and jet engines , advantages and disadvantages.

Module-2

Propeller Theories & Jet propulsion Types of propeller, Propeller thrust: momentum theory, Blade element theories, propeller blade design, propeller selection.

Jet Propulsion: Illustration of working of gas turbine engine – The thrust equation – Factors affecting thrust – Effect of pressure, velocity and temperature changes of air entering compressor – Methods of thrust augmentation – Characteristics of turboprop, turbofan and turbojet – Performance characteristics.

Module-3

Inlets & Nozzles

Internal flow and Stall in Subsonic inlets, Boundary layer separation. Major features of external flow near a subsonic inlet. Relation between minimum area ratio and eternal deceleration ratio. Diffuser performance.

Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration. Modes of inlet operation.

Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles and nozzle choking, Nozzle throat conditions. Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, Thrust reversal.

Module-4

Gas Turbine Engine Compressors

Centrifugal compressors: Principle of operation of centrifugal compressors. Work done and pressure rise - Velocity diagrams, Diffuser vane design considerations. performance characteristics. Concept of Pre-whirl, Rotating stall.

Axial flow compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction, three-dimensional flow. Air angle distribution for free vortex and constant reaction designs, Compressor blade design. Axial compressor performance characteristics.

Module-5

Combustion chambers and Turbines

Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance – Flame tube cooling – Flame stabilization – Use of flame holders

Axial Flow Turbines: Introduction, Turbine stage, Multi-staging of turbine, Exit flow conditions, Turbine cooling, Heat transfer in turbine cooling.

Radial turbine: Introduction, Thermodynamics of radial turbines, Losses and efficiency.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic principle and theory of aircraft propulsion.
- 2. CO2 : Explain the functions of centrifugal, axial compressors, axial and radial turbines
- 3. CO3: Analyse the performance of nozzles & inlets and combustion chamber.

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textl	book/s					
1	Aircraft propulsion	Bhaskar Roy	Elsevier	2011		
2	Gas Turbines	V. Ganesan	Tata McGraw-Hill	2010		
Refe	rence Books					
1	Mechanics & Thermodynamics of Propulsion	Hill, P.G. & Peterson, C.R	Addison – Wesley Longman INC,	1999		
2	Gas Turbine Theory	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H	Longman	1989		
3	Gas Turbine Engine Technology	Irwin E. Treager	Tata McGraw Hill Publishing Co. Ltd.	7th Edition,2003		
4	Fundamentals of Compressible Flow with Aircraft and Rocket propulsion	S. M. Yahya	New Age International Publications, New Delhi	4th Edition,2014		
5	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006		

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER - IV				
Mechanisms and Machine Theory					
Course Code	18AE44/18AS44	CIE Marks	40		
Teaching Hours/Week (L:T:P)(3:0:0)SEE Marks60					
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Understand the theory of mechanisms including velocity, acceleration and static force analysis.
- Acquire knowledge of spur gears, gear train, balancing of rotating and reciprocating masses.
- Understand the concept of governors and gyroscope

Module-1

Introduction to Mechanisms:

Types of constrained motion, Link and its types, joints and its types, kinematic pair and its types, degrees of freedom, Grubler's criterion, Types of kinematic chains and inversions:

Inversions of Four bar chain: Beam engine, coupling rod of a locomotive, Watt's indicator mechanism. Inversions of Single Slider Crank Chain: Pendulum pump or Bull engine, Oscillating cylinder engine, Rotary internal combustion engine, Crank and slotted lever quick return motion mechanism, Whitworth quick return motion mechanism. Inversions of Double Slider Crank Chain: Elliptical trammels, Scotch yoke mechanism, Oldham's coupling. Straight line motion mechanisms: Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism and Ratchet and Pawl mechanism, Ackerman steering gear mechanism.

Module-2

Velocity, Acceleration and static force analysis of Mechanisms (Graphical Methods):

Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons.

Static force analysis: Introduction: Static equilibrium, Equilibrium of two and three force members. Members with two forces and torque. Free body diagrams, principle of virtual work. Static force analysis of four bar mechanism and slider-crank mechanism with and without friction.

Module-3

Spur Gears and Gear Trains

Spur Gears: Gear terminology, law of gearing, Path of contact, Arc of contact, Contact ratio of spur gear, Interference in involute gears, Methods of avoiding interference.

Gear Trains: Simple gear trains, Compound gear trains, Reverted gear trains, Epicyclic gear trains, Analysis of epicyclic gear train (Algebraic and tabular methods), torques in epicyclic trains.

Module-4

Balancing of Rotating and Reciprocating Masses

Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods).

Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi-cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods)

Module-5

Governors and Gyroscope

Governors: Types of governors; force analysis of Porter and Hartnell governors, Controlling force, stability, sensitiveness, isochronism, effort and power of Porter and Hartnell governors.

Gyroscopes: Vectorial representation of angular motion, gyroscopic couple, effect of gyroscopic couple on plane disc and aeroplane

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the theory of velocity, acceleration and static force analysis to design of mechanisms.
- 2. CO2: Design spur gears, gear train, balancing of rotating and reciprocating masses.
- 3. CO3 : Apply governors and gyroscope

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI.	Title of the Book	Name of the	Name of the Publisher	Edition and Year
N0.		Author/s		
Text	book/s			
1	Theory of Machines	Rattan S.S	Tata McGraw-Hill	3rd edition -2009
			Publishing Company Ltd.,	
			New Delhi	
2	Theory of Machines &	J.J. Uicker,	OXFORD	3rd Ed. 2009
	Mechanisms	G.R. Pennock,		
		J.E. Shigley		
Refe	rence Books	-		
1	Theory of Machines	R. S. Khurmi,	Eurasia Publishing House	2008
		J.K. Gupta		
2	Design of Machinery	Robert L	McGraw Hill	2001
		Norton		
3	Mechanism and Machine theory	Ambekar	PHI Learning Pvt. Ltd	2007
	-			

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV

Aircraft Material Science					
Course Code	18AE45	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

- Acquire knowledge on aircraft materials- metallic and non-metallic
- Understand the properties of super alloys, ablative materials and high energy material.
- Study material corrosion and prevention

Module-1

Introduction to Aircraft Materials

General properties of materials, Definition of terms, Requirements of aircraft materials, Testing of aircraft materials, Inspection methods, Application and trends in usage in aircraft structures and engines, Selection of materials for use in aircraft.

Aircraft Metal Alloys

Aluminum alloys, Magnesium alloys, Titanium alloys, Plain carbon and Low carbon Steels, Corrosion and Heat resistant steels, Maraging steels, Copper alloys, Producibility and Surface treatments aspects for each of the above:

Module-2

Super Alloys

General introduction to super alloys, Nickel based super alloys, Cobalt based super alloys, and Iron based super alloys, manufacturing processes associated with super alloys, Heat treatment and surface treatment of super alloys.

Composite Materials: Definition and comparison of composites with conventional monolithic materials, Reinforcing fibers and Matrix materials, Fabrication of composites and quality control aspects, Carbon-Carbon Composites production, properties and applications, inter metallic matrix composites, ablative composites based on polymers, ceramic matrix, metal matrix composites based on aluminum, magnesium, titanium and nickel based composites for engines.

Module-3

Polymers, Polymeric Materials & Plastics and Ceramics & Glass

Knowledge and identification of physical characteristics of commonly used polymeric material: plastics and its categories, properties and applications; commonly used ceramic, glass and transparent plastics, properties and applications, adhesives and sealants and their applications in aircraft.

Module-4

Ablative Materials

Ablation process, ablative materials and applications in aerospace.

Aircraft Wood, Rubber, Fabrics & Dope and Paint: Classification and properties of wood, Seasoning of wood, Aircraft woods, their properties and applications, Joining processes for wood, Plywood; Characteristics and definition of terminologies pertaining to aircraft fabrics and their applications, Purpose of doping and commonly used dopes; Purpose of painting, Types of aircraft paints, Aircraft painting process.

Module-5

Corrosion and its Prevention

Knowledge of the various methods used for removal of corrosion from common aircraft metals and methods employed to prevent corrosion.

High Energy Materials: Materials for rockets and missiles. Types of propellants and its general and desirable properties, insulating materials for cryogenic engines. Types of solid propellants: Mechanical characterization of solid propellants using uni-axial, strip-biaxial and tubular tests.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify appropriate aircraft materials for a given application.
- 2. CO2: Explain the properties of super alloys, ablative materials and high energy material.
- 3. CO3: Understand material corrosion process and apply prevention technique.

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Aircraft Material and Processes	Titterton G F	English Book Store, New Delhi	1998
2	Advanced Aerospace Material	H Buhl	Spring Berlin	1992
Refe	rence Books			
1	Handbook of Aircraft materials	C G Krishnadas	Interline publishers, Bangalore	1993
2	Aerospace material	Balram Gupta, S	Vol. 1,2,3 ARDB, Chand & Co	1996
3	Materials for Missiles and Space	Parker E R	John Wiley, McGraw-Hill	1963
4	Materials of Aircraft Construction	Hill E T	Pitman London	
		·		•

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - IV

Turbomachines

1 ul bolhachines				
Course Code	18AE46	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Understand the basics of turbomachines, the energy transfer and energy transformation in them.
- Acquire the knowledge on design of centrifugal and axial turbomachines.
- Study hydraulic pumps and turbines.

Module-1

Introduction to turbomachines:

Classification and parts of a turbo machines; comparison with positive displacement machines; dimensionless parameters and their physical significance; specific speed; illustrative examples on dimensional analysis and model studies.

Energy transfer in turbomachines:

Basic Euler turbine equation and its alternate form; components of energy transfer; general expression for degree of reaction; construction of velocity triangles for different values of degree of reaction.

Module-2

Compression process:

Overall isentropic efficiency of compression; stage efficiency; comparison and relation between overall efficiency and stage efficiency; polytropic efficiency; pre heat factor.

Expansion process:

Overall isentropic efficiency for a turbine; stage efficiency for a turbine; comparison and relation between stage efficiency and overall efficiency, polytropic efficiency; reheat factor for expansion process.

Module-3

Design and performance analysis of Centrifugal compressors:

Types, design parameters, flow analysis in impeller blades, volutes and diffusers, losses, slip factor, characteristic curves, surging, choking. Construction details.

Design and performance analysis of axial fans and compressors:

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work done, simple stage design problems, performance characteristics, instability in axial compressors. Construction details.

Module-4

Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficiency, flow passage; subsonic, transonic and supersonic turbines, multi-staging of turbine; exit flow conditions; turbine cooling

Design and performance analysis of radial turbines:

Thermodynamics and aerodynamics of radial turbines; radial turbine characteristics; losses and efficiency; design of radial turbine.

Module-5

Hydraulic pumps:

Centrifugal and axial pumps. Manometric head, suction head, delivery head; manometric efficiency, hydraulic efficiency, volumetric efficiency, overall efficiency; multi stage pumps. Characteristics of pumps.

Hydraulic turbines:

Classification; Module quantities; Pelton wheel, Francis turbine, Kaplan turbine and their velocity triangles. Draft tubes and their function. Characteristics of hydraulic turbines.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Compute the energy transfer and energy transformation in turbomachines.
 - 2. CO2: Analyze the design of turbomachine blades.
 - 3. CO3 : Apply hydraulic pumps and turbines for specific requirements

- The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks.
- There will be two full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book/s			
1	Turbines, Compressors & Fans	S.M. Yahya	Tata-McGraw Hill Co	2 nd Edition (2002)
2	Principles of Turbo Machinery	D.G. Shephered	The Macmillan Company	1964
Refe	rence Books			
1	An introduction to Energy conversion, Volume III, Turbo machinery	V.Kadambi and Manohar Prasad	Wiley Eastern Ltd	1977
2	Turbomachines	Govinde Gowda and Nagaraj	MM Publishers	9 th Edition,2016
3	Fundamentals of Turbomachinery	B.K.Venkanna	Prentice Hall India	2009

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - IV** MATERIAL TESTING LAB Course Code 18AEL47A CIE Marks 40 Teaching Hours/Week (L:T:P) (1:0:2)SEE Marks 60 Exam Hours 03 Credits 02 **Course Learning Objectives:** Understand the relations among materials and their properties. Understand the formation, properties and significance of the alloys through different experiments. Understand the types, advantages and applications of various NDT methods. SI. **Experiments** No. Hardness Testing – Vicker's, Brinell, Rockwell 1 **Tensile** Test 2 3 Flexural Test 4 **Tensional Test** Impact Test 5 Shear Test 6 7 Fatigue Test Preparation of specimen for metallographic examination of different engineering materials. Identification 8 Heat treatment: Annealing, normalizing, hardening and tempering of steel. Hardness studies of heat-9 10 To study the wear characteristics of ferrous, non-ferrous and composite materials for different parameters. Visual Testing Technique, Dye penetration testing. To study the defects of Cast and Welded specimens. 11 12 Magnetic Particle Inspection. 13 Ultrasonic Inspection. 14 Eddy Current Inspection **Course Outcomes:** At the end of the course the student will be able to: Apply the relations among materials and their properties. • Differentiate the formation, properties and significance of the alloys through different experiments. • Understand the different types, advantages and applications of various NDT methods. **Conduct of Practical Examination:** 1. All laboratory experiments are to be included for practical examination. 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by

the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

	B.E AERONAUTICAL ENGINEERING				
	Choice Based Credit S	System (CBCS) and Out	tcome Based Education (OB	E)	
		SEMESTER - I	V		
0	MEASURE	<u>EMENTS AND METRO</u>	DLOGY LAB	40	
Cour	se Code	18AEL47B	CIE Marks	40	
Teac Cred	to Hours/ Week (L:1:P)	(1:0:2)	SEE Marks	<u>60</u> 03	
Cou	ns rsa Laarning Objectives:	02	Examinours	03	
Cou	Learn the concepts of mechani	cal measurements and mo	etrology		
	Use the concept of accuracy e	rror and calibration			
	Use the basic metrological inst	ruments			
CI			4-		
51. No.		Experimen	IIS		
1	Calibration of Pressure Gauge				
2	Calibration of Thermocouple				
3	Calibration of LVDT				
4	Calibration of Load cell				
5	Determination of modulus of ela	sticity of a mild steel spe	cimen using strain gauges		
6	Comparison and measurements i	using vernier caliper and	micrometer		
0			micrometer		
1	Measurement of vibration param	eters using vibration setu	ıp.		
8	Measurements using Optical Pro	jector / Toolmaker Micro	oscope.		
9	Measurement of angle using Sind	e Center / Sine bar / beve	l protractor		
10	Measurement of alignment using	g Autocollimator / Roller	set		
11	Measurement of Screw threads F	Parameters using Two-wi	re or Three-wire method.		
12	Measurements of Surface roughr	ness, Using Tally Surf/M	echanical Comparator		
13	Measurement of gear tooth profi	le using gear tooth vernie	er /Gear tooth micrometer		
14	14 Calibration of Micrometer using slip gauges				
Course Outcomes: At the end of the course the student will be able to:					
•	CO1: Identify and classify diff	erent measuring tools related	ated to experiments.		
• CO2: Identify, define, and explain accuracy, resolution, precision, and some additional terminology.					
•	CO3: Conduct, Analyze, interp	oret, and present measure	ment data from measurements	experiments.	
Con	luct of Practical Examination:				
1. All laboratory experiments are to be included for practical examination.					
2. Bi	eakup of marks and the instruction	ons printed on the cover	page of answer script to be st	rictly adhered by	
a St	xammers.	om the questions lot prep	ared by the examiners		
3. St	and of experiment is allowed on	Iv once and 15% Marks s	allotted to the procedure part to	o be made zero ■	
	ange of experiment is anowed on	$1_{\rm J}$ once and $1_{\rm J}$ to marks a	monou to the procedure part it	5 55 made 2010.	
	B.E AERONAUTICAL ENGINEERING				
---	---	-------------------------------------	------------------------------	-----------------------	--
	Choice Dased Credit S	SEMESTER - IV	based Education (OB	E)	
COMPUTER AIDED AIRCRAFT DRAWING					
Cour	se Code	18AEL48/18ASL48	CIE Marks	40	
Teac	hing Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60	
Cred	its	02	Exam Hours	03	
Cour	rse Learning Objectives:				
•	Understand and interpret drawn	ings of machine and aircraft com	ponents		
•	Prepare assembly drawings ettl	her manually or by using standar	d CAD packages.		
	Familiarize with standard com	bonents and their assembly of an	aircrait.		
SI. No		Experiments			
110.		PART A			
1	Sections of Solids: Sections of	Pyramids, Prisms, Cubes, Tetr	ahedrons, Cones and	Cylinders resting	
2	only on their bases (No problems	s on axis inclinations, spheres and	a hollow solids). True	shape of sections.	
2	parts with or without section	(Bureau of Indian Standards of	onventions are to be	followed for the	
	drawings) Hidden line conventio	ins. Precedence of lines.	silventions are to be	Tonowed for the	
		PART B			
3	3 Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW				
	(Internal & External) square and	Acme. Sellers thread, American	Standard thread.		
4	Fasteners: Hexagonal headed b	oolt and nut with washer (assen	nbly), square headed	bolt and nut with	
	washer (assembly) simple assem	bly using stud bolts with nut and	lock nut. Flanged nut	t, slotted nut, taper	
	and split pin for locking, counter	sunk head screw, grub screw, A	llen screw.		
5	Keys & Joints:	leave Cibbood leave and Woodmiff	Irory		
6	Parallel Key, Taper Key, Feather	key, Gibnead key and woodrull	key with single/double of	over strong (Chain	
	Couplings:	ble fiveled tap joints, butt joints	with single/double c	over straps (Chain	
,	Split Muff coupling protected	type flanged coupling pin (b	ush) type flexible co	ounling Oldham's	
	coupling and universal coupling	(Hooks' Joint)		aping, oranans	
		PART C			
8	Modelling of propeller and hub a	assembly			
0	Modelling of wing assembly				
2	Wodening of wing assembly				
10	Modelling of fuselage assembly				
11	Modelling of Engine Mounts				
12	Modelling of main rotor blade as	sembly of helicopter			
13	13 Modelling of UAV assembly				
14	Modelling of Landing Gear Asse	embly			
Cou	rse outcomes:				
At the end of the course the student will be able to:					
•	CO1 :Distinguish drawings of	machine and aircraft components			
•	• CO2 :Identify assembly drawings either manually or by using standard CAD packages.				

• CO3 :Practice with standard components and their assembly of an aircraft.

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

B.E.(Common to all Programmes) Outcome Based Education (OBE) and Choice Based Credit System (CBCS) **SEMESTER - IV** ADDITIONAL MATHEMATICS – II (Mandatory Learning Course: Common to All Programmes) (A Bridge course for Lateral Entry students under Diploma quota to BE/B.Tech. programmes) Course Code 18MATDIP41 CIE Marks 40 Teaching Hours/Week (L:T:P) (2:1:0)SEE Marks 60 Credits Exam Hours 03 0

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators. [Particular Integral restricted to $R(x) = e^{ax}$, sin ax /cos ax for f(D)y = R(x).]

Module-4

Partial Differential Equations(PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes:

At the end of the course the student will be able to:

CO1:Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook				
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refe	rence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - V** MANAGEMENT AND ENTREPRENEURSHIP Course Code 18AE51/18AS51 CIE Marks 40 Teaching Hours/Week (L:T:P) SEE Marks 60 (3:0:0)Credits 03 Exam Hours 03 **Course Learning Objectives:** Understand the basic concepts of management, planning, organizing and staffing. Acquire the knowledge to become entrepreneur. Comprehend the requirements towards the small-scale industries and project preparation. • Module-1 Management: Definition, Importance – Nature and Characteristics of Management, Management Functions, Roles of Manager, Levels of Management, Managerial Skills, Management & Administration, Management as a Science, Art & Profession Planning: Nature, Importance and Purpose Of Planning, Types of Plans, Steps in Planning, Limitations of Planning, Decision Making – Meaning, Types of Decisions- Steps in Decision Making. Module-2 Organizing and Staffing: Meaning, Nature and Characteristics of Organization - Process of Organization,

Principles of Organization, Departmentalisation, Committees –meaning, Types of Committees, Centralization Vs Decentralization of Authority and Responsibility, Span of Control (Definition only), Nature and Importance of Staffing, Process of Selection and Recruitment.

Directing and Controlling: Meaning and Nature of Directing-Leadership Styles, Motivation Theories Communication – Meaning and Importance, Coordination- Meaning and Importance, Techniques of Coordination. Controlling – Meaning, Steps in Controlling.

Module-3

Social Responsibilities of Business: Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance.

Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Intrapreneur – An Emerging Class, Comparison between Entrepreneur and Intrapreneur, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship.

Module-4

Modern Small Business Enterprises: Role of Small Scale Industries, Concepts and definitions of SSI Enterprises, Government policy and development of the Small Scale sector in India, Growth and Performance of Small Scale Industries in India, Sickness in SSI sector, Problems for Small Scale Industries, Impact of Globalization on SSI, Impact of WTO/GATT on SSIs, Ancillary Industry and Tiny Industry (Definition only). **Institutional Support for Business Enterprises:** Introduction, Policies & Schemes of Central–Level Institutions, State-Level Institutions.

Module-5

Project Management: Meaning of Project, Project Objectives & Characteristics, Project Identification-Meaning & Importance; Project Life Cycle, Project Scheduling, Capital Budgeting, Generating an Investment Project Proposal, Project Report-Need and Significance of Report, Contents, Formulation, Project Analysis-Market, Technical, Financial, Economic, Ecological, Project Evaluation and Selection, Project Financing, Project Implementation Phase, Human &Administrative aspects of Project Management, Prerequisites for Successful Project Implementation.

New Control Techniques- PERT and CPM, Steps involved in developing the network, Uses and Limitations of PERT and CPM

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Explain about the management and planning.
- 2. CO2: Apply the knowledge on planning, organizing, staffing, directing and controlling.
- 3. CO3: Describe the requirements towards the small-scale industries and project preparation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textl	books				
1	Principles of Management	P.C.Tripathi, P.N.Reddy	Tata Mc Graw Hill		
2	Dynamics of Entrepreneurial Development & Management	Vasant Desai	Himalaya Publishing House		
3	Entrepreneurship Development	Poornima. M. Charantimath	Pearson Education	2006	
Refe	rence Books				
1	Management Fundamentals- Concepts, Application, Skill Development	RobersLusier- Thomson			
2	Entrepreneurship Development	S.S. Khanka	S. Chand & Co		
3	Management	Stephen Robbins	Pearson Education	17 th Edition,2003	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V

AERODYNAMICS - II				
Course Code	18AE52/18AS52	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:1:0)	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Understand the concepts of compressible flow and shock phenomenon
- Acquire the knowledge of oblique shock and expansion wave formation.
- Appreciate the measurement in high speed flow.

Module-1

One Dimensional Compressible Flow: Energy, Momentum, continuity and state equations, velocity of sound, Adiabatic steady state flow equations, Flow through converging, diverging passages, Performance under various back pressures. Numericals.

Module-2

Normal Shock: Prandtl Meyer equation and Rankine – Hugonoit relation, Normal shock equations: Property ratios in terms of upstream Mach number, Numericals, Moving Normal Shock wave.

Module-3

Oblique shocks and Expansion waves: Prandtl equation and Rankine – Hugonoit relation, Normal shock equations, Pitot static tube, corrections for subsonic and supersonic flows, Oblique shocks and corresponding equations, Hodograph and pressure turning angle, shock polars, flow past wedges and concave corners, strong, weak and detached shocks, Flow past convex corners, Prandtl –Meyer expansion function, Reflection and interaction of shocks and expansion, waves, Families of shocks. Basics of Fanno and Rayleigh Flow.

Module-4

Differential Equations of Motion for Steady Compressible Flows:

Basic potential equations for compressible flow. Linearisation of potential equation-small perturbation theory. Methods for solution of nonlinear potential equation –Introduction, Method of characteristics, Boundary conditions, Pressure coefficient expression, small perturbation equation for compressible flow - Prandtl, Glauret and Geothert's rules - Ackert's supersonic airfoil theory, Von-Karman rule for transonic flow, Lift, drag pitching moment and center of pressure of supersonic profiles.

Module-5

Measurements in High speed Flow: Types of subsonic wind tunnels - Balances and measurements - Interference effects- transonic, Supersonic and hypersonic wind tunnels and characteristic features, their operation and performance - Shock tubes and shock tunnels - Free flight testing - Measurements of pressure, velocity and Mach number -Flow visualization methods of subsonic and supersonic flows.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Utilize the concepts of compressible flow and shock phenomenon
- 2. CO2: Apply knowledge of oblique shock and expansion wave formation.
- 3. CO3: Measure the parameters high speed flow.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textl	oooks			
1	Modern Compressible Flow	John D Anderson	Mc Graw Hill	$3^{\rm rd}$ edition, 2012
2	Gas Dynamics	Radhakrishnan, E	Prentice Hall of India	5 th edition,2014
Refe	rence Books			
1	Dynamics and Thermodynamics of Compressible fluid flow	Ascher. H. Saphiro	John Wiley & Sons	1 st edition,1977
2	Fundamentals of Compressible flow	Yahya, S.M	NEW AGE	2009
3	Elements of Gas Dynamics	H.W. Liepmann and A. Roshko	Dover Publications Inc	2003
4	Compressible Fluid Dynamics with Computer Application	Hodge B. K, Koenig K	Prentice Hall, New York	1 st edition,1995
5	Elements of gas dynamics	Zucrow, M.J. and Anderson, J.D	McGraw - Hill Book Co., New York	1989

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - V

	AIRCRAFT STRUCTURES - I		
Course Code	18AE53	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:1:0)	SEE Marks	60
Credits	04	Exam Hours	03

Course Learning Objectives:

- Comprehend the basic concepts of stress and strain.
- Acquire the knowledge of types of loads on aerospace vehicles.
- Understand the theory of elasticity.

Module-1

Design for Static Strength

Introduction: Normal, shear, biaxial and tri-axial stresses, Stress tensor, Principal Stresses, Stress Analysis, Design considerations, Codes and Standards. Static Strength: Static loads and factor of safety, Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, and Distortion energy theory, failure of brittle and ductile materials.

Module-2

Design for Impact and Fatigue Strength

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of inertia. Fatigue Strength: Introduction, S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, modifying factors: size effect, surface effect, Stress concentration and its effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading, cumulative fatigue damage.

Module-3

Loads on Aircraft and Aircraft Materials

Loads on Aircraft: Structural nomenclature, Types of loads, load factor, Aerodynamics loads, Symmetric manoeuvre loads, Velocity diagram, Function of structural components.

Aircraft Materials: Metallic and non-metallic materials, Use of Aluminum alloy, titanium, stainless steel and composite materials. Desirable properties for aircraft application.

Module-4

Theory of Elasticity and Structures:

Theory of Elasticity: Concept of stress and strain, derivation of Equilibrium equations, strain displacement relation, compatibility conditions and boundary conditions. Plane stress and Plane strain problems in 2D elasticity. Principle Stresses and Orientation of Principle Directions.

Structures: Statically Determinate and Indeterminate structures, Analysis of plane truss, Method of joints, 3D Truss, Plane frames, Composite beam, Clapeyron's Three Moment Equation.

Module-5

Energy Methods and Columns

Energy Methods: Strain Energy due to axial, bending and Torsional loads. Castigliano's theorem, Maxwell's Reciprocal theorem.

Columns: Columns with various end conditions, Euler's Column curve, Rankine's formula, Column with initial curvature, Eccentric loading, south-well plot.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of stress and strain analysis.
- 2. CO2: Compute the impact stress.
- 3. CO3: Identify appropriate materials for suitable application based on properties.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl	Title of the Book	Name of the	Name of the Publisher	Edition and Year
No		Author/s		L'unition unit i cui
Textl	pooks			
1	Aircraft Structures for	Megson,	Edward Arnold	1995
	Engineering Students	T.M.G		
2	Theory of Elasticity	Timoshenko	McGraw Hill Co	
		and Goodier		
3	Design of Machine Elements	V.B. Bhandari	Tata McGraw Hill	2nd Edition 2007
			Publishing CompanyLtd.,	
			New Delhi	
Reference Books				
1	Machine Design	Robert L.	Pearson Education Asia	2001
		Norton		
2	Analysis of Aircraft Structures –	Donaldson,	McGraw-Hill	1993
	An Introduction	B.K		
3	Strength of Materials	Timoshenko, S	Princeton D Von Nostrand	1990
			Co	
4	Mechanical Engineering Design	Joseph E	McGraw Hill International	6th Edition 2009
		Shigley and		
		Charles		
		R.Mischke		
5	Aircraft Structures	Peery, D.J.,	McGraw, Hill	2nd edition,1993
		and Azar, J.J		
6	Analysis and Design of Flight	Bruhn. E.H	Tri – state off set	1985
	Vehicles Structures		company, USA	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V				
INTROD	UCTION TO COMPOSITE MA	TERIALS		
Course Code	18AE54	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:	•			
 Understand the advantages of Evaluate the properties of pol Explain the manufacturing pro- 	composite materials compared to c ymer matrix composites with fiber pocess and applications of composite	onventional mater reinforcements materials	ials	
Module-1				
Introduction to Composite Materials Definition, classification of composite materials, classification of reinforcement - particulate, short fiber, whiskers, long fibers composites. matrix materials – metals, ceramics, polymers (including thermoplastics and thermosets), Carbon-Carbon Composites Metal Matrix Composites: MMC with particulate and short fiber reinforcement, liquid and solid state processing of MMC – stir casting,				
Module-2				
 Processing of Polymer Matrix Composites: Thermoset Polymers, Hand layup Process, Vacuum Bagging Process, Post Curing Process, Filament winding, Pultrusion, Pulforming, Autoclave Process Processing of Polymer Matrix Composites: Thermoplastic Polymers, Extrusion process, Injection Moulding Process, Thermo-forming process. Post Processing of Composites – Adhesive bonding, drilling, cutting processes. Module-3 Micro-Mechanical Behavior of a Lamina Determination of elastic constants-Rule of mixtures, transformation of coordinates, micro-mechanics based analysis and experimental determination of material constants. 				
Global and local axis for angle lam lamina with different fiber orienta reinforcement.	ina, determination of global and l ation and different fiber materia	ocal stresses and als glass, carbon	moduli, for 2D-UD a and aramid fiber	
Module-4				
Failure Theory – Tsai-Hill, Tsai-Wu, Classical plate theory- Stress and st matrices- Strength analysis of a lamin	, Max Stress and Max Strain rain variation in a laminate- Resu ate.	ltant forces and r	noments- A B & D	
Module-5				
Inspection & Quality Control: Destructive & Non-Destructive Testing, Tensile, Compression, Flexural, Shear, Hardness; ultrasonic testing – A-B-C scan Applications of Composites Materials Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites.				
Course Outcomes: At the end of the course the student will be able to:				
 Course Outcomes: At the end of the course the student will be able to: CO1: Explain the advantages of using composite materials as an alternative to conventional materials for specific applications CO2: Describe the advanced fabrication and processing for producing composite parts. CO3: Evaluate the micro- and macro-mechanical behavior of composite laminates 				

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbooks				
1	Composite Materials- Science and	K.K Chawla	Springer Verlag	II edition,1998
	Engineering			
2	Mechanics of Composites	Autar Kaw	CRC Press	II edition,2006
Refe	rence Books			
1	Composite Materials Handbook	Mein Schwartz	Department of Defense, USA	2002
2	Non-Destructive Testing of Composite Materials	Ajay Kapadia	TWI Publications	2006
3	Mechanics of Composite Materials	R M Jones	Taylor & Francis	2 nd Edn,2015

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
	SEMESTER - V					
AIRCRAFT SYSTEMS & INSTRUMENTATION						
Cours	se Code	18AE55/18AS55	CIE Marks	40		
Teach	ning Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credi	ts	03	Exam Hours	03		
Course Learning Objectives:						
•	Understand the aircraft control	systems.				
•	Understand the aircraft systems					
•	Acquire the knowledge of aircraft instruments.					
Modu	ule-1					
Airpl Mode	ane Control Systems: Conventionern control systems, Digital fly by	onal Systems, fully p wire systems, Auto p	powered flight controls, Pow ilot system active control Tec	er actuated systems, hnology.		
Modu	ule-2					
Aircr	raft Systems: Hydraulic systems,	Study of typical we	orkable system, components,	Pneumatic systems,		
Adva	ntages, Working principles, Typ	ical Air pressure sy	stem, Brake system, Typic	al Pneumatic power		
syster	n, Components, Landing Gear sys	tems, Classification.				
Modu	ule-3					
Engi	ne Systems: Fuel systems for Pist	on and jet engines, (Components of multi engines	. lubricating systems		
for pi	ston and jet engines - Starting and	Ignition systems - Ty	pical examples for piston and	l jet engines.		
Modu	ule-4					
Auxi	liary System: Basic Air cycle s	ystems, Vapour Cy	cle systems, Evaporative va	pour cycle systems,		
Evapo	prative air cycle systems, Fire prot	ection systems, Deici	ng and anti-icing systems.			
Mod	ıle-5					
Aircr	aft Instruments: Flight Instrume	nts and Navigation Ir	struments, Gyroscope, Accel	erometers, Air speed		
Indica	ators, TAS, EAS, Mach Meters, A	Altimeters, Principles	and operation, Study of var	ious types of engine		
instru	ments, Tachometers, Temperature	gauges, Pressure gau	iges, Operation and Principle	S.		
Cour	se Outcomes: At the end of the co	urse the student will	be able to:			
1	. CO1: Distinguish the conventio	nal and modern contr	ol systems.			
2	. CO2: Classify the aircraft syste	ns.				
3	. CO3: Categorize different types	of aircraft instrumer	nts.			
Ques	tion paper pattern:					
•	The question paper will have ten	full questions carryin	g equal marks.			
•	Each full question will be for 20 r	narks.				
•	There will be two full questions (with a maximum of f	our sub- questions) from each	module.		
•	Each full question will have sub-	question covering all	the topics under a module.			
• The students will have to answer five full questions, selecting one full question from each module.						
<u>a</u>						
SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textl	pooks			1 1		
1	Aircraft Systems: Mechanical,	Ian Moir and	Wiley India Pvt Ltd	3 rd edition, 2012		
	Electrical and Avionics-Subsystem	Allan Seabridge				
	Integration					
2	Aircraft Instruments and	Pallet, E.H.J	Longman Scientific and	1996		
	Integrated Systems		Technical			

Refe	Reference Books				
1	Aircraft Systems (Fundamentals of Flight Vol. IV)	Lalit Gupta and OP. Sharma	Himalayan Books	2006	
2	Gas Turbine Technology	Treager. S	McGraw-Hill	3 rd edition,2013	
3	TheaircraftEngineersHandbook,No4 , Instruments	R.W. Sloley and W.H. Coulthard		6 th Edition,2005	
4	Pneumatic Systems	SR. Majumdar	Tata McGraw Hill Publishing Co	1 st Edition,2001	
5	Aircraft Hydraulic Systems	William A Neese	Himalayan Books	2007	

B.E AERONAUTICAL ENGINEERING					
Choice Based Credit S	system (CBCS) and Outcome Based SEMESTER - V	l Education (OB	E)		
	THEORY OF VIBRATIONS				
Course Code	18AE56	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
Course Learning Objectives:					
• Understand the basic concepts	of vibrations.				
• Understand the working princip	ble of vibration measuring instrument	s.			
• Acquire the knowledge of num	erical methods for multi-degree freed	om systems.			
Module-1					
Introduction: Types of vibrations, S.H	.M, principle of super position applie	d to Simple Harm	nonic Motions.		
Beats, Fourier theorem and simple prob	lems.				
Module-2					
Undamped Free Vibrations: Single d	legree of freedom systems. Undampo	ed free vibration,	natural frequency		
of free vibration, Spring and Mass elem	ents, effect of mass of spring, Compo	ound Pendulum.			
Damped Free Vibrations: Single degr	ee of freedom systems, different type	s of damping, cor	ncept of critical		
damping and its importance, study of re-	sponse of viscous damped systems for	or cases of under o	damping, critical		
and over damping, Logarithmic decrem	ent.				
Module-3					
Forced Vibration: Single degree of	freedom systems, steady state solu	tion with viscous	s damping due to		
harmonic force. Solution by Comple	x algebra, reciprocating and rotati	ng unbalance, v	ibration isolation,		
transmissibility ratio due to harmonic e	xcitation and support motion.	. 1 1			
Vibration Measuring Instruments &	Whirling of Shafts: Vibration of ela	stic bodies – Vibr	ation of strings –		
Modulo 4	auons.				
Moule-4 Systems with Two Degrees of Freed	m. Introduction principle modes	nd Normal mode	of vibration co		
ordinate coupling generalized and print	cipal co-ordinates. Free vibration in	terms of initial of	conditions Geared		
systems Forced Oscillations-Harmon	ic excitation Applications: Vehicl	e suspension D	vnamic vibration		
absorber and Dynamics of reciprocating	Engines.	e suspension, D	ynamie vioration		
Continuous Systems: Introduction, vib	ration of string. longitudinal vibratio	n of rods. Torsion	al vibration of		
rods, Euler's equation for beams.	6, 6				
Module-5					
Numerical Methods for Multi-Degree	e Freedom Systems:				
Introduction, Influence coefficients, I	Maxwell reciprocal theorem, Dunke	erley's equation.	Orthogonality of		
principal modes, Method of matrix it	eration-Method of determination of	f all the natural	frequencies using		
sweeping matrix and Orthogonality prin	nciple. Holzer's method, Stodola met	hod.			
Course Outcomes: At the end of the co	ourse the student will be able to:				
1. CO1: Apply the principle of su	per position to Simple Harmonic Mot	tions.			
2. CO2: Determine the vibrations using vibration instruments.					
3. CO3: Analyze the multi-degree freedom systems.					
Question paper pattern:					
• The question paper will have ten full questions carrying equal marks.					
• Each full question will be for 20	marks.				
• There will be two full questions (with a maximum of four sub- question	ons) from each mo	dule.		
• Each full question will have sub-	question covering all the topics unde	r a module.			

• The students will have to answer five full questions, selecting one full question from each module.

	-			
Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	Theory of Vibration with Applications	W.T. Thomson and Marie Dillon Dahleh	Pearson Education	5 th edition, 2008
2	Mechanical Vibrations	V.P. Singh	DhanpatRai& Company Pvt. Ltd	2016
Referen	ice Books		•	
1	Mechanical Vibrations	S.S. Rao	Pearson Education Inc	4th Edition,2003
2	Mechanical Vibrations	S. Graham Kelly	Tata McGraw Hill	Special Indian edition, 2007
3	Theory & Practice of Mechanical vibrations	J.S. Rao & K. Gupta	New Age International Publications, New Delhi	2001
4	Elements of Vibrations Analysis	Leonanrd Meirovitch	Tata McGraw Hill	Special Indian edition, 2007
	·		•	•

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V

AERODYNAMICS LAB					
Course Code	18AEL57/18ASL57	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60		
Credits	02	Exam Hours	03		

Course Learning Objectives:

- Be acquainted with basic principles of aerodynamics using wind tunnel.
- Acquire the knowledge on flow visualization techniques.
- Understand the procedures used for calculating the lift and drag.

Experiments
Calibration of a subsonic wind tunnel: test section static pressure and total head distributions.
Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.
Smoke flow visualization studies on a two dimensional airfoil at different angles of incidence at low speeds
Smoke flow visualization studies on a two dimensional multi element airfoil with flaps and slats at different angles of incidence at low speeds
Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.
Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.
Surface pressure distributions on a two-dimensional rough circular cylinder at low speeds and calculation of pressure drag.
Surface pressure distributions on a two-dimensional symmetric airfoil and estimation of center of
Surface pressure distributions on a two-dimensional cambered airfoil at different angles of incidence,
Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.
Calculation of total drag of a two-dimensional cambered airfoil at low speeds at incidence using pitot-static probe wake survey.
Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.
Calculation of aerodynamic coefficients and forces acting on a model aircraft at various Angle of Attack and speeds using wind tunnel balance (With and Without Yaw).
Pressure measurements on aerofoil for a case of reverse flow.
 rse Outcomes: At the end of the course the student will be able to: CO1: Apply the flow visualization techniques. CO2: Estimate the pressure distribution over the bodies. CO3: Calculate the lift and drag.

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

B.E AERONAUTICAL ENGINEERING						
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
	SEMESTER - V					
Cour	se Code	18AFL58	CIE Marks	40		
Teac	hing Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60		
Cred	its	02	Exam Hours	03		
Cour	se Learning Objectives:					
•	Familiarize with the flash point,	fire point and viscosity of lubrica	ting oils.			
•	Study IC engine parts, opening	and closing of valves to draw the	valve-timing diagram.			
•	Gain the knowledge of various	flow meters and the concept of flu	id mechanics.			
٠	Understand the Bernoulli's The	orem.				
SI. No		Experiments				
1	Determination of Flash point and	Fire point of lubricating oil using	Abel Pensky and Pen	sky Martins		
2	Determination of Calorific value	of solid, liquid and gaseous fuels				
2	Determination of Viscosity of luk	minating ail using Tamian viscom				
3	Determination of viscosity of lut	ficating on using Torsion viscon	eler.			
4	Valve Timing diagram of 4-stroke IC Engine					
5	Calculation of work done and hea	at transfer from PV and TS diagram	n using Planimeter			
6	Performance Test on Four strol SFC, FP and to draw heat balance	te Petrol Engine and calculation e sheet.	s of IP, BP, Thermal	efficiencies,		
7	Performance Test on Four stro efficiencies, SFC, FP and to draw	ke Multi-cylinder Engine and or heat balance sheet.	calculations of IP, B	P, Thermal		
8	Calibration of Venturimeter					
9	Determination of Coefficient of c	lischarge for a small orifice by a c	onstant head method.			
10	Determination of Viscosity of a F	Iuid				
11	Calibration of contracted Rectang	gular Notch				
12	Verification of Bernoulli's equation	on.				
13	Pipe friction apparatus with loss	of head on pipe fittings				
14	Determination of Coefficient of 1	oss of head in a sudden contractio	n and friction factor.			
Cour At th 1 2 3 4	 se outcomes: e end of the course the student will CO1 :Operate the instrument ar CO2 :Find the efficiency of the CO3 :Verify the Bernoulli's equation CO4 : Evaluate the viscosity of 	be able to: ad measure the BP, FP, IP and AF engine and Estimate the calorific nation. fluid.	ratio. value of the given fue	l.		

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.■

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
SEMESTER – V					
ENVIRONMENTAL STUDIES					
Course Code	18CIV59	CIE Marks	40		
Teaching Hours / Week (L:T:P)	(1:0:0)	SEE Marks	60		
Credits	01	Exam Hours	02		
Module - 1					
Ecosystems (Structure and Function): Forest, Biodiversity: Types, Value; Hot-spots; T Deforestation.	Desert, Wetlands, hreats and Cons	Riverine, Oceanic and Lake. ervation of biodiversity, Fe	orest Wealth, and		
Module - 2					
Advances in Energy Systems (Merits, Der Tidal and Wind. Natural Resource Management (Concept a Seeding, and Carbon Trading. Module - 3	nerits, Global Stat nd case-studies): D	us and Applications): Hydro	gen, Solar, OTEC, able Mining, Cloud		
Environmental Pollution (Sources, Impact Acts, Case-studies): Surface and Ground Wat Waste Management & Public Health Aspec Industrial and Municipal Sludge.	s, Corrective and er Pollution; Noise cts: Bio-medical W	Preventive measures, Relev pollution; Soil Pollution and /astes; Solid waste; Hazardou	vant Environmental Air Pollution. s wastes; E-wastes;		
Module - 4					
Global Environmental Concerns (Concept Climate Change; Acid Rain; Ozone Depletion rehabilitation of people, Environmental Toxic	ot, policies and can; Radon and Fluor Pology.	ase-studies):Ground water de ide problem in drinking wate	epletion/recharging, r; Resettlement and		
Module - 5					
Latest Developments in Environmental Po Remote Sensing, Environment Impact A Environmental Stewardship- NGOs. Field work: Visit to an Environmental Engin Waste water treatment Plant; ought to be Follo	Dilution Mitigation Assessment, Envir neering Laboratory owed by understan	n Tools (Concept and Appl conmental Management Sy or Green Building or Water ding of process and its brief d	ications): G.I.S. & stems, ISO14001; Treatment Plant or ocumentation.		
Course Outcomes: At the end of the course,	students will be ab	le to:			
• CO1: Understand the principles of eco	ology and environr	nental issues that apply to air,	land, and water		
issues on a global scale,					
• CO2: Develop critical thinking and/or	r observation skills	, and apply them to the ana	lysis of a problem		
or question related to the environmen	t.				
CO3: Demonstrate ecology knowledg	e of a complex rela	ationship between biotic and a	biotic components.		
• CO4: Apply their ecological knowledge to illustrate and graph a problem and describe the realities that					
managers face when dealing with complex issues.					
Question paper pattern:					
• The Question paper will have 100 objective questions.					
• Each question will be for 01 marks					
• Student will have to answer all the questions in an OMR Sheet.					
• The Duration of Exam will be 2 hours	5.				
Sl. No. Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbook/s					

1	Environmental Studies	Benny Joseph	Tata Mc Graw – Hill.	2 nd Edition, 2012
2.	Environmental Studies	S M Prakash	Pristine Publishing House, Mangalore	3 rd Edition [,] 2018
3	Environmental Studies – From Crisis to Cure	R Rajagopalan	Oxford Publisher	2005
Referen	ce Books			
1	Principals of Environmental Science and Engineering	Raman Sivakumar	Cengage learning, Singapur.	2 nd Edition, 2005
2	Environmental Science – working with the Earth	G.Tyler Miller Jr.	Thomson Brooks /Cole,	11 th Edition, 2006
3	Text Book of Environmental and Ecology	Pratiba Sing, Anoop Singh& Piyush Malaviya	Acme Learning Pvt. Ltd. New Delhi.	1 st Edition

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VI** AIRCRAFT PERFORMANCE Course Code 18AE61 CIE Marks 40 Teaching Hours/Week (L:T:P) (3:2:0)SEE Marks 60 Credits 04 Exam Hours 03 **Course Learning Objectives:** Understand the aircraft performance in steady unaccelerated and accelerated flight. Understand the airplane performance parameters. • • Acquire the knowledge on aircraft maneuver performance. Module-1 The Equations of Motion Steady Unaccelerated Flight Introduction, four forces of flight, General equation of motion, Power available and power required curves. Thrust available and thrust required curves. Conditions for power required and thrust required minimum. Thrust available and maximum velocity, Power available and maximum velocity, Altitude effects on power available and power required; thrust available and thrust required. Module-2 Steady Performance – Level Flight, Climb & Glide Performance: Equation of motion for Rate of climb- graphical and analytical approach -Absolute ceiling, Service ceiling, Time to climb - graphical and analytical approach, climb performance graph (hodograph diagram); maximum climb angle and rate of climb Gliding flight, Range during glide, minimum rate of sink and shallowest angle of glide. Module-3 **Fundamental Airplane Performance Parameters** The fundamental Parameters: Thrust - to - weight ratio, Wing loading, Drag polar, and lift-to - drag ratio. Minimum velocity. Aerodynamic relations associated with lift-to-drag ratio. **Range and Endurance:** Propeller driven Airplane: Physical consideration, Quantitative formulation, Breguet equation for Range and Endurance, Conditions for maximum range and endurance.

Jet Airplane: Physical consideration, Quantitative formulation, Equation for Range and Endurance, Conditions for maximum range and endurance, Effect of head wind tail wind.

Module-4

Aircraft Performance in Accelerated Flight

Take-off Performance: Calculation of Ground roll, Calculation of distance while airborne to clear obstacle, Balanced field length

Landing Performance and Accelerated Climb: Calculation of approach distance, Calculation of flare distance, Calculation of ground roll, ground effects. Acceleration in climb.

Module-5

Maneuver Performance

Turning performance: Level turn, load factor, Constraints on load factor, Minimum turn radius, Maximum turn rate. Pull-up and Pull-down maneuvers: (Turning rate, turn radius). Limiting case for large load factor. The V-n diagram. Limitations of pull up and push over.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the basic airplane performance parameters.
- 2. CO2: Differentiate the aircraft performance in steady unaccelerated and accelerated flight.
- 3. CO3: Explain the aircraft maneuver performance.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Aircraft Performance and Design	John D. Anderson, Jr	McGraw-Hill International	Aerospace Science/ Technology Editions, 1999
2	Introduction to flight	John D. Anderson, Jr	McGraw-Hill International	Aerospace Science/ Technology Editions, 2000
Referen	ce Books	1	1	1
1	Airplane Performance stability and Control	Perkins, C.D., and Hage, R.E	John Wiley Son Inc, New York	1988
2	Aerodynamics, Aeronautics, and Flight Mechanics	Barnes W. McCormick	John Wiley Son Inc, New York	1995

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

AIRCRAFT STRUCTURES - II					
Course Code	18AE62	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:2:0)	SEE Marks	60		
Credits	04	Exam Hours	03		

Course Learning Objectives:

- Understand the concepts of open and closed thin walled beams.
- Acquire the knowledge of buckling of plates, joints and fittings.
- Comprehend the stress analysis on wings and fuselage.

Module-1

Bending of Open and Closed Thin Walled Beams

Symmetrical bending, unsymmetrical bending, direct stress distribution due to bending, position of the neutral axis, load intensity, shear force, and bending moment relationships, deflection due to bending, calculation of section properties, approximation for thin-walled sections.

Module-2

Shear and Torsion of Open and Closed Thin Walled Beams- General stress, strain, and displacement relationship for open and single-cell closed section thin-walled beams, shear of open section beams, shear centre, shear of closed section beams. Torsion of close section beam, and displacement associated with the Bredt-Batho shear flow. Torsion of open section beam. Combined bending, shear, torsion.

Module-3

Buckling of Plates, Joints and Fittings

Buckling of Isotropic flat plates in compression, ultimate compressive strength of Isotropic flat sheet, plastic buckling of flat sheet, columns subjected to local crippling failure, Needham & Gerard method for determining crippling stress, curved sheets in compression, elastic buckling of curved rectangular plates. Pure tension field beams, angle of diagonal tension in web.

Joints and Fittings- bolted or riveted joints, accuracy of fitting analysis, eccentrically loaded connections, welded joints, and concept of effective width.

Module-4

Design Criteria and Structural Idealization

Design Criteria, Safety Factor, Design life criteria, Analysis method, Life Assessment procedures, Design Principle, Two bay crack criteria, Widespread Fatigue damage.

Structural Idealization

StructuralidealizationPrinciple,Idealizationofapanel,effectofidealizationontheanalysisofopenandclosedsectionbea ms.Bendingofopenandclosedsectionidealizedbeams,shearofopensectionandclosedsectionidealizedbeams.Deflecti onofopenand closed section idealized beams.

Module-5

Stress Analysis in Wing Spars and Box beams

Tapered wing spar, open and closed section beams, beams having variable stringer areas, three- boom shell, torsion and shear, tapered wings, cut-outs in wings.

Stress Analysis in Fuselage Frames

Bending, shear, torsion, cut-outs in fuselages, principles of stiffeners construction, fuselage frames, shear flow distribution.

Course Outcomes: At the end of the course the student will be able to:

- 1. CO1: Utilize the concepts of thin walled beams.
- 2. CO2: Calculate the buckling of plates.
- 3. CO3: Analysis the stress in wings and fuselage frames.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Aircraft Structures for Engineering Students	Megson, T. H. G	Edward Arnold	1995		
2	Aircraft Structures	Peery D J & Azar J J	McGraw Hill N.Y	2 nd edition,1993		
Referen	ce Books					
1	Analysis & Design of Flight Vehicles Structures	Bruhn E. F	Tri-State offset Co, USA	1985		
2	Introduction to Aircraft Structural Analysis	Megson, T. H. G	Elsevier	2 nd Edition, 2014		
3	Analysis of Aircraft Structures	Bruce K Donaldson	Cambridge Aerospace Series	1992		

B.E AERONAUTICAL ENGINEERING						
Choice Based Credit	Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTEK - VI FINITE FI EMENT METHOD					
Course Code 18AE63/18AS63 CIE Marks 40						
Teaching Hours/Week (L:T:P)	(3:2:0)	SEE Marks	60			
Credits	04	Exam Hours	03			
Course Learning Objectives:						
• Understand the importance of	discretisation of domain us	ing different finite element	ts			
• Acquire the knowledge of diff	erent loading and boundary	conditions				
• Understand the governing me	thods of finite element anal	ysis				
Module-1		·				
Introduction: Basic Concepts, Bac	kground Review: Stresse	s and Equilibrium, Plane	stress, Plane strain,			
Potential energy and Equilibrium. Ray	leigh - Ritz Method, Galer	kin's Method, Simple appl	lications in structural			
Analysis. Construction or discrete mo	odels - sub domains and no	des - simple elements for	the FEM - Simplex,			
complex and multiples elements Poly	nomial selection -illustrativ	ve examples Elements and	shape functions and			
natural coordinates, Use of local and	natural coordinates, compa	tibility and convergence re	equirements of shape			
functions.						
Module-2						
Fundamentals of Finite Element Me	ethod: Construction of shar	be functions for bar element	nt and beam element,			
Bar elements, uniform bar elements,	uniform section, mechanic	al and thermal loading, v	arying section, truss			
analysis, Frame element, Beam element	nt, problems for various loa	langs and boundary condi	uons.			
Module-3						
Analysis of Two and Three dim	ensional Elements: Shap	e functions of Triangula	ar, Rectangular and			
Quadrilateral elements, different type	s of higher order elements,	constant and linear strain	triangular elements,			
Summess main Four-Noded Tetrane	cural Element (IEI 4), E mente: Serendinity family I	Agnt-Noded Hexanedral I	Element (HEAA δ),			
Module-4	nents. Serendipity family, I	lexalicular cicilicitis. Lagi	ange fannty.			
Theory of Isoparametric Elements	and Axisymmetric: Isopa	rametric, sub parametric a	and super-parametric			
elements, characteristics of Isoparan	netric quadrilateral elemer	its, structure of computer	r program for FEM			
analysis, description of different mod	lules, pre and post process	ing, Axisymmetric formu	lation finite element			
modeling of triangular and quadrilater	al element.					
Module-5						
Field Problems: Heat transfer proble	ems, Steady state fin probl	ems, 1D heat conduction	governing equation,			
Derivation of element matrices for two	o dimensional problems, D	ynamic consideration- For	mulation-Hamilton's			
principle, Element mass matrices.						
Course outcomes: At the end of the	course the student will be a	hle to:				
1 CO1: Apply discretisation tec	course the student will be a children the comments of the student will be a children the student will be a	osition				
2. CO2 :Evaluate the effects of	different loading and bound	lary conditions				
3. CO3 : Analyze the governing equations of finite element analysis						
Question paper pattern:	*					
• The question paper will have te	n full questions carrying eq	ual marks.				
• Each full question will be for 20	0 marks.	L. C.				
• There will be two full questions (with a maximum of four sub- questions) from each module						
 Fach full question will have sub-question covering all the topics under a module. 						
The students will have to ensure	ar five full questions salast	ing one full question from	each module			
• The students will have to answe	a nive run questions, select	ing one run question from	each mouule.			

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Finite Elements in engineering	Chandrupatla T. R	PHI	3 rd edition, 2002		
2	Finite element Analysis	Bhavikatti	New Age International	3 rd edition,2015		
Referen	ce Books					
1	Finite element analysis in engineering design	Rajasekharan. S	Wheeler Publishers			
2	Finite Element Procedures	Bathe. KJ	PHI Pvt. Ltd., New Delhi	1996		
3	The Finite Element Method	Zienkiewicz. O.C	Elsevier	7 th edition,2013		
4	Finite Elements Method in Engineering	Rao S. S	Elsevier	5 th edition, 2008		
5	Finite Element analysis - Theory and Programming	C.S. Krishnamurthy	Tata McGraw Hill Co. Ltd, New Delhi	2 nd edition,2011		
	·	•	•	·		

B.E AERONAUTICAL ENGINEERING						
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
AIRCRAFT TRANSPORTATION SYSTEMS						
Course Code	18AE641	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:						
• Understand the air tra	nsport systems.					
• Acquire the knowledg	ge of aircraft characteristics, airlines	and airport.				
Understand the navig	ation and environmental systems.					
Module-1						
Air Transport Systems –Introductio	n Contraction de contraction de la contraction	-111				
environment, transport and mobility.	Systematic description and current	Challenges. Dev	relopment of aircraft			
Aspects	opinient of Anport, Annies, ICAO,	Regulatory Plan	he work and warket			
Module-2						
Aircraft Characteristics and Manufa	acturers					
Classification of flight vehicles, cabi	n design, basics of flight physics-	structures, mass	and balance. Flight			
performance and mission. Aircraft man	nufacturers, development process, pr	oduction process	, supply chain.			
Module-3						
Airlines, Airport and Infrastructure						
Airline types, Network management.	Flight strategy and aircraft selection	on, flight operation	ons, MRO. Role of			
Airport, Regulatory Issues, Airport op	eration and services. Airport plannin	g - infrastructure	•			
Module-4						
Air Navigation System & Environm	ental Systems					
Principle of operation- Role of Air N	lavigation services. Air space struct	ures, Airspace a	nd Airport capacity,			
Aircraft separation. Flight guidance	system. Communication system. In	itegrated air traf	fic management and			
working system. Environmental aspec	ts-emission, noise, and sound.					
Module-5						
Airling passanger merketing foreas	ting methods priving and doman	d Air cargo ma	rkat for air fraight			
Principles of airline scheduling Elect	planning methods, pricing and demand	u. Alf cargo-ina	rket for air freight.			
Trinciples of annue scheduling. Theet	Janning.					
Course outcomes: At the end of the c	course the student will be able to:					
• CO1: Explain the air	transport systems.					
• CO2: Describe the ai	rcraft characteristics, airlines and air	port operation.				
• CO3: Apply the Air	Navigation System & Environmental	Systems.				
Question paper pattern:						
• The question paper will have ter	n full questions carrying equal marks	5.				
• Each full question will be for 20) marks.					
• There will be two full questions (with a maximum of four sub- questions) from each module.						
• Each full question will have sub	- question covering all the topics un	der a module.				
• The students will have to answe	r five full questions, selecting one fu	ull question from	each module.			
I I — — — — — — — — — — — — — — — — — —						

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			

1	Air Transport System	Dieter Shmitt, and ValkerGollnick	Springer	2016	
2	Air Transportation-A Management Prospective	Jhon G Wensveen	Ashgate Publishing Ltd	2011	
Reference Books					
1	The Air Transportation System	Mike Hirst	Woodhead Publishing Ltd, England	2008	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI NUMERICAL METHODS Course Code 18AE642 CIE Marks 40 Teaching Hours/Week (L:T:P) SEE Marks (3:0:0) 60 Exam Hours 03 Credits 03 **Course Learning Objectives:** Comprehend the basic concepts of numerical methods. • Acquire the knowledge of interpolation and approximation. Understand about the curve fitting, root finding and optimization. • Module-1 **Numerical Computation** Motivation and Objectives/ Number Representation/ Machine Precision/ Round-of Error/ Truncation Error/ Random Number Generation. **Linear Algebraic Systems:** Motivation and Objectives/ Gauss-Jordan Elimination/Gaussian Elimination/LU Decomposition/ III- Conditioned Systems/ Iterative Methods. Module-2 **Interpolation and Approximation** Lagrangian Polynomials - Divided differences Interpolating with a cubic spline - Newton's forward and backward difference formulas. **Eigen Values and Eigenvectors** Motivation and Objectives/ The characteristics Polynominal/ Power Methods / Jacobi's Method/ Householder Transformation/ QR Method/ Danilevsky's Method/ Polynominal Roots. Module-3 Numerical Differentiation and Integration Derivative from difference tables - Divided differences and finite differences - Numerical integration by trapezoidal and Simpson's 1/3 and 3/8 rules - Two and Three point Gaussian quadrature formulas - Double integrals using trapezoidal and Simpson's rules. Module-4 **Curve Fitting** Motivation and objectives/ Interpolation/ Newton's Difference Formula/ Cubic Splines/ Least Square/ Two-Dimensional Interpolation. Module-5 **Root Finding** Motivation and Objectives/ Bracketing methods/ Contraction Mapping Method/ Secant Method/ Muller's Method/ Newton's Method/ Polynomial Roots/ Nonlinear Systems of Equations. Optimization Motivation and Objectives/ Local and Global Minima/ Line Searches/ Steepest Descent Method/ Conjugate-Gradient Method/ Quasi-Newton Methods/ Penalty Functions/ Simulated Annealing. **Course Outcomes:** At the end of the course the student will be able to: 1. CO1: Apply the basic concepts of numerical methods. 2. CO2: Compute the Eigen values, Eigen vectors, numerical differentiation and integration. 3. CO3: Perform the curve fitting and root finding.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbook	/s				
1	Applied Numerical methods for Engineers Using Mat Lab and C	Robert Schilling and Sandra Harris	Thomson Learning	2002	
2	Applied Numerical Analysis	Gerald and Wheatley	Pearson Education	2002	
Reference	e Books	•			
1	Numerical Methods: For Scientific and Engineering Computation	Mahinder Kumar Jain	New Age Publishers	2012	
2	Numerical Methods for Engineering and Science	Rajesh Srivastava and SaumyenGuha	Oxford University Press	2010	
3	Numerical Methods	P. Kandasamy, K. Thilagavathy and K. Gunavathi	Chand Publishers	2006	
	·	•		·	

B.E AERONAUTICAL ENGINEERING					
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
SEMESTER - VI					
ARTIFICIAL INTELLIGENCE & EXPERT SYSTEMS					
Course Code	18AE643	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
Course Learning Objectives:					
• Understand the basic techniques	of artificial intelligence.				
• Understand the Non-monotonic	reasoning and statistical reasoning.				
• Acquire the knowledge on filler	structures, and understanding.				
Module-1	· · ·				
AI: The AI Problems. The Underlying	Assumption. What Is An AI Tech	niques. The Lev	vel Of The Model.		
Criteria For Success. Some General Ref	erences. One Final Word.				
Problems, State Space Search & Heu	ristic Search Techniques: Defining	The Problems	As A State Space		
Search. Production Systems. Production	Characteristics. Production System	Characteristics.	And Issues In The		
Design Of Search Programs, Additio	nal Problems. Generate-And-Test.	Hill Climbing.	Best-First Search.		
Problem Reduction, Constraint Satisfact	tion, Means-Ends Analysis	8,			
Module-2	· · · · · ·				
Knowladge Penrecentation Issues	Pepresentations And Manning	Approaches	To Knowledge		
Representation	Representations And Mapping	s, Approaches	10 Kilowieuge		
Using Predicate Logic : Representation	Simple Facts In Logic Representi	ng Instance And	Isa Relationshins		
Computable Functions And Predicates	Pasolution	ing instance And	isa Kelauonsinps,		
Banrasanting Knowledge Using Pul	es: Procedural Versus Declarative	Knowledge I o	gic Programming		
Forward Versus Backward Reasoning	es. Theedular versus Declarative	Knowledge, Lo	gie i logramming,		
Madula 2					
Niouule-3 Symbolic Descening Under Uncerte	intry Introduction To Nonmonotor	ia Dessenina I	Logica For Non		
Symbolic Reasoning Under Uncerta	unty: Introduction 10 Nonmonotor	Talsa aff and la	Logics For Non-		
monotonic Reasoning. Turning perform	nance initiations. Drag estimation.	Take-off and la	naing - methods,		
Statistical Bassaning, Drahahility, And	Devis' Theorem Containty Eastern	And Dula Daga	Crustana Daviasian		
Statistical Reasoning: Probability Alle	Bays Theorem, Centainty Factors	And Rule-Dase	Systems, Dayesian		
Networks, DempsterShafer Theory, Fuzzy Logic.					
Wook Slot and Fillon Structures : Son	pontio Nota Framas				
Strong Slot and Filler Structures : Sen	maintic Nets, Frames.				
Strong Slot-and-Filler Structures : Conceptual Dependency, Scripts, CYC.					
Game Playing: Overview, And Example Domain : Overview, Minimizax, Alpha-Beta Cut-off, Refinements, Itarative descenting. The Plaska World, Components Of A Planning System, Cool Stock Planning, Nonlinear					
Dianning Using Constraint Desting, Historshipel Dianning, Desstive Systems, Other Dianning Techniques					
Modulo 5					
Understanding: What is understanding? What makes it hard? As constraint satisfaction					
Natural Language Processing: Introduction Syntactic Processing Computing Analysis Computing Analysis					
Discourse And Pragmatic Processing, Snell Checking					
Connectionist Models · Introduction: Honfield Network Learning In Neural Network Application Of Neural					
Networks, Recurrent Networks, Distributed Representations, Connectionist AI And Symbolic AI					
Networks, Recurrent Networks, District	tied Representations, Connectionist 7	II / IIId Dyliloolid			
Course outcomes: At the end of the course the student will be able to:					
1. CO1: Apply the basic techniques of artificial intelligence.					
2. CO2: Distinguish Non-monotonic reasoning and statistical reasoning.					
3. CO3: Evaluate the natural langu	age processing and connectionist mo	dels.			

3. CO3: Evaluate the natural language processing and connectionist models.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textboo	ok/s				
1	Artificial Intelligence	Elaine Rich And Kevin Knight	Tata Mcgraw-Hill	3 rd edition,2008	
2	Artificial Intelligence- A Modern Approach	Stuart Russel, Peter Norvig	PEI	3 rd edition,2015	
Reference Books					
1	Introduction to Prolog Programming	Carl Townsend			
2	PROLOG Programming For Artificial Intelligence	Ivan Bratko(Addison- Wesley)	PEI	3 rd edition,2002	
3	Programming with PROLOG	Clocksin and Mellish	Springer	5th edition, 2003	
			·	•	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VI** GAS TURBINE TECHNOLOGY Course Code 18AE644 CIE Marks 40 Teaching Hours/Week (L:T:P) (3:0:0)SEE Marks 60 Credits 03 Exam Hours 03 **Course Learning Objectives:** Comprehend the types of engines and its applications. • Understand the materials required for engine manufacturing. • Acquire the knowledge of engine performance and testing. Module-1 Types, Variation & Applications: Types of engines showing arrangement of parts. Operating parameters. Energy distribution of turbojet, turboprop and turbofan engines. Comparison of thrust and specific fuel consumption. Thrust, pressure and velocity diagrams. Engine Parts: Compressor assembly, types of burners: advantages and disadvantages. Influence of design factors on burner performance. Effect of operating variables on burner performance. Performance requirements of combustion chambers. Construction of nozzles. Impulse turbine and reaction turbine. Exhaust system, sound suppression. Thrust reversal: types, design & systems. Methods of thrust augmentation, after burner system. Module-2 Materials and Manufacturing: Criteria for selection of materials. Heat ranges of metals, high temperature strength. Surface finishing. Powder metallurgy. Use of composites and Ceramics. Super alloys for Turbines. Systems: Fuel systems and components. Sensors and Controls. FADEC interface with engine. Typical fuel system. Oil system components. Typical oil system. Starting systems. Typical starting characteristics. Various gas turbine starters. **Module-3** Engine Performance: Design & off-design Performance. Surge margin requirements, surge margin stack up. Transient performance. Qualitative characteristics quantities. Transient working lines. Starting process & Wind milling of Engines. Thrust engine start envelope. Starting torque and speed requirements Calculations for design and off-design performance from given test data- (case study for a single shaft Jet Engine). Engine performance monitoring. **Module-4** Compressor: Compressor MAP. Surge margin, Inlet distortions. Testing and Performance Evaluation. Combustor: Combustor MAP, Pressure loss, combustion light up test. Testing and Performance Evaluation. Turbines: Turbine MAP. Turbine Testing and Performance Evaluation. Inlet duct &nozzles: Ram pressure recovery of inlet duct. Propelling nozzles, after burner, maximum mass flow conditions. Testing and Performance Evaluation Module-5 Engine Testing: Proof of Concepts: Design Evaluation tests. Structural Integrity. Environmental Ingestion Capability. Preliminary Flight Rating Test, Qualification Test, Acceptance Test. Reliability figure of merit. Durability and Life Assessment Tests, Reliability Tests. Engine testing with simulated inlet distortions and, surge test. Estimating engine - operating limits. Methods of displacing equilibrium lines. Types of engine testing's: Normally Aspirated Testing, Open Air Test Bed, Ram Air Testing, Altitude Testing, Altitude test facility, Flying Test Bed, Ground Testing of Engine Installed in Aircraft, Flight testing. Jet thrust measurements in flight. Measurements and Instrumentation. Data Acquisition system, Measurement of Shaft speed, Torque, Thrust, Pressure, Temperature, Vibration, Stress, Temperature of turbine blading etc. Engine performance trends: Mass and CUSUM plots. Accuracy and Uncertainty in Measurements. Uncertainty analysis. Performance Reduction Methodology.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Select the suitable materials for engine manufacturing.
- 2. CO2: Evaluate the performance of the engine.
- 3. CO3: Test the engine using several types of engine testing methods.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Gas Turbine Engine Technology	Irwin E. Treager	McGraw Hill Education	3 rd edition,2013		
2	Gas Turbine Performance	P. P Walshand P. Peletcher	Blackwell Science	1998		
Referen	ce Books	·				
1	Advanced Aero-Engine Testing	A. W. Morley Jean Fabri	Pergamon	1959		
2	Military Specifications: Engine, Aircraft, Turbo Jet &Turbofan General Specification for Advance Aero Engine testing			1973		
3	Experimental methods for Engineers	JP Holman	Tata Mc Graw Hill	7 th edition,2007		
4	Turbomachinery Dynamics- Design and operations	A SRangawala	McGraw–Hill	2005		
5	Aircraft Power Plant	Michael J. Kores, and Thomas W. Wild	Tata Mc Graw Hill Publishing Co. Ltd	7 th Edition,2002		
	B.E AERONAUTICAL ENGINEERING					
-----------	---	---------------------------------------	-----------------------	-------------------	--	--
	Choice Based Credit S	ystem (CBCS) and Outcome Base	d Education (OBE			
		SEMESTER - VI				
0	A	IRCRAFT PROPULSION LAB		40		
Cour	se Code	18AEL66	CIE Marks	40		
Teac	Teaching Hours/Week (L:1:P) (1:0:2) SEE Marks 60					
Cred		02	Exam Hours	03		
Cour	se Learning Objectives:	c				
•	Understand how to do the heat	ranster				
•	Comprehend the cascade testing	g of axial compressor and axial turbi	ne blade row.			
•	Study the performance of prope	ller and jet engines.				
Sl. No		Experiments				
1	Study of an aircraft piston engi	ne (Includes study of assembly of	sub systems vari	ous components		
1	their functions and operating prin	ciples)	sub systems, van	ous components,		
2	Study of an aircraft jet engine (Includes study of assembly of sub	systems, various co	omponents, their		
	functions and operating principle	s)		_		
3	Study of forced convective heat t	ransfer over a flat plate.				
4	Cascade testing of a model of axi	al compressor blade row.				
5	Cascade testing of a model of ax	al Turbine blade row				
6	Study of performance of a proper	ler.				
7	Determination of heat of combus	tion of aviation fuel.				
8	Study of free and wall jet					
9	Measurement of burning velocity	of a premixed flame.				
10	Study of the flame lift up and fall	back phenomenon for varied Air/F	uel ratio.			
11	Measurement of nozzle flow.					
12	Performance studies on a scaled	et engine				
13	Investigation of pressure distrib	ution and relationship between inle	et pressure/outlet pr	essure and mass		
	flow rate in a convergent-diver	gent nozzle when working over a	a variety of overal	l pressure ratios		
	including under-expanding and o	ver-expanding conditions.				
14	Investigation of pressure distrib	ution and relationship between inle	et pressure/outlet pr	essure and mass		
	flow rate in a convergent-diverge	ent nozzle under choked conditions.				
Cour	Course Outcomes: At the end of the course the student will be able to:					
1.	1. CO1: Analyze the cascade testing of axial compressor and axial turbine blade row.					
2.	2. CO2: Evaluate the performance of a jet engine.					
3.	3. CO3: Perform the measurement of a flame and nozzle flow.					
Cond	luct of Practical Examination:					
1. Al	l laboratory experiments are to be	included for practical examination.				
2. Br	eakup of marks and the instructio	ns printed on the cover page of ans	wer script to be stri	ctly adhered by		
the ex	kaminers.			-		
3. Sti	3. Students can pick one experiment from the questions lot prepared by the examiners.					

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

AIRCRAFT STRUCTURES LAB				
Course Code	18AEL67	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60	
Credits	02	Exam Hours	03	
Course Learning Objectives				

Course Learning Objectives:

- Learn about the simply supported beam, cantilever beam.
- Understand the Maxwell's theorem and Poisson ration.
- Acquire the knowledge about buckling load, shear failure and shear centre.

Sl. No.	Experiments
1	Deflection of a Simply Supported Beam.
2	Deflection of a cantilever Beam
3	Beam with combined loading by using superposition theorem
4	Verification of Maxwell's Reciprocal Theorem for beam with a) Constant cross section b) Varying Cross section
5	Determination of Young's Modulus using strain gages.
6	Poisson Ratio Determination
7	Buckling load of slender Eccentric Columns and Construction of Southwell Plot
8	Shear Failure of Bolted and Riveted Joints
9	Bending Modulus of sandwich Beam
10	Tensile, Compressive and Flexural testing of a composite material plate.
11	Determination of natural frequency and mode shapes of a cantilever beam for the following cases.
	a. Constant cross section
	b. Varying cross section
10	c. Constant cross section and varying stiffness
12	Determination of shear centre for following cases through deflection measurements.
	a. Close section – Symmetrical bending
13	Determination of shear flow for following cases
15	a Close section – Symmetrical bending
	b. Open section – Unsymmetrical bending
14	Determining of Shear centre through shear flow measurement for following cases.
	a. Close section – Symmetrical bending
	b. Open section – Unsymmetrical bending
Cour	rse outcomes: At the end of the course the student will be able to:
1	. CO1: Compute the deflection of simply supported beam and cantilever beam.
2	2. CO2: Verify the Maxwell's theorem.
3	CO3: Determine the buckling load, shear failure and shear centre.
Cond	luct of Practical Examination:
1. Al	l laboratory experiments are to be included for practical examination.
2. Br	eakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by
the ex	xaminers.
3. Stu	idents can pick one experiment from the questions lot prepared by the examiners.
4. Ch	ange of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

Open Electives

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Open Elective - A

HISTORY OF FLIGHT & TECHNOLOGY FORECAST

motoki of i filoni a filoni (ologi i oklengi				
Course Code	18AE651/18AS651	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Study the basic concepts of flying.
- Understand about the aircraft structures and materials.
- 3. Acquire the knowledge of aircraft power plants.

Module-1

Introduction

Early Developments – Ornithopters, Balloon Flight, Sir George Cayley – The true inventor of Airplane, the Interregnum, Otto Lilienthal – The Glider Man, Percy Pilcher – Extending the Glider Tradition.

Module-2

Wilbur and Orville Wright – Inventors of First Practical Airplane, Aeronautical Triangle – Langley, Wrights and Glenn Curtiss, Problem of Propulsion, Faster and Higher, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

Module-3

Aircraft Configurations:

Different types of flight vehicles, classifications. Components of an airplane and their functions. Conventional control, Powered control, Basic instruments for flying - Typical systems for control actuation.

Module-4

Airplane Structures and Materials:

General types of construction, Monocoque, semi-monocoque and geodesic constructions, Typical wing and fuselage structure. Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains – Hooke's law – Stress - strain diagrams - elastic constants.

Module-5

Power Plants:

Basic ideas about piston, turboprop and jet engines - Use of propeller and jets for thrust production - Comparative merits, Principles of operation of rocket, types of rockets and typical applications, Exploration into space.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify the aspects of aircrafts.
- 2. CO2: Classify the aircraft materials.
- 3. CO3: Describe the instruments and power plants used in airplanes.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	0k/s			
1	Introduction to Flight	Anderson, J.D	McGraw-Hill	1995
2	Introduction to Aeronautics: A design perspective	Stephen. A. Brandt	AIAA Education Series	2nd Edition,2004
Reference Books				
1	Mechanics of Flight	Kermode, A.C	Himalayan Book	1997
2	Flight without Formula	Kermode, A.C	Pearson	2009

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Open Elective - A			
ELEME	NTS OF JET PROPULSION SYST	TEMS	
Course Code	18AE652/18AS652	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03
Course Learning Objectives:			
• Understand the basic principle	and theory of aircraft propulsion.		
• Understand the purpose of a ce	ntrifugal, axial compressors, axial an	d radial turbines	
 Acquire knowledge of important 	nce of nozzles & inlets and combustion	on chamber	
Module-1			
Introduction: Review of thermodynamic	nic principles, Principles of aircraft	propulsion, Type	es of power plants,
Working principles of internal combust	tion engine, Two - stroke and four -	stroke piston eng	gines, Gas- turbine
engines, Cycle analysis of reciprocating	gengines and jet engines, advantages	s and disadvantag	es.
Module-2			
Propeller Theories & Jet propulsion	Types of propeller, Propeller thrust	: momentum theo	ory, Blade element
theories, propeller blade design, propell	er selection.		
Jet Propulsion: Illustration of working	g of gas turbine engine – The thrust e	equation – Factors	s affecting thrust –
Effect of pressure, velocity and ten	perature changes of air entering	compressor – N	Methods of thrust
augmentation – Characteristics of turbo	prop, turbofan and turbojet - Perforn	nance characterist	tics.
Module-3			
Inlets & Nozzles			
Internal flow and Stall in Subsonic inf subsonic inlet. Relation between minim Supersonic inlets: Supersonic inlets, st External deceleration. Modes of inlet of Nozzles: Theory of flow in isentrop conditions. Nozzle efficiency, Losses variable area nozzles. Thrust reversal.	lets, Boundary layer separation. Maj um area ratio and eternal deceleration arting problem in supersonic inlets, separation. bic nozzles, Convergent nozzles an in nozzles. Over-expanded and un	or features of ex n ratio. Diffuser p Shock swallowing nd nozzle chokin der-expanded no	ternal flow near a performance. g by area variation, ng, Nozzle throat zzles, Ejector and
Module-4			
Gas Turbine Engine Compressors			
Centrifugal compressors: Principle of operation of centrifugal compressors. Work done and pressure rise - Velocity diagrams, Diffuser vane design considerations. performance characteristics. Concept of Pre-whirl, Rotating stall. Axial flow compressors: Elementary theory of axial flow compressor, Velocity triangles, Degree of reaction, three dimensional flow. Air angle distribution for free vortex and constant reaction designs, Compressor blade design. Axial approace performance characteristics.			
Module-5			
Combustion chambers and Turbines			
 Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance – Flame tube cooling – Flame stabilization – Use of flame holders Axial Flow Turbines: Introduction, Turbine stage, Multi-staging of turbine, Exit flow conditions, Turbine cooling, Heat transfer in turbine cooling. Radial turbine: Introduction, Thermodynamics of radial turbines, Losses and efficiency. 			
 Course outcomes: At the end of the co 1. CO1: Apply the basic principle 2. CO2 : Explain the functions of 3. CO3 : Analyse the performance 	urse the student will be able to: and theory of aircraft propulsion. centrifugal, axial compressors, axial e of nozzles & inlets and combustion	and radial turbine chamber	25

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

		-	-	
Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Aircraft propulsion	Bhaskar Roy	Elsevier	2011
2	Gas Turbines	V. Ganesan	Tata McGraw-Hill, New Delhi	2010
Referen	ce Books		·	
1	Mechanics & Thermodynamics of Propulsion	Hill, P.G. & Peterson, C.R	Addison –Wesley Longman INC	1999
2	Gas Turbine Theory	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H	Longman	1989
3	Gas Turbine Engine Technology	Irwin E. Treager	Tata McGraw Hill Publishing Co. Ltd	7th Edition,2003
4	Fundamentals of Compressible Flow with Aircraft and Rocket propulsion	S. M. Yahya	New Age International Publications, New Delhi	4th Edition,2014
	·	•	•	

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER –VI Open Elective - A BASICS OF ROCKETS & MISSILES** Course Code 18AE653/18AS653 **CIE Marks** 40Teaching Hours/Week (L:T:P) (3:0:0)SEE Marks 60 Credits 03 Exam Hours 03 **Course Learning Objectives:** Understand the types of space launch vehicles and missiles. Study the solid and liquid rocket motors. Acquire the knowledge on launch vehicle dynamics, attitude control, rocket testing and materials. Module-1 Introduction: Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust profile, propulsion system, payload, staging, control and guidance requirements, performance measures, design, construction, operation, similarities and differences. Some famous space launch vehicles and strategic missiles. Module-2 Solid Propellant Rocket Motor Systems: Solid Propellant rocket motors, principal features, applications. Solid propellants, types, composition, properties, performance. Propellant grain, desirable properties, grain configuration, preparation, loading, structural design of grain. Liners, insulators and inhibitors, function, requirements, materials. Rocket motor casing - materials. Nozzles, types, design, construction, thermal protection. Igniters, types, construction. Description of modern solid boosters I) Space Shuttle SRB, II)the Arienne SRB Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties, performance. Propellant tanks, feed systems, pressurization, turbo-pumps, valves and feed lines, injectors, starting and ignition. Engine cooling, support structure. Control of engine starting and thrust build up, system calibration, integration and optimisation – safety and environmental concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer, geysering effect in cryogenic rocket engines. Module-3 Aerodynamics of Rockets and Missiles: Classification of missiles. Airframe components of rockets and missiles, Forces acting on a missile while passing through atmosphere, method of describing aerodynamic forces and moments, lateral aerodynamic moment, lateral damping moment, longitudinal moment of a rocket, lift and drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry body design considerations. **Module-4** Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles, future launchers, launch assist technologies. Attitude Control of Rockets and Missiles: Rocket Thrust Vector Control - Methods of Thrusts Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination; stage separation dynamics, separation techniques. Module-5 Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards, monitoring and control of toxic materials, instrumentation and data management. Ground Testing, Flight Testing, Trajectory monitoring, post -accident procedures. Description of a typical space launch vehicle launch procedure.

Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for thermal protection and for pressure vessels.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Identify the types of space launch vehicles and missiles.
- 2. CO2: Distinguish the solid and liquid propellant motors.
- 3. CO3: Classify different types of materials used for rockets and missies.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	Textbook/s					
1	Rocket Propulsion Element	George P Sutton and Oscar Biblarz	John Wiley and Sons Inc	7 th edition, 2010		
2	Missile Aerodynamics	Jack N Neilson	AIAA	1 st edition, 1988		
Referen	ce Books	·		·		
1	Missile Configuration Design	SS. Chin	McGraw Hill	1961		
2	Rocket Propulsion and Space- Flight Dynamics	Cornelisse, J.W, Schoyer H.F.R. and Wakker, K.F	Pitman	1979		
3	Rocket and Spacecraft propulsion	Turner, M.J.L	Springer	3 rd edition, 2010		
4	Space Vehicle Dynamics	Ball, K.J., Osborne, G.F	Oxford University Press	1967		
5	Materials for Missiles and Spacecraft	Parker, E.R	McGraw Hill	1982		

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

AIRCRAFT STABILITY AND CONTROL

Course Code	18AE71	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- Understand the basics of aircraft static stability and control.
- Understand the EOMs and stability parameters.
- Acquire the knowledge on dynamic longitudinal, lateral and directional stability.

Module-1

Static Longitudinal Stability and Control-Stick Fixed

Definition, stability criteria, Contribution of airframe components: Wing contribution, Tail contribution, Fuselage contribution, Power effects- Propeller airplane and Jet airplane Introduction, Trim condition. Static margin. stick fixed neutral points. Longitudinal control, Elevator power, Elevator angle versus equilibrium lift coefficient, Elevator required for landing, Restriction on forward C.G. range.

Module-2

Static Longitudinal Stability and Control-Stick free

Introduction, Hinge moment parameters, Control surface floating characteristics and aerodynamic balance, Estimation of hinge moment parameters, The trim tabs, Stick-free Neutral point, Stick force gradient in unaccelerated flight, Restriction on aft C.G.

Module-3

Static Directional and Lateral Stability and Control

Static directional stability- rudder fixed, Contribution of airframe components, Directional control. Rudder power, Stick-free directional stability, Requirements for directional control, Rudder lock, Dorsal fin. One engine inoperative condition. Weather cocking effect.

Static Lateral stability. Estimation of dihedral effect. Effect of wing sweep, flaps, and power. Lateral control, Estimation of lateral control power, Aileron control forces, Balancing the aileron. Coupling between rolling and yawing moments. Adverse yaw effects. Aileron reversal.

Module-4

Equations of Motions

Derivation of rigid body equations of motion, Orientation and position of the airplane, gravitational and thrust forces, Small disturbance theory. Aerodynamic force and moment representation, Derivatives due to change in forward speed, Derivatives due to the pitching velocity, Derivatives due to the time rate of change of angle of attack, Derivatives due to rolling rate, Derivatives due to yawing rate.

Module-5

Dynamic Stability

Dynamic longitudinal stability. Types of modes of motion: phugoid motion, short period motion. Routh's stability criteria. Factors affecting period and damping of oscillations. Flying qualities in pitch. Cooper-Harper Scale. Dynamic lateral and directional stability. Response to aileron step-function, side-slip excursion. Dutch roll and Spiral instability. Auto- rotation and spin. Stability derivatives for lateral and directional dynamics.

Course outcomes: At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of aircraft static stability and control.
- 2. CO2: Formulate EOMs and analyse stability parameters.
- 3. CO3 : Apply the knowledge of dynamic stability

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbo	ok/s				
1	Airplane Performance stability and Control	Perkins, C.D., and Hage, R.E	John Wiley , New York	1998	
2	Flight Stability and Automatic Control	Nelson, R.C	McGraw-Hill Book Co	2007	
Referen	nce Books				
1	Performance, Stability, Dynamics and Control of Airplanes	Bandu N. Pamadi	AIAA	2 nd Edition,2004	
2	Introduction to flight	John D. Anderson, Jr	McGraw-Hill	Aerospace Science Technology Editions, 2000	
3	The Principles of the Control and Stability of Aircraft	W.J. Duncan	Cambridge University Press	2016	
	•			•	

B.E AERONAUTICAL ENGINEERING						
Choice Based Credit S	System (CBCS) and Outcome Base	d Education (OB	E)			
~~~~	SEMESTER - VII	~~				
COM	COMPUTATIONAL FLUID DYNAMICS					
Course Code	18AE72	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:						
• Know the basic equations of flu	id dynamics, boundary layer and disc	cretization.				
• Understand the source and vort	ex panel method.					
• Know about FDM, FVM and F	EM.					
Module-1						
Introduction: CFD Applications. N Substantial derivative, Divergence of various forms. Integral versus Differed boundary conditions. Forms of equation	eed for Parallel Computers in Cl velocity. Continuity, Momentum, a ential form of equations. Comments ns especially suitable for CFD work.	FD algorithms. I nd Energy Equat on governing e Shock capturing,	Models of flows. ions-Derivation in quations. Physical and shock fitting.			
Module-2						
Mathematical Behaviour of Partial Cramer Rule and Eigen value methods Impact of classification on physical and flow, unsteady inviscid flow, steady b inviscid flow.	Differential Equations: Classification for classification. Hyperbolic, parabolic description of the computational fluid dynamics. Case boundary layer flow, and unsteady the comparison of the c	on of partial difficult of the partial difficu	orms of equations. nviscid supersonic n, steady subsonic			
Module-3						
Grid Generation and Adaptive G Structured Grids-essential features. Str Unstructured Grids-essential features. advancing front method. Surface grid quality and adaptive grids. Structured g	rids: Need for grid generation ar ructured Grid generation techniques- Unstructured Grid generation techni generation, multi-block grid generation grids adaptive methods and unstructur	nd Body-fitted c algebraic and n iques- Delaunay- ation, and meshlored grids adaptive	oordinate system. umerical methods. Voronoi diagram, ess methods. Grid methods.			
Dispersion & Transformation						
Discretisation & Transformation: Discretisation: Finite differences me Unsteady Problem -Explicit versus Im marching. Reflection boundary cond Successive over relaxation/under relaxa- upwind scheme, numerical viscosity, an <b>Transformation:</b> Transformation of computational domain. Matrices and Ja the Governing flow equations in Strong	thods, and difference equations. aplicit Scheme. Errors and stability a lition. Relaxation techniques. Alter ation. Second order Lax-Wendroff m and artificial viscosity. governing partial differential equa cobians of transformation. Example g Conservative form in the Transform	Explicit and Im analysis. Time m nating direction ethod, mid-point nations from ph of transformation ed Space.	plicit approaches. arching and space implicit method. Leap frog method, ysical domain to a. Generic form of			
Module-5						
Finite Volume Technique and Some Applications: Spatial discretisation- cell centered and cell vertex techniques (overlapping control volume, duel control volume). Temporal discretisation- Explicit time stepping, and implicit time stepping. Time step calculation. Upwind scheme and high resolution scheme. Flux vector splitting, approximate factorisation. Artificial dissipation and flux limiters. Unsteady flows and heat conduction problems. Upwind biasing. Course Outcomes: At the end of the course the student will be able to:						
1. CO1 :Differentiate the FDM, F	VM and FEM					
2. CO2: Perform the flow. structure	ral and thermal analysis.					
3. CO3: Utilize the discretization	methods according to the application.					

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

		1		
SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Applied Computational Fluid Dynamics	Gupta S.C	Wiley, India	2019
2	Computational Fluid Dynamics	John D. Anderson	McGraw Hill	2013
Referen	ce Books	·		
1	Computational Fluid Dynamics-An Introduction	John F. Wendt	Springer	3 rd Edition, 2013
2	Numerical Computation of Internal and External Flows	Charles Hirsch	Elsevier	1 st edition,2007
3	Computational Fluid Dynamics for Engineers	Klaus A Hoffmann and SteveT. Chiang		1993
4	Fundamentals of CFD	Tapan K. Sengupta	Universities Press	2004
		•		

	B.E A	ERONAUTICAL H	ENGINEERING			
	Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII					
	FATIGUE AND FRACTURE MECHANICS					
Course C	Code	18AE731	CIE Marks	40		
Teaching	g Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits		03	Exam Hours	03		
Course l	Learning Objectives:					
• L	• Understand the basics of fatigue of structures.					
• (	• Comprehend the fracture mechanics.					
• A	Acquire the knowledge of fatigue	e design and testing.				
Module-	·1	6				
Fatigue	of Structures: S.N. curves, En	durance limit, Effec	t of mean stress, Goodman,	Gerber and Soderberg		
relations	and diagrams, Notches and str	ess concentrations, I	Neuber's stress concentration	factors, plastic stress		
concentra	ation factors – Notched S-N cur	ves.		-		
Module-	-2					
Statistic	al Aspects of Fatigue Behav	iour: Low cycle a	nd high cycle fatigue, Coff	in-Manson's relation,		
Transitio	on life, Cyclic Strain hardening	and softening, Ana	lysis of load histories, Cycle	counting techniques,		
Cumulat	ive damage, Miner's theory, oth	er theories.				
<b>M</b>	2					
Module-	·3		disting Caroling and Figure	for the product of the second		
<b>Physical</b> Entiruo f	Aspects of Faligue: Phase in f	atigue life, Crack in	Itiation, Crack growth, Final	fracture, Dislocations,		
Modulo						
Frontur	Machanics: Strongth of grack	ad bodies notantial	anaray and surface anaray	riffith's theory Invin		
- Orwin	extension of Griffith's theory to	ductile materials	tress analysis of cracked bodi	es Effect of thickness		
- Of will	re toughness. Stress intensity fa	ctors for typical geor	netries	es, Effect of the Kiess		
Module.	.5	ctors for typical geor	incures.			
Fatione	Design and Testing: Safe life :	and fail safe design	philosophies Importance of	Fracture Mechanics in		
aerospac	e structure. Application to com	osite materials and s	structures.	Tueture meenames m		
uerospue						
Course	Outcomes: At the end of the co	rse the student will	be able to:			
1. (	CO1: Evaluate the fatigue of stru	ictures.				
2. (	CO2: Determine the strength of	cracked bodies.				
3. (	CO3: Distinguish the safe life ar	d fail safe design.				
Ouestion	n paper pattern:					
• Th	e question paper will have ten f	all questions carrying	g equal marks.			
• Ea	ch full question will be for 20 m	arks				
• Th	ere will be two full questions (u	vith a maximum of f	our sub questions) from each	module		
• 11	lere will be two full questions (w		Jul sub- questions) from each	module.		
• Each full question will have sub- question covering all the topics under a module.						
• The students will have to answer five full questions, selecting one full question from each module.						
		-				
SI.	Title of the Book	Name of the	Name of the Publisher	Edition and Vear		
No.	The of the book	Author/s	Traine of the Tublisher	Eution and Tear		
Textboo	k/s	- 1	1			
1	Elementary Engineering	D. Brock	Noordhoff International	1994		
	Fracture Mechanics		Publishing Co., London			
2	Fundamentals of Fracture	J.F.Knott	Butterworth & Co.,	1983		
	Mechanics		Publishers Ltd., London			

Referen	ce Books			
1	Fatigue of Aircraft Structures	W. Barrois and L. Ripley	Pergamon Press	1983
2	Mechanics of Fracture	C. G. Sih	Sijthoff and Noordhoff International Publishing Co., Netherland	1989

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

	CONTROL ENGINEERING		
Course Code	18AE732	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

# **Course Learning Objectives:**

- Understand the basic concepts of control systems and mathematical models.
- Acquire the knowledge on block diagrams and signal flow graphs.
- Understand the frequency response analysis and various types of plots.

#### Module-1

# Introduction to Control Systems and Mathematical Models

**Introduction:** Concept of controls, Open loop and closed loop systems with examples, Concepts of feedback and basic structure of feedback control system, requirements of an ideal control system.

**Mathematical Models:** Transfer function models of mechanical systems, electrical circuits, DC and AC motors in control systems, Analogous systems: Force voltage and Force current analogy.

Module-2

# **Block Diagrams and Signal Flow Graphs**

Transfer functions definition and its properties, block representation of control systems and terminologies, block diagram algebra and reduction of block diagrams, Signal flow graph method, Mason's gain formula and its applications

# **Transient and Steady State Response Analysis**

Introduction, type and order of systems, time response specifications, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance in speed of response.

#### Module-3

System stability analysis using Routh's - Hurwitz Criterion

#### **Root Locus Plots**

Definition of root loci, General rules for constructing root loci, Analysis using root locus plots, Determination of desired gain, limit gain, gain margin and conditional stability.

#### Frequency Response Analysis Using Bode Plots:

Bode attenuation diagrams for first and second order systems, Simplified Bode diagrams, Stability analysis using Bode plots and determination of phase margin and gain margin and gain

Module-4

# Frequency Response Specification and Analysis using Polar plots:

**Specification:** Frequency response definition, frequency response specifications and its relationship with time response specifications.

Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

# Module-5

# Feedback control systems:

Types of controllers – Proportional, Integral, Derivative controllers, Proportional – Integral, Proportional – Integral – Derivative controllers; Compensation methods – Series and feedback compensation, Lead, Lag and Lead-Lag Compensators.

# State Variable Characteristics of Linear Systems:

Introduction to concepts of states and state variable representation of linear systems, Advantages and Disadvantages over conventional transfer function representation, state equations of linear continuous data system. Matrix representation of state equations, Solution of state equation, State transition matrix and its properties, controllability and observability, Kalman and Gilberts test.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of control systems.
- 2. CO2: Reduce the block diagrams and signal flow graphs.
- 3. CO3: Determine the frequency response analysis by using various types of plots.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Control Engineering	U.A. Bakshi and V.U. Bakshi	Technical Publications	
2	Control Systems Engineering	A. NagoorKani	RBA Publications	2014
Referen	ice Books	·		
1	Modern Control Engineering	Katsuhiko Ogatta	Pearson Education	2004
2	Control Systems Engineering	I.J. Nagrath and M. Gopal	New Age Publishers	2017
3	Modern Control Systems	Richard. C. Dorf and Robert.H. Bishop	Addison Wesley	1999
4	Control Systems Engineering	N.S. Nise	Wiley	6 th Edition,2012

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

# HYDRAULICS & PNEUMATICSCourse Code18AE733CIE Marks40Teaching Hours/Week (L:T:P)(3:0:0)SEE Marks60Credits03Exam Hours03

# **Course Learning Objectives:**

- Understand the basic concepts of Hydraulic systems.
- Acquire the knowledge on control components, Hydraulic Circuit design and analysis.
- Understand the Pneumatic control and its systems.

#### Module-1

**Introduction to Hydraulic Power:** Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law.

**The source of Hydraulic Power: Pumps** Classification pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps.

**Hydraulic Actuators and Motors:** Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors).

# Module-2

**Control Components in Hydraulic Systems:** Classification of control valves, Directional Control Valves-Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves- types, direct operated types and pilot operated types. Flow Control Valves- compensated and non-compensated FCV, needle valve, temperature compensated, pressure and temperature compensated FCV, symbolic representation.

#### Module-3

**Hydraulic Circuit Design And Analysis:** Control of Single and Double Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application ,Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits.

#### Module-4

**Maintenance of Hydraulic System:** Hydraulic Oils-Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid-particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting.

**Introduction to Pneumatic Control:** Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit.

**Pneumatic Actuators:** Linear cylinder-Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements-Applications. Rod-Less cylinders types, working, advantages, Rotary cylinders-types construction and application, symbols.

#### Module-5

**Pneumatic Control Valves:** DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders – supply air throttling and Exhaust air throttling and Exhaust air throttling.

Signal Processing Elements: Use of Logic gates-OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls-types-construction-practical

applications, Time dependent controls principle. Construction, practical applications Electro-Pneumatic Control: Principles-signal input and output, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the concepts of hydraulic systems.
- 2. CO2: Design and analyze the hydraulic circuits.
- 3. CO3: Familiarize the student in the area of Pneumatic systems, Signal Processing and Controls.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Fluid Power with Applications	Anthony Esposito	Pearson Education, Inc	Sixthedition,2000
2	Pneumatics and Hydraulics	Andrew Parr	Jaico Publishing Co	
Referen	ce Books			
1	Oil Hydraulic systems	S. R. Majurr	Tata McGraw Hill Publishing Company Ltd	2001
2	Industrial Hydraulics	Pippenger, Hicks	Mc Graw Hill, NewYork	
3	Hydraulic &Pneumatic Power for Production	Harry L. Stewart		
4	Pneumatic Systems	S. R. Majumdar	Tata McGraw Hill Publish	1995
5	Power Hydraulics	Michael J Pinches & John G Ashby	Prentice Hall	

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

# HEAT & MASS TRANSFER

Professional Elective - 2				
Course Code	18AE734/18AS734	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

# **Course Learning Objectives:**

- Understand the different modes of heat transfer.
- Understand the free convection and forced convection.
- Acquire the knowledge of heat transfer problems in combustion chambers.

# Module-1

**Fundamentals:** Different modes of heat transfer and mass and momentum transfer, elements of mass diffusion and boundary layer theory. Mass transfer definition and terms used in mass transfer analysis, Fick's First law of diffusion.

# Module-2

**Conduction:** Derivation of general three dimensional conduction equation in Cartesian coordinate, special cases, discussion on 3-D conduction in cylindrical and spherical coordinate systems. Effect of variation of thermal conductivity on heat transfer in solids - Heat transfer problems in infinite and semi-infinite solids - Extended surfaces. One dimensional transient heat conduction: Systems with negligible internal resistance, Significance of Biot and Fourier Numbers, Chart solutions of transient conduction systems.

#### Module-3

**Convection:** Concepts of Continuity, Momentum and Energy Equations. Dimensional analysis-Buckingham's Pi Theorem - Application for developing non-dimensional correlation for convective heat transfer

**Free Convection:** Development of Hydrodynamic and thermal boundary layer along a vertical plate , Use of empirical relations for Vertical plates and pipes.

**Forced Convection:** External Flows, Concepts of hydrodynamic and thermal boundary layer and use of empirical correlations for Flat plates and Cylinders. Internal Flows, Concepts about Hydrodynamic and Thermal Entry Lengths, use of empirical correlations for Horizontal Pipe Flow and annulus flow.

# Module-4

Radiation &Heat Exchangers Design: Radiation: Introduction to physical mechanism - Radiation properties - Radiation shape factors - Heat exchange between non-black bodies - Radiation shields

**Heat Exchangers:** Classification of heat exchangers; overall heat transfer coefficient, fouling and fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems.

# Module-5

**Heat and Mass Transfer Problems in Aerospace Engineering:** Heat transfer problems in gas turbine combustion chambers - Rocket thrust chambers - Aerodynamic heating -Ablative heat transfer. Heat transfer problems in turbine and nozzle blades.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1: Describe the fundamental of heat and mass transfer.
- 2. CO2: Familiarize the student in the area of conduction, convection and radiation.
- 3. CO3: Analyze the problems due to heat transfer in several areas.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			·
1	Heat transfer-A basic approach	Ozisik	Tata McGraw Hill	2002
2	Heat Transfer	Holman, J.P	McGraw Hill Book Co., Inc., New York	8th edition,1996
Referen	ce Books			
1	Fundamentals of Engineering Heat and Mass Transfer	Sachdeva, S.C	Wiley Eastern Ltd., New Delhi	1981
2	Rocket Propulsion Elements	Sutton, G.P	John Wiley and Sons	5th Edn.1986
3	Gas Turbine and Jet and Rocket Propulsion	Mathur, M.and Sharma, R.P	Standard Publishers, New Delhi	1988
4	Heat transfer	P.K. Nag	Tata McGraw Hill	2002
5	Heat transfer, a practical approach	Yunus A- Cengel	Tata McGraw Hill	3 rd edition, 2007

B.E AERONAUTICAL ENGINEERING					
Choice Based Credit S	SEMESTER – VII				
HIGH	I PERFORMANCE	COMPUNTING			
Course Code	18AE741/18AS741	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
Course Learning Objectives:	Course Learning Objectives:				
• Understand the concepts of high performance computing					
<ul> <li>Acquire the knowledge of various algorithms required for parallel computing</li> </ul>					
Understand the concents of arch	vitecture	i for paraner comparing.			
Module-1	intecture.				
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~			
<b>Computational Science and Engin</b> Applications; characteristics and requi and measurements, Granularity and Pa parallel programming, Real-world case	rements, Review of C retitioning, Locality: to studies (drawn from r	a: Computational Science computational Complexity, Pe emporal/spatial/stream/kernel, nulti-scale, multi-discipline ap	and Engineering rformance: metrics Basic methods for plications)		
Module-2					
High-End Computer Systems: M Heterogeneous, Shared-memory Syr Computers, Supercomputers and Peta Novel computers: Stream, multithreade	<b>lemory Hierarchies</b> nmetric Multiprocess scale Systems, Applie d, and purpose-built.	, Multi-core Processors: sors, Vector Computers, E cation Accelerators / Reconfi	Homogeneous and Distributed Memory gurable Computing,		
Module-3	* *				
Parallel Algorithms: Parallel models:	ideal and real framew	orks, Basic Techniques: Bala	nced Trees, Pointer		
Jumping, Divide and Conquer, Partit Irregular Algorithms: Lists, Trees, G Sorting, Monte Carlo techniques.	ioning, Regular Algo raphs, Randomization	rithms: Matrix operations ar : Parallel Pseudo-Random N	d Linear Algebra, umber Generators,		
Module-4					
<b>Parallel Programming</b> : Revealing c Scheduling, Synchronization Method (threads, Open MP, MPI), I/O and F Partitioning Global Address Space (PG	oncurrency in applic s, Parallel Primitives ile Systems, Parallel AS) languages (UPC,	ations, Task and Functional (collective operations), SP Matlabs (Parallel Matlab, Sta Titanium, Global Arrays).	Parallelism, Task MD Programming r-P, Matlab MPI),		
Module-5					
Achieving Performance: Measuring	g performance, iden	tifying performance bottler	ecks, Restructuring		
applications for deep memory hierarch	ies, Partitioning applic	cations for heterogeneous reso	urces, Using existing		
libraries, tools, and frameworks.					
Course Outcomes: At the end of the concepts of 1. CO1: Apply the concepts of 2. CO2: Develop various also	ourse the student will f high performance co withma required for pa	be able to: mputing			
2. CO2. Develop various argo	for high performance	a computing			
Ouestion namer nattorn:	es for high performance	e computing.	<u> </u>		
Question paper pattern:	full an ation a commine				
• The question paper will have ten full questions carrying equal marks.					
• Each full question will be for 20 marks.					
• There will be two full questions (	with a maximum of fo	our sub- questions) from each	nodule.		
• Each full question will have sub- question covering all the topics under a module.					
• The students will have to answer five full questions, selecting one full question from each module					
		8 <b>1</b>	· · · · · · · · · · · · · · · · · · ·		
Sl. No. Title of the Book	Name of the	Name of the Publisher	Edition and Year		
T	Aumor/s				
1 extDook/s					

1	An Introduction to Parallel Computing, Design and Analysis of Algorithms	Grama, A. Gupta, G. Karypis, V. Kumar	Pearson Education India	2 nd edition, 2004
2	Parallel Scientific Computing in C++ and MPI: A Seamless Approach to Parallel Algorithms and their Implementation	G.E. Karniadakis, R.M. Kirby II	Cambridge University Press	2003
Referen	ce Books			
1	Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers	Wilkinson and M. Allen	Pearson	2 nd edition, 2006
2	Parallel Programming in C with MPI and Open MP	M.J. Quinn	McGraw-Hill	1 st edition,2003
3	Highly Parallel Computing	G.S. Almasi and A. Gottlieb	Addison-Wesley	1994
4	The Sourcebook of Parallel Computing	J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon	Morgan Kaufmann	2002

#### **B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VII** Professional Elective - 3 WIND TUNNEL TECHNIQUES 18AE742/18AS742 40 Course Code CIE Marks Teaching Hours/Week (L:T:P) (3:0:0)SEE Marks 60 Exam Hours Credits 03 03 **Course Learning Objectives:** Understand the basic of wind tunnel testing. Understand the types and functions of wind tunnel. •

Acquire the knowledge on conventional measurement techniques and special wind tunnel techniques.

Module-1

**Principles Of Model Testing**: Buckingham Theorem, Non dimensional numbers, Scale effect, Geometric Kinematic and Dynamic similarities.

**Types And Functions Of Wind Tunnels**: Classification and types, special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions, Layouts, sizing and design parameters.

Module-2

**Calibration Of Wind Tunnels**: Test section speed, Horizontal buoyancy, Flow angularities, Flow uniformity & turbulence measurements, Associated instrumentation, Calibration of subsonic & supersonic tunnels.

# Module-3

**Conventional Measurement Techniques**: Force measurements and measuring systems, Multi component internal and external balances, Pressure measurement system, Steady and Unsteady Pressure, single and multiple measurements, Velocity measurements, Intrusive and Non-intrusive methods, Flow visualization techniques, surface flow, oil and tuft, flow field visualization, smoke and other optical and nonintrusive techniques.

Module-4

**Special Wind Tunnel Techniques**: Intake tests, store carriage and separation tests, Unsteady force and pressure measurements, Non-Intrusive Flow Diagnostics, Laser – Doppler Anemometry. Particle Image Velocimetry. Laser Induced Fluorescence

Module-5

Fundamentals of wind tunnel design – introduction, general considerations, general design procedure, main design criteria, wind tunnel component specification, design of various components of wind tunnel - test chamber, contraction, settling chamber, diffuser, power plant, turning vane, fan and drive system, safety net design

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the principles and procedures for model testing in the wind tunnel.
- 2. CO2: Classify the types and functions of wind tunnel.
- 3. CO3: Distinguish the conventional measurement techniques and special wind tunnel techniques.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year

Textbook	/s			
1	Low Speed Wind Tunnel Testing	Rae, W.H. and Pope, A.	John Wiley Publication	3rd edition, 2010
2	High Speed Wind Tunnel Testing	Pope, A., and Goin, L	John Wiley	1985
Reference	e Books			
1	Instrumentation, Measurements, and Experiments in Fluids	E. Rathakrishnan	CRC Press	2007
2	Experimental Fluid Mechanics	Bradsaw	Pergamon Press	2nd Revised edition,1970
3	Wind Tunnel Designs and their Diverse Engineering Applications	Noor Ahmed		2013
4	Advanced Flow diagnostic techniques			
5	Experimental Aerodynamics			

B.E.A	AERONAUTICAL ENGIN	EERING			
Choice Based Credit S	System (CBCS) and Outcon	ne Based Education (Ol	BE)		
	SEMESTER –VII				
GUID	ANCE, NAVIGATION & C	CONTROL			
Course Code	18AE743/18AS743	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
<b>Course Learning Objectives:</b>					
• Comprehend the basic concepts	of navigation, guidance and	control.			
• Acquire the knowledge of radar	systems and other guidance	systems.			
<ul> <li>Understand the missile guidance</li> </ul>	e and control system	5,50011151			
Module-1	e und control system.				
Introduction					
Concepts of navigation guidance and c	ontrol Introduction to basic	principles Air data infor	mation		
Radar Systems	ond of and one of the busic j	principies. 7 in data mior	mation.		
Principle of working of radar MTL	and Pulse Doppler radar M	Ioving target detector	Limitation of MTI		
performance MTI from a moving platf	orm (AMTI)	ioving target detector.	Limitation of WITT		
Module-2					
I racking with Radar	a superial labeling Automat		n oo nodon (ADT)		
Mono pulse tracking. Conical scan and	sequential lobbing. Automat	ic tracking with surveilla	ince radar (ADT).		
Other Guidance Systems	and I accurband a	uidanaa Cammananta af	In articl Manipation		
Gyros and stabilized platforms. Inertial	guidance and Laser based g	undance. Components of	mertiai Navigation		
System. Imaging initiated guidance. Sa	enne navigation. GPS.				
Module-3					
Transfer Functions					
Input-output Transfer function. Basic a	ltitude reference. Concepts of	Open loop and Close Lo	oop.		
Missile Control System		· ·1 · · 1			
Guided missile concept. Roll stabiliza	tion. Control of aerodynami	c missile. Missile parar	neters for dynamic		
analysis. Missile autopilot schematics.	Acceleration command and re	oot locus.			
Module-4					
Missile Guidance					
Proportional navigation guidance; com	mand guidance. Comparison	f of guidance system per	formance. Bank to		
turn missile guidance					
Module-5					
Integrated Flight/Fire Control System	n 	1 612-1-4	L . ( 1 . fl' . 1. (		
Director fire control system. I rackin	g control laws. Longitudina	il flight control system.	Lateral flight		
control system. Rate of change of Euler	angle, Auto Phot.				
		4			
Course Outcomes: At the end of the co	burse the student will be able				
1. CO1: Apply the basic concepts	1. CO1: Apply the basic concepts of navigation, guidance and control.				
2. CO2: Compare the different types of missile guidance system performance.					
3. COS: Integrate the flight and fl	re control system.				
Question paper pattern:	full avastices commine consol				
• The question paper will have ten	full questions carrying equal	marks.			
• Each full question will be for 20	marks.				
• There will be two full questions (	with a maximum of four sub	- questions) from each m	odule.		
• Each full question will have sub-	question covering all the top	ics under a module.			
• The students will have to answer five full questions selecting one full question from each module					
	internan questions, selecting	one run question nom et			

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Fundamentals of Aerospace Navigation and Guidance	P.T. Kabamba and A.R. Girard	Cambridge Aerospace Series	2014
2	Automatic control of Aircraft	John H	Wile –Inter	2 nd edition, May
	& Missiles	Blakelock	SciencePublication	1990
Referen	ce Books			
1	Navigation	R.B. Underdown& Tony Palmer	Black Well Publishing	2001
2	Introduction to Radar Systems	Merrilh I. Skolnik	Tata Mc Graw Hill	3 rd edition,2001
3	Missile Guidance and Control Systems	George M. Siouris	Springer	2004
		·	•	•

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VII Professional Elective - 3

# Professional Elective - 3OPERATIONS RESEARCHCourse Code18AE744CIE Marks40Teaching Hours/Week (L:T:P)(3:0:0)SEE Marks60Credits03Exam Hours03

# **Course Learning Objectives:**

- Understand the basic of operations research.
- Comprehend the PERT-CPM techniques, queuing theory and game theory.
- Acquire the knowledge on sequencing.

#### Module-1

**Introduction**: Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method.

**Solution Of Linear Programming Problems**: The simplex method-canonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method. **Module-2** 

**Transportation Problem:** Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling sales man problem.

#### Module-3

**Integer Programming:** Pure and mixed integer programming problems, solution of Integer programming problems-Gomory's all integer cutting plane method and mixed integer method, branch and bound method, Zero-One programming.

**Pert-CPM Techniques:** Introduction, network construction -rules, Fulkerson's rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects.

# Module-4

**Queuing Theory:** Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models–M/M/1 and M/M/C models and their steady state performance analysis. **Game Theory:** Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games.

# Module-5

**Sequencing:** Basic assumptions, sequencing 'n' jobs on single machine using priority rules, sequencing using Johnson's rule-'n' jobs on 2 machines, 'n' jobs on 3 machines, 'n' jobs on 'm' machines. Sequencing 2 jobs on 'm' machines using graphical method.

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the basic of operations research.
- 2. CO2: Classify the PERT-CPM techniques, queuing theory and game theory.
- 3. CO3: Identify the sequencing techniques.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textbook/s					
1	Operations Research	P K Gupta and D S Hira	Chand Publications, New Delhi	Revised edition, 2007	
2	Operations Research	Taha H A	Pearson Education	9 th edition,2014	
Referen	nce Books				
1	Operations Research	A P Verma	S K Kataria & Sons	2012	
2	Operations Research	Paneerselvan	PHI	2 nd edition,2009	
3	Operations Research	A M Natarajan, P Balasubramani	Pearson Education	1 st edition,2011	
4	Introduction to Operations Research	Hillier and Liberman	Mc Graw Hill	8 th Ed	
5	Operations Research	S. D. Sharma	Kedarnath Ramanath & Co	2012	

<b>B.E AERONAUTICAL ENGINEERING</b>							
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)							
	SEMESTER - VII						
Cour	MODELING & ANALYSIS LAB						
Tour	Course Code     I8AEL/6     CIE Marks     40       Teaching Hours (Week (L:T:D)     (1:0:2)     SEE Marks     60						
Cred	Teaching nours/week (L:1:P)     (1:0:2)     SEE Marks     60       Credits     02     Exem Hours     02						
Com	se Learning Objectives.	02	Examinours	03			
• •	Understand the procedure to dr.	aw the geometric models of symmetric	ic cambered aerof	oil nozzle wing			
	and other structures.	aw the geometric models of symmetric	ie, cumbered deroit	JII, HOZZIC, WING			
•	Acquire the knowledge of type	s of meshing.					
•	Understand the basics of flow a	nd stress analysis.					
C1							
SI. No		Experiments					
1	Modeling of Symmetrical/Cam	pered Aerofoil Geometry , and Ge	neration of Body	Fitting Adaptive			
-	Mesh.	server meterorism secondary , and se	noration of Doug	r nung r nupri ve			
2	Modeling of 2-D Incompressible	e and Invisicd Flow over Symmetric	al/Cambered Aerot	foil, and Plotting			
	of Pressure distribution and Velo	city vectors for Subsonic/Supersonic	Mach numbers.				
3	Modeling of 2-D Compressible	and Viscid Flow over Symmetrical/	Cambered Aerofoil	, and Plotting of			
4	Pressure distribution and Velocit	y vectors for Subsonic Mach number	rs.				
4	Isentropic Flow Analysis in a 2-D Subsonic Diffuser and a Subsonic Nozzle.						
3	Isentropic Flow Analysis in a 2-1	Supersonic Diffuser and a Superso	nic Nozzie.				
6	Geometric Modeling and Mesh Generation of a 2-D Convergent-Divergent Nozzle and Analyses of flow						
	for Adiabatic Conditions (Fanno Flow).						
7	Geometric Modeling and Mesh Generation of a 2-D Pipe and Modeling of Steady/Unsteady Heat						
8	Convection and Conduction (Rayleigh Flow).						
0	Structural Modeling and Stress Analysis of a Torsion Box of a Wing						
10	Structural Modeling and Stress Analysis of a Fuselage Frame.						
11	Structural Modeling and Sucess Analysis of a Fusciage Fiallic.						
11	Determine the Netural frequency	and Mode shapes of a Captilever he	om un don LIDI				
12	A Difermine the Natural frequency	and Mode snapes of a Cantilever be		1 1 1			
13	due to applied static loads in vert	ical direction.	ness, Determine st	resses developed			
14	A Tapered Plate fixed at one e	nd has a hole in centre and has va	rying thickness, de	etermine stresses			
~	developed due to applied static loads in vertical direction.						
Cour	<b>Course Outcomes:</b> At the end of the course the student will be able to:						
•	Draw the geometric models of	symmetric, cambered aerofoil, nozzle	e, wing and other st	ructures.			
• Apply different types of meshing.							
• Perform the flow and stress analysis.							
Conc	luct of Practical Examination:						
1. Al	l laboratory experiments are to be	included for practical examination.					
2. Br	2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by						
the examiners.							
3.50	adding of experiment is allowed on	y once and 15% Marks allotted to the	exammers.	ha mada zoro			
4. UI	4. Change of experiment is anowed only once and 15% Marks anoted to the procedure part to be made zero.						

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER -	VII			
FLIGHT SIMULATION LAB					
Course Code	18AEL77	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(1:0:2)	SEE Marks	60		
Credits	02	Exam Hours	03		

# **Course Learning Objectives:**

- Understand the root locus and bode plot.
- Understand the spring mass damper system and the servo mechanism system with feedback.
- Acquire the knowledge to use computational tools to model aeronautical vehicle dynamics.

Sl.	Experiments
No.	
1	Draw Pole-Zero map of dynamic system model with plot customization option
2	Plot root locus with variables in transfer function through MATLAB
3	Plot root locus for a dynamic system though MATLAB
4	Draw Bode plot from a transfer function in MATLAB and explain the gain and phase margins
5	Simulate a spring- mass- damper system with and without a forcing function though SIMULINK
6	Simulate a simple servo-mechanism motion with feedback- in the time domain, and in `s` domain
7	Simulate a bomb drop from an aircraft on a moving tank in pure pursuit motion
8	Develop a straight and level flight simulation program using MATLAB
9	Simulate aircraft Take-off and Landing with trajectory tracing
10	Simulate stall of aircraft and show the effect of variation in static margin on stalling characteristics
11	Simulate aircraft longitudinal motion and demonstrate the effect of static margin variation for a pulse
	input in pitch that is intended to bleed the airspeed.
12	Simulate aircraft longitudinal motion and demonstrate the effect of static margin variation for a doublet input in pitch.
13	Given a Quartic characteristic equation, determine two quadratics that shall result in poles of short-
	poles.
14	Given a Quartic characteristics equitation, determine Poles and Time constants for Roll mode, Spiral
a	motion, and Dutch roll. Vary the coefficients of polynomial to study the movement of poles.
Cour	<b>rse outcomes:</b> At the end of the course the student will be able to:
1	. CO1: Plot the root locus and bode plot.
2	2. CO2: Calculate the dynamics response of aircraft.
3	5. CO3: Use computational tools to model aircraft trajectory.
Cond	luct of Practical Examination:
1. Al	l laboratory experiments are to be included for practical examination.
2. Br	eakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by
the ex	xaminers.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

B.E	AERONAUTICAL ENGIN	EERING			
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER –VII				
	<b>Open Elective - B</b>				
MAINTENANCE,	OVERHAUL & REPAIR OI	F AIRCRAFT SYSTE	MS		
Course Code	18AE751/18AS751	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		
<b>Course Learning Objectives:</b>					
• Comprehend the fundamentals	s of maintenance and certificat	ion.			
• Acquire the knowledge of doc	cumentation for maintenance.				
• Understand the Aircraft Maint	tenance, safety and trouble sho	ooting.			
Module-1	2				
Fundamentals of Maintenance & C	ertification				
Types of maintenance, Redesign, Fail	ure rate pattern, Other mainter	nance considerations.			
Aviation industry certification require	rements, Type certificate (FA	A form 8110.9), Airw	vorthiness certificate		
(FAA form 8100-2), Aviation maintenance certifications, General, Airframe, Power plant, Avionics courses.					
Module-2					
<b>Documentation for Maintenance</b>					
Manufacturers documentation, Airplane maintenance manual, Fault insulation manual, Illustrated parts					
catalogue, structural repair manual,	wiring diagram manual, Mas	ter minimum equipme	nt, Federal Aviation		
regulation (FAR), Advisory circulars,	Airworthiness direction ATA	document standards, T	echnical policies and		
procedure manuals (TPPM).					
Module-3					
Aircraft Management Maintenance					
Structure, Role of aviation management, Line supervisory management, Management areas of concern in					
airlines, Manager of overhaul shops, Line maintenance control centre flight line (preflight& post flight),					
Aircraft Logbook, Maintenance crew skill requirements					
Module-4					
Hanger Maintenance (on Aircraft)	& Material Sunnart				

#### Hanger Maintenance (on Aircraft) & Material Support

Introduction, organization of hanger maintenance, Non- routine item, parts availability, cannibalization, Types of shops- sheet metal shop, Aircraft interior shop, Engine shop, Avionics shop, ground support equipment, outsourcing of shop maintenance work, operation of overhaul shops, Material support, Material management inventory control, Support functions of material, Parts ordering, Storage, Issue, control and handling, Parts receiving quality control, calibration program, stock level adjustments, shelf life, exchanges, warranty & modifications of parts.

# Module-5

#### Maintenance Safety & Trouble shooting

Safety regulations, occupational safety and health standards maintenance safety program, Airlines safety management, General safety rules, Accident & injury reporting, Hazardous materials storage and handling aircraft furnishing practices trouble shooting, Knowledge of malfunctions.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1: Maintain the aircraft maintenance manual and logbook.
- CO2: Do the quality control and calibration. 2.
- CO3: Incorporate the safety regulations and rules. 3.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Aviation Maintenance Management	Harry A Kinnison, Tariq Siddiqui	Mc Graw Hill education (India) Private Ltd	2013
2	Aircraft maintenance and repair	Kroes, Watkins, Delp	Mc Graw Hill	2013
Referen	ce Books			
1	Aircraft Repair Manual	Larry Reithmaier	Palmar Books, Marquette	1992
2	Aircraft Maintenance	Brimm. DJ, Bogges, HE	Pitman publishing corp, London	1952
	·	•		

#### **B.E AERONAUTICAL ENGINEERING** Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VII** FUNDAMENTALS OF AERODYNAMIC THEORY Course Code 18AE752/18AS752 CIE Marks 40 SEE Marks Teaching Hours/Week (L:T:P) (3:0:0) 60 Credits 03 Exam Hours 03 **Course Learning Objectives:** Understand the basics of fluid mechanics as a prerequisite to Aerodynamics Acquire knowledge on typical airfoil characteristics and two-dimensional flows over airfoil and study the incompressible over finite wings

• Assimilate the understanding of application of finite wing theory and high lift systems

# Module-1

# **Review of Basic Fluid Mechanics**

Continuity, momentum and energy equation, Control volume approach to Continuity, momentum and energy equation, Types of flow, pathlines, streamlines, and streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach number regimes. Vorticity, Angular velocity, Stream function, velocity potential function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.

# Module-2

# **Airfoil Characteristics**

Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.

# Module-3

# Two Dimensional Flows & Incompressible Flow Over Airfoil

Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift, D'Alembert's paradox, Numericals,

**Incompressible flow over airfoils:** Kelvin's circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical thin airfoil theory for symmetric and cambered airfoils. Kutta-Joukowski theorem and generation of Lift, Numericals.

# Module-4

# Incompressible Flow Over Finite Wings

Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-infinite vortex filament, Induced velocity. Prandtl's classical lifting line theory: Downwash and induced drag. Elliptical and modified elliptical lift distribution. Lift distribution on wings. Limitations of Prandtl's lifting line theory. Extended lifting line theory- lifting surface theory, vortex lattice method for wings. Lift, drag and moment characteristics of complete airplane.

#### Module-5

# Applications of Finite Wing Theory & High Lift Systems

Simplified horse-shoe vortex model, formation flight, influence of downwash on tail plane, ground effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient, typical aerodynamic characteristics, Subsonic and Supersonic leading edges. Introduction to high-lift systems, flaps, leading-edge slats and typical high – lift characteristics. critical Mach numbers, Lift and drag divergence, shock induced separation, Effects of thickness, camber and aspect ratio of wings, Transonic area rule, Tip effects. Introduction to Source panel & vortex lattice method.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1 :Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
- 2. CO2 :Compute and analyse the incompressible flow over finite wings

# 3. CO3 : Apply finite wing theory and design high lift systems from the aerodynamics view point

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textbo	ook/s					
1	Fundamental of Aerodynamics	Anderson J.D	McGraw-Hill International Edition, New York	5th edition,2011		
2	Aerodynamics for Engineering Students	E. L. Houghton, P.W. Carpenter	Elsevier, New York	5th edition,2010		
Refere	nce Books					
1	Aerodynamics	Clancy L. J.	Sterling book house, New Delhi	2006		
2	Theoretical Aerodynamics	Louis M. Milne-Thomson	Dover Publications, USA	Imported Edition,2011		
		•	•			

# B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VII Open Elective - B UNMANNED AERIAL VEHICLES

Course Code	18AE753/18AS753	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

# **Course Learning Objectives:**

- Comprehend the basic aviation history and UAV systems.
- Acquire the knowledge of basic aerodynamics, performance, stability and control.
- Understand the propulsion, loads and structures.

#### Module-1 Introduction

Aviation History and Overview of UAV systems, Classes and Missions of UAVs, Definitions and Terminology, UAV fundamentals, Examples of UAV systems-very small, small, Medium and Large UAV **Module-2** 

#### Module-2

# The Air Vehicle

# **Basic Aerodynamics:**

Basic Aerodynamics equations, Aircraft polar, the real wing and Airplane, Induced drag, the boundary layer, Flapping wings, Total Air-Vehicle Drag.

# **Performance:**

Overview, climbing flight, Range and Endurance – for propeller-driven aircraft, range- a jet-driven aircraft, Guiding Flight.

# Module-3

# **Stability and Control**

Overview, Stability, longitudinal, lateral, dynamic stability, Aerodynamics control, pitch control, lateral control, Autopilots, sensor, controller, actuator, airframe control, inner and outer loops, Flight-Control Classification, Overall Modes of Operation, Sensors Supporting the Autopilot.

#### Module-4

#### Propulsion

Overview, Thrust Generation, Powered Lift, Sources of Power, The Two-Cycle Engine, The Rotary Engine, The Gas Turbine, Electric Motors, and Sources of Electrical Power.

#### Loads and Structures

Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcing Materials, Resin Materials, Core Materials, Construction Techniques.

# Module-5

**Mission Planning and Control:** Air Vehicle and Payload Control, Reconnaissance/Surveillance Payloads, Weapon Payloads, Other Payloads, Data-Link Functions and Attributes, Data-Link Margin, Data-Rate Reduction, Launch Systems, Recovery Systems, Launch and Recovery Tradeoffs

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of UAV systems.
- 2. CO2: Explain the basic aerodynamics, performance, stability and control required for UAV.
- 3. CO3: Select the propulsion system and materials for structures.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textboo	Textbook/s				
1	Introduction to UAV Systems	Paul Gerin Fahlstrom, Thomas James Gleason	Wiley Publication	4th Edition,2012	
2	Unmanned Aerial Vehicle	Landen Rosen	Alpha Editions		
Referen	ce Books				
1	Unmanned Aerial Vehicles: DOD's Acquisition Efforts		Alpha Editions		
2	Unmanned Aerial Vehicles	Valavanis, Kimon P	Springer	2011	
	Handbook of Unmanned Aerial Vehicles	Valavanis, K.,Vachtsevano s, George J	Springer	2015	
B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
-----------------------------------------------------------------------------------------------------	---------	------------	----	--	--
SEMESTER - VIII					
FLIGHT VEHICLE DESIGN					
Course Code	18AE81	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

### **Course Learning Objectives:**

- Comprehend the flight vehicle design process.
- Acquire the knowledge of vehicle configuration and structural components.
- Understand the stability & control and subsystems.

#### Module-1

**Overview of Design Process:** Introduction, Requirements, Phases of design, Conceptual Design Process, Initial Sizing, Take-off weight build up, Empty weight estimation, Fuel fraction estimation, Take- off weight calculation.

**Thrust to Weight Ratio & Wing Loading:** Thrust to Weight Definitions, Statistical Estimate of T/W. Thrust matching, Spread sheet in design, Wing Loading and its effect on Stall speed, Take-off Distance, Catapult take-off, and Landing Distance. Wing Loading for Cruise, Loiter, Endurance, Instantaneous Turn rate, Sustained Turn rate, Climb, & Glide, Maximum ceiling.

## Module-2

**Configuration Layout & loft**: Conic Lofting, Conic Fuselage Development, Conic Shape Parameter, Wing-Tail Layout & Loft. Aerofoil Linear Interpolation. Aerofoil Flat-wrap Interpolation. Wing aerofoil layout-flap wrap. Wetted area determination. Special considerations in Configuration Layout: Aerodynamic, Structural, Detectability. Crew station, Passenger, and Payload arrangements.

**Design of Structural Components:** Fuselage, Wing, Horizontal & Vertical Tail. Spreadsheet for fuselage design. Tail arrangements, Horizontal & Vertical Tail Sizing. Tail Placement. Loads on Structure. V-n Diagram, Gust Envelope. Loads distribution, Shear and Bending Moment analysis.

#### Module-3

#### **Engine Selection & Flight Vehicle Performance**

Turbojet Engine Sizing, Installed Thrust Correction, Spread Sheet for Turbojet Engine Sizing. Propeller Propulsive System. Propeller design for cruise. Take-off, Landing & Enhanced Lift Devices :- Ground Roll, Rotation, Transition, Climb, Balanced Field Length, Landing Approach, Braking, Spread Sheet for Take-off and Landing. Enhanced lift design -Passive & Active. Spread Sheet.

#### Module-4

### **Static Stability & Control**

Longitudinal Static Stability, Pitch Trim Equation. Effect of Airframe components on Static Stability. Lateral stability. Contribution of Airframe components. Directional Static stability. Contribution of Airframe components. Aileron Sizing, Rudder Sizing. Spread Sheets. Flying qualities. Cooper Harper Scale. Environmental constraints, Aerodynamic requirements.

## Module-5

### **Design Aspects of Subsystems**

Flight Control system, Landing Gear and subsystem, Propulsion and Fuel System Integration, Air Pressurization and Air Conditioning System, Electrical & Avionic Systems, Structural loads, Safety constraints, Material selection criteria.

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Calculate the thrust to weight ratio and wing loading.
- 2. CO2: Compute the flight vehicle performance.
- 3. CO3: Select the subsystems as per vehicle design.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Aircraft Design - A Conceptual	Daniel P.	AIAA Education Series	IV Edition, 2006
	Approach	Raymer		
2	Design of Aircraft	Thomas C	Pearson Edition. Inc.	2003
		Corke		
Reference Books				
1	Aeroplane Design	J Roskam		
2	Introduction to Aircraft Design	John Fielding	Cambridge University Press	2009
3	Standard Handbook for	Editor Mark	Tata McGraw Hill	2010
	Aeronautical & Astronautical Engineers	Davies		

B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
SEMESTER - VIII				
		AVIONICS	5	
Course C	Code	18AE821	CIE Marks	40
Teaching	g Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits		03	Exam Hours	03
Course l	Learning Objectives:			
• L	Inderstand the need for avionic	s in civil, military and	space systems.	
• A	Appreciate the use of microproc	essors, data buses and	avionics system architectures.	
• A	Acquire the knowledge of displa	y technologies, comn	nunication and navigation syste	ems.
Module-	1	· •		
Power I	Distribution System: Bus Bar	split bus bar system	n, special purpose cables. Elec	ctrical diagram and
identifica	ation scheme. Circuit controlli	ng devices. Power ut	ilization-typical application to	avionics. Need for
Avionics	in civil and military aircraft.			
Module-	-2			
Inertial	Navigation System: Gyrosco	pic versus Inertial	platform. Structure of stable	e platform. Inertial
Navigati	on units. Inertial alignment. In	ertial interface system	. Importance of Compass swing	g.
Electron	ic Flight Control System:	-ly-by-wire system:-b	asic concept and features. Pi	tch and Roll rate:-
Comman	a and response. Control Laws	Frequency response	of a typical FBW actuator. C	cooper Harper scale.
Redunda		on mode of failures an	a enects analysis.	
Module-	-3			
Electron	ic Flight Instrument Systems	: Display-units, pres	entation, failure, and annuncia	ation. Display of air
data.	tion to Arionica Sub Sustan	a and Electronic C	manifer Transient arrivation auch	anatama Amulifian
	r aircraft communication system	s and Electronic Cl	ar antenna	systems. Ampriner,
Module-4				
Principles of Digital Systems: Digital Computers Microprocessors Memories				
Flight Deck and Cockpits: Control and display technologies CRT. LED. LCD. EL and plasma panel. Touch				
screen, D	Direct voice input (DVI)-Civil c	ockpit and military co	ockpit : MFDS, HUD, MFK, an	d HOTAS.
Module-	.5	ž ž	· · · · ·	
Avionics	Systems Integration: Avioni	cs equipment fit. Ele	ctrical data bus system. Comn	nunication Systems,
Navigation systems, Flight control systems, Radar, Electronic Warfare, and fire control system. Avionics system				
architecture, Data buses, MIL–STD1553B.				
Course	<b>Outcomes:</b> At the end of the co	urse the student will	be able to:	
I. (	COI: Select the suitable data bu	s based on the applica	tion.	
2. C	CO2: Identify the suitable navig	ation systems.		
3. CO3: Distinguish the avionics system architecture.				
Question paper pattern:				
• The question paper will have ten full questions carrying equal marks.				
• Each tull question will be for 20 marks.				
• There will be two full questions (with a maximum of four sub- questions) from each module.				
• Each full question will have sub- question covering all the topics under a module.				
• The students will have to answer five full questions, selecting one full question from each module.				
Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year

Textbook/s

1	Introduction to Avionics Systems	R.P.G. Collinson	Springer	3 rd edition, 2011
2	Aircraft Systems: Mechanics, Electrical and Avionics Subsystems Integration	Ian Moir, Allan Seabridge	Wiley	3 rd Edition, 2012
Referen	ce Books		·	
1	Avionics Systems, Longman Scientific and Technical	Middleton, D.H., Ed	Longman Group UK Ltd., England	1989
2	Digital Avionic Systems	Spitzer, C. R	McGraw-Hill Inc., US	2nd edition, 1992
3	Aircraft Communications and Navigation Systems	Mike Tooley and David Wyatt	Butterworth Heinemann	2007
4	Introduction to Avionics	D.R. Cundy and R.S. Brown	Pearson	2010
	•	·	•	<u>.</u>

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VIII Professional Elective - 4

BOUNDARY LAYER THEORY					
Course Code	18AE822	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

## **Course Learning Objectives:**

- Comprehend the basic concepts and equations of viscous flow.
- Acquire the knowledge of laminar boundary layer and its equations.
- Understand the turbulence, instrumentation and measurements.

#### Module-1

## **Preliminary Concepts**

Some examples of viscous flow phenomena: - aerofoil, cylinder, circular pipe. Boundary conditions for viscous flow problems. The kinematics properties of viscous flow.

#### **Fundamental Equations of Viscous Flow**

Conservation of mass, momentum and energy equations. Mathematical characterisation of basic equations. Dimensionless parameters in viscous flow.

## Module-2

#### **Solutions of Viscous Flow Equations**

Classification of solutions. Couette flow, stability of Couette flow. Poiseuille steady flow through duct. Unsteady duct flow between plates with bottom injection and top suction. Plane stagnation flow- differential equation free of parameters.

## Module-3

## Introduction to Laminar Boundary Layer

Laminar boundary layer equations. Flat plate Integral analysis. Displacement thickness, Momentum and Energy thicknesses for two dimensional flows; Shape factor. Some insight into boundary layer approximations. Discussion of Navier Stokes equations. Concept of thermal boundary layer.

### Module-4

# **Laminar Boundary Layer Equations**

Dimensionless variables. Laminar boundary layer equations. Similarity solutions for steady two-dimensional flow. Blasius solution for flat- plate flow, wall shear stress. Flat plate heat transfer for constant wall temperature. Some examples of Falkner-Skan potential flows. Reynolds analogy as a function of pressure gradient.

#### Module-5

#### **Transition to Turbulence**

Stability of laminar flows - concept of small disturbance stability. Temporal instability and Spatial instability. Stability of Blasius and Falkner-Skan profiles. Effect of wall temperature. Transition to turbulence. Affecting parameters

#### **Incompressible Turbulent Mean Flow**

Physical and mathematical description of turbulence. Fluctuations and time averaging. Turbulent flow in pipes and channels. Free turbulence: - jets, wakes and mixing layers.

## **Instrumentation and Measurements:**

Hot wire and Hot film anemometer for turbulence measurements. Schlieren methods for flow visualization. Pressure probes, Interferometer and Smoke method.

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts and equations of viscous flow.
- 2. CO2: Discuss the importance of Navier Stokes equation.
- 3. CO3: Measure the turbulence.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Boundary Layer Theory	H. Schlichting	McGraw- Hill, New York	1979
2	Viscous Fluid flow	Frank White	McGraw Hill	1991
Referen	ce Books		·	
1	Experimental methods for Engineers	J.P. Hollman and W.J. Gajda, Jr	McGraw- Hill	5 th Edition,1989
2	Incompressible fluid flow	Ronald L., Panton	John Wiley & Sons	1984
				•

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VIII Professional Elective - 4

	HELICOPTER DYNAMICS		
Course Code	18AE823	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

#### **Course Learning Objectives:**

1. CO1: Comprehend the basic concepts of helicopter dynamics.

- 2. CO2: Acquire the knowledge of critical speed and rotor bearing system.
- **3.** CO3: Understand the turborotor system and blade vibration.

#### Module-1

**Introduction:** History of helicopter flight. Fundamentals of Rotor Aerodynamics; Momentum theory analysis in hovering flight. Disk loading, power loading, thrust and power coefficients. Figure of merit, rotor solidity and blade loading coefficient. Power required in flight. Axial climb, descent, and autorotation.

**Blade Element Analysis:** Blade element analysis in hovering and forward flight. Rotating blade motion. Types of rotors. Concept of blade flapping, lagging and coning angle. Equilibrium about the flapping hinge, lead/lag hinge, and drag hinge.

Module-2

**Basic Helicopter Performance**: Forces acting on helicopters in forward flight. Methods of achieving translatory flight. Controlling cyclic pitch: Swash-plate system. Lateral tilt with and without conning. Lateral and longitudinal asymmetry of lift in forward flight. Forward flight performance- total power required, effects of gross weight, effect of density altitude. Speed for minimum power, and speed for maximum range. Factors affecting forward speed, and ground effects.

#### Module-3

**Rotor Airfoil Aerodynamics:** Rotor airfoil requirements, effects of Reynolds number and Mach number. Airfoil shape definition, Airfoil pressure distribution. Pitching moment. Maximum lift and stall characteristics, high angle of attack range.

**Rotor Wakes and Blade Tip Vortices:** Flow visualization techniques, Characteristics of rotor wake in hover, and forward flight. Other characteristics of rotor wake.

Module-4

**Helicopter Stability and Control.** Introductory concepts of stability.Forward speed disturbance, vertical speed disturbance, pitching angular velocity disturbance, side-slip disturbance, yawing disturbance. Static stability of helicopters: longitudinal, lateral-directional and directional. Dynamic stability aspects. Main rotor and tail rotor control. Flight and Ground Handling Qualities-General requirements and definitions. Control characteristics, Levels of handling qualities.

Flight Testing- General handing flight test requirements and, basis of limitations.

Module-5

**Standards and Specifications:** Scope of requirements. General and operational requirements. Military derivatives of civil rotorcraft. Structural strength and design for operation on specified surfaces. Rotorcraft vibration classification.

**Conceptual Design of Helicopters:** Overall design requirements. Design of main rotors-rotor diameter, tip speed, rotor solidity, blade twist and aerofoil selection, Fuselage design, Empennage design, Design of tail rotors, High speed rotorcraft.

**Course outcomes:** At the end of the course the student will be able to:

- 1. CO1: Apply the basic concepts of helicopter dynamics.
- 2. CO2: Compute the critical speed by using various methods.
- **3.** CO3: Distinguish the turborotor system stability by using transfer matrix and finite element formulation.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbook/s				
1	Principles of Helicopter Aerodynamics	J. Gordon Leishman	Cambridge University Press	2002
2	Dynamics of Helicopter Flight	George H. Saunders	John Wiley & Sons, Inc, NY	1975
Referen	ce Books			
1	Rotary Wing Aerodynamics	W Z Stepniewski and C N Keys	Dover Publications,Inc, New York.	1984
2	Helicopter Dynamics	ARS Bramwell, George Done, and David Balmford	Butterworth-Heinemann Publication	2nd Edition,2001
3	Basic Helicopter Aerodynamics	John, M. Seddon and Simon Newman	Wiley	2011
4	Helicopter Flight Dynamics	Gareth D. Padfield	Wiley	2 nd Edition,2011
	·			·

#### B.E AERONAUTICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER –VIII

## FLIGHT TESTING

Course Code	18AE824	CIE Marks	40
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60
Credits	03	Exam Hours	03

## **Course Learning Objectives:**

- Comprehend the basic concepts of flight test instrumentation.
- Acquire the knowledge of performance flight testing and stability control.
- Understand the flying qualities.

#### Module-1

**Introduction:** Sequence, Planning and governing regulations of flight testing. Aircraft weight and center of gravity, flight testing tolerances. Method of reducing data uncertainty in flight test data -sources and magnitudes of error, avoiding and minimizing errors.

Flight test instrumentation: Planning flight test instrumentation, Measurement of flight parameters. Onboard and ground based data acquisition system. Radio telemetry.

## Module-2

**Performance flight testing - range, endurance and climb:** Airspeed – in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Estimation of range, endurance and climb performance.

**Performance flight testing -take-off, landing, turning flight:** Maneuvering performance estimation. Take-off and landing -methods, procedures and data reduction.

## Module-3

# Stability and control - longitudinal and maneuvering

Static & dynamic longitudinal stability: - methods of flight testing and data reduction techniques. Stick free stability methods. Maneuvering stability methods & data reduction.

#### Module-4

#### Stability and control - lateral and directional

Lateral and directional static & dynamic stability: - Coupling between rolling and yawing moments. Steady heading slide slip. Definition of Roll stability. Adverse yaw effects. Aileron reversal. Regulations, test techniques and method of data reduction.

#### Module-5

**Flying qualities:** MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test procedures. **Hazardous flight testing:** Stall and spin- regulations, test and recovery techniques. Test techniques for flutter, vibration and buffeting.

**Course Outcomes:** At the end of the course the student will be able to:

- 1. CO1: Measure the flight parameters.
- 2. CO2: Estimate the performance of flight.
- 3. CO3: Apply the FAR regulations.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	0k/s			
1	Flight Testing of Fixed Wing Aircraft	Ralph D Kimberlin	AIAA educational Series	2003
2	Flight Testing- Conventional and Jet Propelled Airplanes	Benson Hamlin	Mac Millan	1946
Referen	ce Books			
1	Flight Test Manual	AGARD		
2	Small Unmanned fixed-wing Aircraft Design	A.J. Keane, A. Sobester	Wiley	2017
3	Flight Performance of Fixed and Rotary Wing Aircraft	A. Filippone	AIAA Series	2006
		•		