CBSE NCERT Solutions for Class 9 Mathematics Chapter 2

Back of Chapter Questions

Exercise: 2.1

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.
(i) $4 x^{2}-3 \mathrm{x}+7$
(ii) $\mathrm{y}^{2}+\sqrt{2}$
(iii) $3 \sqrt{t}+t \sqrt{2}$
(iv) $\mathrm{y}+\frac{2}{\mathrm{y}}$
(v) $x^{10}+y^{3}+t^{50}$

Solution:

(i) Given expression is a polynomial

It is of the form $\mathrm{a}_{\mathrm{n}} x^{n}+\mathrm{a}_{\mathrm{n}-1} x^{\mathrm{n}-1}+\cdots+\mathrm{a}_{1} x+\mathrm{a}_{0}$ where $\mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}-1}, \ldots \mathrm{a}_{0}$ are constants. Hence given expression $4 \mathrm{x}^{2}-3 \mathrm{x}+7$ is a polynomial.
(ii) Given expression is a polynomial

It is of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ where $a_{n}, a_{n-1}, \ldots a_{0}$ are constants. Hence given expression $y^{2}+\sqrt{2}$ is a polynomial.
(iii) Given expression is not a polynomial. It is not in the form of
$a_{n} x^{n}+a_{n-1} 2^{n-1}+\cdots+a_{1} x+a_{0}$
where $a_{n}, a_{n-1}, \ldots a_{0}$ all constants.
Hence given expression $3 \sqrt{\mathrm{t}}+\mathrm{t} \sqrt{2}$ is not a polynomial.
(iv) Given expression is not a polynomial
$y+\frac{2}{y}=y+2 \cdot y^{-1}$
It is not of form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, where $a_{n}, a_{n-1}, \ldots a_{0}$ are constants.

Hence given expression $y+\frac{2}{y}$ is not a polynomial.
(v) Given expression is a polynomial in three variables. It has three variables $\mathrm{x}, \mathrm{y}, \mathrm{t}$.

Hence the given expression $x^{10}+y^{3}+t^{50}$ is not a polynomial in one variable.
2. Write the coefficients of x^{2} in each of the following:
(i) $2+x^{2}+x$
(ii) $2-x^{2}+x^{3}$
(iii) $\frac{\pi}{2} x^{2}+x$
(iv) $\sqrt{2} x-1$

Solution:

(i) The constant multiplied with the term x^{2} is called the coefficient of the x^{2}.

Given polynomial is $2+x^{2}+x$.
Hence, the coefficient of x^{2} in given polynomial is equal to 1 .
(ii) The constant multiplied with the term x^{2} is called the coefficient of the x^{2}.

Given polynomial is $2-x^{2}+x^{3}$.
Hence, the coefficient of x^{2} in given polynomial is equal to -1 .
(iii) The constant multiplied with the term x^{2} is called the coefficient of the x^{2}.

Given polynomial is $\frac{\pi}{2} x^{2}+x$.
Hence, the coefficient of x^{2} in given polynomial is equal to $\frac{\pi}{2}$.
(iv) The constant multiplied with the term x^{2} is called the coefficient of the x^{2}.

Given polynomial is $\sqrt{2} x-1$.
In the given polynomial, there is no x^{2} term.
Hence, the coefficient of x^{2} in given polynomial is equal to 0 .
3. Give one example each of a binomial of degree 35 and of a monomial of degree 100°.

Solution:

Degree of polynomial is highest power of variable in the polynomial. And number of terms in monomial and binomial respectively equals to one and two.
A binomial of degree 35 can be $\mathrm{x}^{35}+7$
A monomial of degree 100 can be $2 x^{100}+9$
4. Write the degree of each of the following polynomials
(i) $5 x^{3}+4 x^{2}+7 x$
(ii) $4-y^{2}$
(iii) $5 t-\sqrt{7}$
(iv) 3

Solution:

(i) Degree of polynomial is highest power of variable in the polynomial. Given polynomial is $5 x^{3}+4 x^{2}+7 x$
Hence, the degree of given polynomial is equal to 3.
(ii) Degree of polynomial is highest power of variable in the polynomial. Given polynomial is $4-y^{2}$
Hence, the degree of given polynomial is 2 .
(iii) Degree of polynomial is highest power of variable in the polynomial Given polynomial is $5 t-\sqrt{7}$

Hence, the degree of given polynomial is 1 .
(iv) Degree of polynomial 1, highest power of variable in the polynomial.

Given polynomial is 3 .
Hence, the degree of given polynomial is 0 .
5. Classify the following as linear, quadratic and cubic polynomials.
(i) $\mathrm{x}^{2}+\mathrm{x}$
(ii) $\mathrm{x}-\mathrm{x}^{3}$
(iii) $y+y^{2}+4$
(iv) $1+\mathrm{x}$
(v) $3 t$
(vi) r^{2}
(vii) $7 x^{3}$

Solution:
(i) Linear, quadratic, cubic polynomials have degrees $1,2,3$ respectively. Given polynomial is $x^{2}+x$
It is a quadratic polynomial as its degree is 2 .
(ii) Linear, quadratic, cubic polynomials have its degree 1, 2, 3 respectively. Given polynomial is $x-x^{3}$.
It is a cubic polynomial as its degree is 3 .
(iii) Linear, quadratic, cubic polynomial has its degree 1,2,3 respectively.

Given polynomial is $\mathrm{y}+\mathrm{y}^{2}+4$.
It is a quadratic polynomial as its degree is 2 .
(v) Linear, quadratic, cubic polynomial has its degree 1,2,3 respectively.

Given polynomial is $1+\mathrm{x}$.
It is a linear polynomial as its degree is 1 .
(v) Linear, quadratic, cubic polynomial has its degree 1,2,3 respectively.

Given polynomial is $3 t$
It is a linear polynomial as its degree is 1 .
(vi) Linear, quadratic, cubic polynomial has its degree 1,2,3 respectively.

Given polynomial is r^{2}.
It is a quadratic polynomial as its degree is 2 .
(vii) Linear, quadratic, cubic polynomial has its degree 1,2,3 respectively.

Given polynomial is $7 \mathrm{x}^{3}$.
It is a cubic polynomial as its degree is 3 .

Exercise: 2.2

1. Find the value of the polynomial $5 x-4 x^{2}+3$ at
(i) $\mathrm{x}=0$
(ii) $\mathrm{x}=-1$
(iii) $\mathrm{x}=2$

Solution:

(i) Given polynomial is $5 x-4 x^{2}+3$

Value of polynomial at $x=0$ is $5(0)-4(0)^{2}+3$
$=0-0+3$
$=3$
Therefore, value of polynomial $5 x-4 x^{2}+3$ at $x=0$ is equal to 3 .
(ii) Given polynomial is $5 x-4 x^{2}+3$

Value of given polynomial at $x=-1$ is $5(-1)-4(-1)^{2}+3$
$=-5-4+3$
$=-6$
Therefore, value of polynomial $5 \mathrm{x}-4 \mathrm{x}^{2}+3$ at $\mathrm{x}=-1$ is equal to -6 .
(iii) Given polynomial is $5 x-4 x^{2}+3$

Value of given polynomial at $x=2$ is $5(2)-4(2)^{2}+3$
$=10-16+3$
$=-3$
Therefore, value of polynomial $5 \mathrm{x}-4 \mathrm{x}^{2}+3$ at $\mathrm{x}=2$ is equal to -3
2. Find $P(0), P(1)$ and $P(2)$ for each of the following polynomials.
(i) $P(y)=y^{2}-y+1$
(ii) $\mathrm{P}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
(iii) $P(x)=x^{3}$
(iv) $\quad \mathrm{P}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+1)$

Solution:

(i) Given polynomial is $\mathrm{P}(\mathrm{y})=\mathrm{y}^{2}-\mathrm{y}+1$
$P(0)=(0)^{2}-0+1$
$=1$
$P(1)=(1)^{2}-1+1$
$=1$
$P(2)=(2)^{2}-2+1$
$=4-2+1$
$=3$
(ii) Given polynomial is $\mathrm{P}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
$\mathrm{P}(0)=2+0+2 .(0)^{2}-(0)^{3}$
$=2$
$P(1)=2+1+2(1)^{2}-(1)^{3}$
$=4$

$$
\begin{aligned}
& P(2)=2+2+2 \cdot(2)^{2}-(2)^{3} \\
& =4
\end{aligned}
$$

(iii) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}$

$$
\begin{aligned}
& P(0)=(0)^{3}=0 \\
& P(1)=(1)^{3}=1 \\
& P(2)=(2)^{3}=8
\end{aligned}
$$

(iv) Given polynomial is $\mathrm{p}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+1)$

$$
\begin{aligned}
& P(0)=(0-1)(0+1) \\
& =(-1)(1) \\
& =-1 \\
& P(1)=(1-1)(1+1) \\
& =(0)(2) \\
& =0 \\
& P(2)=(2-1)(2+1) \\
& =3
\end{aligned}
$$

3. Verify whether the following are zeroes of the polynomial, indicated against them.
(i) $P(x)=3 x+1, x=-\frac{1}{3}$
(ii) $P(x)=5 x-\pi, x=\frac{4}{5}$
(iii) $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-1, \mathrm{x}=1,-1$
(iv) $P(x)=(x+1)(x-2), x=-1,2$
(v) $P(x)=x^{2}, x=0$
(vi) $P(x)=l x+m, x=-\frac{m}{l}$
(vii) $\mathrm{P}(\mathrm{x})=3 \mathrm{x}^{2}-1, \mathrm{x}=\frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
(viii) $P(x)=2 x+1, x=\frac{1}{a}$

Solution:

(i) For a polynomial $\mathrm{P}(\mathrm{n})$, if $\mathrm{n}=$ a is zero then $\mathrm{P}(\mathrm{a})$ must be equal to zero Given polynomial is $\mathrm{P}(\mathrm{x})=3 \mathrm{x}+1$

At $\mathrm{x}=-\frac{1}{3}$
$P\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1$
$=-1+1$
$=0$
Hence $\frac{-1}{3}$ is a zero of polynomial $P(x)=3 x+1$.
(ii) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero.

Given polynomial is $P(x)=5 x-\pi$
At $\mathrm{x}=\frac{4}{5}$
$P\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi$
$=4-\pi$
$\neq 0$
Hence $\mathrm{x}=\frac{4}{5}$ is not a zero of polynomial $5 \mathrm{x}-\pi$
(iii) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero.

Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-1$
At $x=1$
$P(1)=(1)^{2}-1$
$=0$
And $\mathrm{x}=-1$
$P(-1)=(-1)^{2}-1$
$=1-1$
$=0$
Hence $x=1,-1$ are zeroes of polynomial $x^{2}-1$.
(iv) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero.

Given polynomial is $\mathrm{P}(\mathrm{x})=(\mathrm{x}+1)(\mathrm{x}-2)$
At $x=-1$,
$P(-1)=(-1+1)(-1-2)$
$=(0)(-3)$
$=0$
And $x=2$,
$P(2)=(2+1)(2-2)$
$=(0)(3)$
$=0$
Hence $x=-1,2$ are zeroes of polynomial $(x+1)(x-2)$
(v) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero.

Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}$
$\mathrm{P}(0)=(0)^{2}$
$=0$
Hence $x=0$ is zero of polynomial x^{2}.
(vi) For a polynomial $\mathrm{P}(\mathrm{n})$, if $\mathrm{n}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero

Given polynomial is $\mathrm{P}(\mathrm{x})=l \mathrm{x}+\mathrm{m}$
At $\mathrm{x}=-\frac{\mathrm{m}}{\mathrm{l}}$,
$\mathrm{P}\left(-\frac{\mathrm{m}}{l}\right)=l\left(-\frac{\mathrm{m}}{l}\right)+\mathrm{m}$
$=-m+m$
$=0$
Hence $x=-\frac{m}{l}$ is zero of polynomial $l x+m$
(vii) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero then $\mathrm{P}(\mathrm{x})$ must be equal to zero

Given polynomial is $\mathrm{P}(\mathrm{x})=3 \mathrm{x}^{2}-1$
At $\mathrm{x}=\frac{-1}{\sqrt{3}}$,
$P\left(\frac{-1}{\sqrt{3}}\right)=3 \cdot\left(\frac{-1}{\sqrt{3}}\right)^{2}-1$
$=3 \times \frac{1}{3}-1$
$=1-1$
$=0$
Now at $\mathrm{x}=\frac{2}{\sqrt{3}}$,
$P\left(\frac{2}{\sqrt{3}}\right)=3 \cdot\left(\frac{2}{\sqrt{3}}\right)^{2}-1$
$=3 \cdot \frac{4}{3}-1$
$=3$
Therefore, $x=\frac{-1}{\sqrt{3}}$ is zero of polynomial $3 x^{2}-1$.
And $x=\frac{2}{\sqrt{3}}$ is not a zero of polynomial $3 x^{2}-1$
(viii) For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is zero, then $\mathrm{P}(\mathrm{a})$ must be equal to zero.

Given polynomial is $\mathrm{P}(\mathrm{x})=2 \mathrm{x}+1$
At $\mathrm{x}=\frac{1}{2}$,
$P\left(\frac{1}{2}\right)=2 \cdot \frac{1}{2}+1$
$=2$
Hence $\mathrm{x}=\frac{1}{2}$ is not a zero of polynomial $2 \mathrm{x}+1$
4. Find the zero of the polynomials in each of the following cases.
(i) $\mathrm{P}(\mathrm{x})=\mathrm{x}+5$
(ii) $P(x)=x-5$
(iii) $\mathrm{P}(\mathrm{x})=2 \mathrm{x}+5$
(iv) $\mathrm{P}(\mathrm{x})=3 \mathrm{x}-2$
(v) $\quad P(x)=3 x$
(vi) $P(x)=a x, a \neq 0$
(vii) $P(x)=c x+d, c \neq 0, c, d$ are real numbers.

Solution:

For a polynomial $\mathrm{P}(\mathrm{x})$, if $\mathrm{x}=\mathrm{a}$ is said to be a zero of the polynomial $\mathrm{p}(\mathrm{x})$, then $P(a)$ must be equal to zero.
(i) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}+5$

Now, $P(x)=0$
$\Rightarrow \mathrm{x}+5=0$
$\Rightarrow \mathrm{x}=-5$

Hence $x=-5$ is zero of polynomial $P(x)=x+5$
(ii) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}-5$

Now, $\mathrm{P}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}-5=0$
$\Rightarrow \mathrm{x}=5$
Hence $x=5$ is zero of polynomial $P(x)=x-5$.
(iii) Given polynomial is $\mathrm{P}(\mathrm{x})=2 \mathrm{x}+5$

Now, $\mathrm{P}(\mathrm{x})=0$
$\Rightarrow 2 \mathrm{x}+5=0$
$\Rightarrow \mathrm{x}=\frac{-5}{2}$
Hence $x=-\frac{5}{2}$ is zero of polynomial $P(n)=2 x+5$.
(iv) Given polynomial is $\mathrm{P}(\mathrm{x})=3 \mathrm{x}-2$

Now, $\mathrm{P}(\mathrm{x})=0$
$\Rightarrow 3 \mathrm{x}-2=0$
$\Rightarrow \mathrm{x}=\frac{2}{3}$
Hence $x=\frac{2}{3}$ is zero of polynomial $P(n)=3 x-2$
(v) Given polynomial is $P(x)=3 x$

Now, $\mathrm{P}(\mathrm{n})=0$
$\Rightarrow 3 \mathrm{x}=0$
$\Rightarrow \mathrm{x}=0$
Hence $x=0$ is zero of polynomial $P(n)=0$.
(vi) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{ax}$

Now, $\mathrm{P}(\mathrm{x})=0$
$\Rightarrow \mathrm{ax}=0$
$\Rightarrow \mathrm{a}=0$ or $\mathrm{x}=0$
But given that $a \neq 0$
Hence $x=0$ is zero of polynomial $P(x)=a x$.
(vii) Given polynomial is $P(x)=c x+d$
$P(x)=0$
$\Rightarrow \mathrm{cx}+\mathrm{d}=0$
$\Rightarrow \mathrm{cx}=-\mathrm{d}$
$\Rightarrow \mathrm{x}=-\frac{\mathrm{d}}{\mathrm{c}}$
Hence $x=-\frac{d}{c}$ is zero of given polynomial $P(n)=c x+d$

Exercise: 2.3

1. Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by
(i) $\mathrm{x}+1$
(ii) $\mathrm{x}-\frac{1}{2}$
(iii) x
(iv) $x+\pi$
(v) $5+2 x$

Solution:

We know, the remainder of polynomial $P(n)$ when divided by another polynomial $\left(\mathrm{an}+\mathrm{b}\right.$) where a and b are real numbers $\mathrm{a} \neq 0$ is equal to $\mathrm{P}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)$.
(i) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$

When $P(x)$ is divided by $x+1$, then the remainder is $P(-1)$
Hence, remainder $=P(-1)=(-1)^{3}+3 \cdot(-1)^{2}+3(-1)+1$
$=-1+3-3+1$
$=0$
Remainder when polynomial $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$ is divided by $\mathrm{x}+1$ is equal to 0
(ii) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$

When $\mathrm{P}(\mathrm{x})$ is divided by $\mathrm{x}-\frac{1}{2}$, then the remainder is $\mathrm{P}\left(\frac{1}{2}\right)$
Hence, remainder $=P\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{3}+3 \cdot\left(\frac{1}{2}\right)^{2}+3 \cdot\left(\frac{1}{2}\right)+1$
$=\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1$
$=\frac{1}{8}+\frac{9}{4}+1$
$=\frac{19}{8}+1=\frac{27}{8}$
The remainder when polynomial $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$ is equal to $\frac{27}{8}$
(iii) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$

When $P(x)$ is divided by x, then the remainder is $P(0)$
Hence, remainder $=P(0)=(0)^{3}+3 \cdot(0)^{2}+3(0)+1$
$=1$
The remainder when polynomial $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$ is divided by x is equal to 1 .
(iv) Given polynomial is $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$

When $P(x)$ is divided by $x+\pi$, then the remainder is $P(-\pi)$
Hence, remainder $=P(-\pi)=(-\pi)^{3}+3 \cdot(-\pi)^{2}+3(-\pi)+1$
$=-\pi^{3}+3 \pi^{2}-3 \pi+1$
$=(-\pi+1)^{3}$
The remainder when polynomial $P(n)=x^{3}+3 x^{2}+3 x+1$ is divided by $x+\pi$ is equal to $(-\pi+1)^{3}$.
(v) Given polynomial is $P(x)=x^{3}+3 x^{2}+3 x+1$

When $P(x)$ is divided by $5+2 x$, then the remainder is $P\left(-\frac{5}{2}\right)$
Hence, remainder $=P\left(\frac{-5}{2}\right)=\left(\frac{-5}{2}\right)^{3}+3 \cdot\left(\frac{-5}{2}\right)^{2}+3 \cdot\left(\frac{-5}{2}\right)+1$
$=\frac{-125}{8}+3 \cdot\left(\frac{25}{4}\right)-\frac{15}{2}+1$
$=-\frac{125}{8}+\frac{75}{4}-\frac{15}{2}+1$
$=\frac{25}{8}-\frac{15}{2}+1$
$=\frac{-35}{8}+1$

$$
=-\frac{27}{8}
$$

The remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $5+2 x$ is equal to $-\frac{27}{8}$.
2. Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

Solution:

The remainder of polynomial $P(x)$ when divided by another polynomial $(a x+b)$ where a and b are real numbers $\mathrm{a} \neq 0$ is equal to $\mathrm{P}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)$

Given polynomial is $P(x)=x^{3}-a x^{2}+6 x-a$
When $P(x)$ is divided by $x-a$, then the remainder is $P(a)$
Hence, remainder $=P(a)=a^{3}-a .(a)^{2}+6(a)-a$
$=a^{3}-a^{3}+6 a-a$
$=5 \mathrm{a}$
The remainder when polynomial $P(x)=x^{3}-a x^{2}+6 x-a$ is divided by $x-a$ is equal to 5 a
3. Check whether $7+3 x$ is factor of $3 x^{3}+7 x$.

Solution:

Given polynomial is $\mathrm{P}(\mathrm{x})=3 \mathrm{x}^{3}+7 \mathrm{x}$
For $7+3 \mathrm{x}$ to be a factor of $3 \mathrm{x}^{3}+7 \mathrm{x}$, remainder when polynomial $3 \mathrm{x}^{3}+7 \mathrm{x}$ divided by $7+3 x$ must be zero.

We know, the remainder of polynomial $\mathrm{P}(\mathrm{x})$ when divided by another polynomial $(\mathrm{ax}+\mathrm{b})$, where a and b are real numbers $\mathrm{a} \neq 0$ is equal to $\mathrm{P}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)$
Hence, remainder $=P\left(-\frac{7}{3}\right)=3\left(-\frac{7}{3}\right)^{3}+7 \cdot\left(-\frac{7}{3}\right)^{2}$
$=3\left(\frac{343}{27}\right)-\frac{49}{3}$
$=-\frac{343}{9}-\frac{49}{3}$
$=-\frac{490}{9}$
As remainder is not equal to zero

Hence $7+3 x$ is not a factor of $3 x^{2}+7 x$

Exercise: 2.4

1. Determine which of the following polynomials has $(x+1)$ as factor:

$$
\begin{equation*}
x^{3}+x^{2}+x+1 \tag{i}
\end{equation*}
$$

(ii) $x^{4}+x^{3}+x^{2}+x+1$
(iii) $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Solution:

For polynomials $(x+1)$ to be a factor of given polynomial, remainder when given polynomials divided by $(x+1)$ must be equal to zero.

The remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $a \neq 0$ is equal to $p\left(-\frac{b}{a}\right)$
(i) Given polynomial is $p(x)=x^{3}+x^{2}+x+1$

Hence, remainder $=p(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$
$=-1+1-1+1$
$=0$.
Hence $x+1$ is a factor of polynomial $x^{3}+x^{2}+x+1$.
(ii) Given polynomial is $p(x)=x^{4}+x^{3}+x^{2}+x+1$

Hence, remainder $=p(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$
$=1-1+1-1+1$
$=1$
As remainder $\neq 0$,
Hence $x+1$ is not a factor of polynomial $x^{4}+x^{3}+x^{2}+x+1$.
(iii) Given polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$.

Hence, remainder $=p(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=1-3+3-1+1=1$
As remainder $\neq 0$.
Hence $(x+1)$ is not a factor of polynomial $x^{4}+3 x^{3}+3 x^{2}+x+1$
(iv) Given polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$
$\mathrm{p}(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2}=2 \sqrt{2}$
As remainder $\neq 0$,
Hence $(x+1)$ is not a factor of polynomial $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$.
2. Use the factor theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:

$$
\begin{equation*}
p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \tag{i}
\end{equation*}
$$

(ii) $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1, \mathrm{~g}(\mathrm{x})=\mathrm{x}+2$

$$
\begin{equation*}
p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \tag{iii}
\end{equation*}
$$

Solution:

For polynomial $g(x)$ to be a factor of polynomial $p(x)$, remainder when polynomial $\mathrm{p}(\mathrm{x})$ is divided by polynomial $\mathrm{g}(\mathrm{x})$ must be equal to zero.
(i) Given polynomial is $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{x}^{2}-2 \mathrm{x}-1$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.
Hence, remainder $=p(-1)=2(-1)^{3}+(-1)^{3}-2(-1)-1$

$$
\begin{aligned}
& =-2+1+2-1 \\
& =0
\end{aligned}
$$

As remainder when polynomial $p(x)$ is divided by polynomial $g(x)$ is equal to zero, polynomial $\mathrm{g}(\mathrm{x})=\mathrm{x}+1$ is a factor of polynomial $\mathrm{p}(\mathrm{x})=$ $2 x^{3}+x^{2}-2 x-1$.
(ii) Given polynomial is $p(x)=x^{3}+3 x^{2}+3 x+1$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.

Hence, remainder $=p(-2)=(-2)^{3}+3(2)^{2}+3(-2)+1$
$=-8+12-6+1$
$=-1$
Since remainder $\neq 0$, the polynomial $g(x)=x+2$ is not a factor of polynomial $p(x)=x^{3}+3 x^{2}+3 x+1$.
(iii) Given polynomial is $p(x)=x^{3}-4 x^{2}+x+6$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{b}{\mathrm{a}}\right)$.
Hence, remainder $=p(3)=(3)^{3}-4(3)^{2}+3+6$
$=27-36+9$
$=0$
Since reminder $=0$, the polynomial $g(x)=x-3$ is factor of polynomial $p(x)=x^{3}-4 x^{2}+x+6$.
3. Find the value of k if $x-1$ is a factor of $p(x)$ in each of the following cases:
(i) $p(x)=x^{2}+x+k$
(ii) $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+\mathrm{kx}+\sqrt{2}$
(iii) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$
(iv) $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$

Solution:

For polynomial $(x-1)$ to be a factor of polynomial $p(x)$ then the remainder when polynomial $p(x)$ is divided by polynomial $(x-1)$ must be equal to zero.
(i) Given polynomial is $p(x)=x^{2}+x+k$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.

Hence, remainder $=p(1)=(1)^{2}+(1)+k$
$=\mathrm{k}+2$.
Remainder should be equal to zero.
$\Rightarrow \mathrm{k}+2=0$
$\Rightarrow \mathrm{k}=-2$
For $\mathrm{k}=-2, \mathrm{x}-1$ is a factor of polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+\mathrm{k}$.
(ii) Given polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.

Hence, remainder $=p(1)=2(1)^{2}+K(1)+\sqrt{2}$
$=2+\sqrt{2}+\mathrm{k}$
Now, $p(1)=0$
$\Rightarrow 2+\sqrt{2}+\mathrm{k}=0$
$\Rightarrow \mathrm{K}=-(2+\sqrt{2})$
For $\mathrm{k}=-(2+\sqrt{2}), \mathrm{x}-1$ is a factor of polynomial $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+\mathrm{kx}+$ $\sqrt{2}$
(iii) Given polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-\sqrt{2} \mathrm{x}+1$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.

Hence, remainder $=p(1)=k(1)^{2}-\sqrt{2}(1)+1$
$=\mathrm{k}-\sqrt{2}+1$
Now, $p(1)=0$
$\Rightarrow \mathrm{k}+1-\sqrt{2}=0$
For $\mathrm{k}=(\sqrt{2}-1), \mathrm{x}-1$ as factor of polynomial $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$
(iv) Given polynomial is $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$

We know, the remainder of polynomial $p(x)$ when divided by $(a x+b)$ where a and b are real numbers, $\mathrm{a} \neq 0$ is equal to $\mathrm{p}\left(-\frac{\mathrm{b}}{\mathrm{a}}\right)$.

Hence, remainder $=p(1)=k(1)^{2}-3(1)+k$
$=2 \mathrm{k}-3$
Now, $p(1)=0$
$\Rightarrow 2 \mathrm{k}-3=0$
$\Rightarrow \mathrm{k}=\frac{3}{2}$
For $\mathrm{k}=\frac{3}{2}, \mathrm{x}-1$ is a factor of polynomial $\mathrm{p}(\mathrm{x})=\mathrm{kx}^{2}-3 \mathrm{x}+\mathrm{k}$
4. Factorise;
(i) $12 x^{2}-7 x+1$
(ii) $6 x^{2}+5 x-6$
(iii) $6 x^{2}+5 x-6$
(iv) $3 x^{2}-x-4$

Solution:

(i) Given polynomial is $12 \mathrm{x}^{2}-7 \mathrm{x}+1$

$$
\begin{aligned}
& 12 x^{2}-7 x+1 \\
& =12 x^{2}-4 x-3 x+1 \\
& =4 x(3 x-1)-1(3 x-1) \\
& =(4 x-1)(3 x-1) \\
& 12 x^{2}-7 x+1=(3 x-1)(4 x-1)
\end{aligned}
$$

(ii) Given polynomial is $2 x^{2}+7 x+3$

$$
\begin{aligned}
& 2 x^{2}+7 x+3 \\
& =2 x^{2}+6 x+x+3 \\
& =2 x(x+3)+1(x+3) \\
& =(2 x+1)(x+3) \\
& 2 x^{2}+7 x+3=(2 x+1)(x+3)
\end{aligned}
$$

(iii) Given polynomial is $6 x^{2}+5 x-6$

$$
\begin{aligned}
& 6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6 \\
& =3 x(2 x+3)-2(2 x+3) \\
& 6 x^{2}+5 x-6=(3 x-2)(2 x+3)
\end{aligned}
$$

(iv) Given polynomial is $3 x^{2}-x-4$

On splitting middle term

$$
\begin{aligned}
& =3 x^{2}-4 x+3 x-4 \\
& =x(3 x-4)+1(3 x-4) \\
& =(x+1)(3 x-4) \\
& 3 x^{2}-x-4=(x+1)(3 x-4)
\end{aligned}
$$

5. Factorise:
(i) $x^{3}-2 x^{2}-x+2$
(ii) $x^{3}-3 x^{2}-9 x-5$
(iii) $x^{3}+13 x^{2}+32 x+20$
(iv) $2 y^{3}+y^{2}-2 y-1$

Solution:

(i) Given polynomial is $\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2$

Put $\mathrm{x}=1$
$(1)^{3}-2 .(1)^{2}-1+2$
$=1-2-1+2$
$=0$
By trial and error method, we got $(x-1)$ is a factor of given polynomial $x^{3}-2 x^{2}-x+2$.

We can find other factors by long division method.

$$
\begin{gathered}
x-1 \int \frac{x^{3}-2 x^{2}-x+2}{x^{3}-x^{2}}+x^{2}-x-2 \\
\frac{-x^{2}-x}{+x^{2}+x} \\
\frac{-2 x+2}{-2 x+2} \\
\frac{+}{0}
\end{gathered}
$$

Quotient $=x^{2}-x-2$
$=x^{2}-2 x+x-2$
$=x(x-2)+1(x-2)$
$(x+1)(x-1)$
Hence on factorization,
$\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2=(\mathrm{x}-1)(\mathrm{x}+1)(\mathrm{x}-2)$
(ii) Given polynomial is $\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}-5$

Put $\mathrm{x}=-1$ in given polynomial,
$(-1)^{3}-3(-1)^{2}-9(-1)-5$
$=-1-3+9-5$
$=0$
By trial and error method, we got $(x+1)$ is a factor of given polynomial $x^{3}-2 x^{2}-9 x-5$.

We can find other factor by long division method.

$$
x+1\left\{\begin{array}{l}
\begin{array}{l}
x^{3}-3 x^{2}-9 x-5 \\
x^{3}+x^{2}
\end{array} \\
\frac{-4 x^{2}-9 x}{-4 x^{2}-4 x}+x^{2}-4 x-5 \\
\frac{-5 x-5}{+} \\
\frac{-5 x-5}{+}+
\end{array}\right.
$$

Quotient $=x^{2}-4 x-5$
$=x^{2}-5 x+x-5$
$=x(x-5)+1(x-5)$
$=(x+1)(x-5)$
Hence, $x^{3}-3 x^{2}-9 x-5=(x+1)^{2}(x-5)$
(iii) Given polynomial is $x^{3}+13 x^{2}+32 x+20$

Put $\mathrm{x}=-1$ in given polynomial,
$(-1)^{3}+13(-1)^{2}+32(-1)+20$
$=-1+13-32+20$
$=12-12$
$=0$
By trial and error method, we got $(x+1)$ is factor of given polynomial.
The remaining factors can be found by long division method

Quotient $=\mathrm{x}^{2}+12+20$
$=x^{2}+10 x+2 x+20$
$=\mathrm{x}(\mathrm{x}+10)+2(\mathrm{x}+10)$
$=(x+2)(x+10)$
$=(x+2)(x+10)$
Hence, $x^{3}+13 x^{2}+32 x+20=(x+1)(x+2)(x+10)$
(iv) Given polynomial is $2 y^{3}+y^{2}-2 y-1$

Put $y=1$ in given polynomial
2. $(1)^{3}+(1=)^{2}-2(1)-1$
$=2+1-2-1$
$=0$
By trial and error method, we got $(y-1)$ is factor of given polynomial.
The remaining factors can be found by long division method

Quotient $=2 y^{2}+3 y+1$
$=2 y^{2}+2 y+y+1$
$=2 y(y+1)+1(y+1)$
$=(2 y+1)(y+1)$
Hence, $2 y^{3}+y^{2}-2 y-1=(y-1)(2 y+1)(y+1)$

Exercise: 2.5

1. Use suitable identities to find the following products:
(i) $(x+4)(x+10)$
(ii) $(x+8)(x-10)$
(iii) $(3 x+4)(3 x-5)$
(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$
(v) $(3-2 x)(3+2 x)$

Solution:

(i) We know that
$(x+a)(x+b)=x^{2}+(a+b) x+a b$
Given polynomial is $(x+4)(x+10)$
Here, $a=4, b=10$
$(x+4)(x+10)=x^{2}+(4+10) x+40$
$=x^{2}+14 x+40$
(ii) We know that
$(x+a)(x+b)=x^{2}+(a+b) x+a b$
Given polynomial is $(x+8)(x-10)$
Here $\mathrm{a}=8, \mathrm{~b}=-10$
$(x+8)(x-10)=x^{2}+(8-10) x-80$
$=x^{2}-2 x-80$.
(iii) We know that
$(x+a)(x+b)=x^{2}+(a+b) x+a b$
Given polynomial is $(3 x+4)(3 x-5)=3\left(x+\frac{4}{3}\right) 3\left(x-\frac{5}{3}\right)$
$=9\left(x+\frac{4}{3}\right)\left(x-\frac{5}{3}\right)$
Here $\mathrm{a}=\frac{4}{3}, \mathrm{~b}=\frac{-5}{3}$.
$(3 x+4)(3 x-5)=9\left(x+\frac{4}{3}\right)\left(x-\frac{5}{3}\right)$
$=9\left(\mathrm{x}^{2}-\frac{\mathrm{x}}{3}-\frac{20}{9}\right)$
$(3 x+4)(3 x-5)=9 x^{2}-3 x-20$.
(iv) We know that $(x+a)(x-a)=x^{2}-a^{2}$.
Given polynomial is $\left(\mathrm{y}^{2}+\frac{3}{2}\right)\left(\mathrm{y}^{2}-\frac{3}{2}\right)$
Here $\mathrm{x}=\mathrm{y}^{2}, \mathrm{a}=\frac{3}{2}$
$\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}$
$=y^{4}-\frac{9}{4}$.
(v) We know that $(x+a)(x-a)=x^{2}-a^{2}$

Given Polynomial is $(3-2 x)(3+2 x)$
Here, $x=3, a=\frac{3}{2}$
$(3-2 x)(3+2 x)=-2\left(x-\frac{3}{2}\right) \cdot 2\left(x+\frac{3}{2}\right)$

$$
\begin{aligned}
& =-4\left(x+\frac{3}{2}\right)\left(x-\frac{3}{2}\right) \\
& =-4\left(x^{2}-\frac{9}{4}\right) \\
& =-4 x^{2}+9
\end{aligned}
$$

2. Evaluate the following products without multiplying directly:
(i) 103×107
(ii) 95×96
(iii) 104×96

Solution:

(i) $103 \times 107=(100+3) \times(100+7)$

We know that $(x+a)(x+b)=x^{2}+(a+b) x+a b$
Here $\mathrm{x}=100, \mathrm{a}=3, \mathrm{~b}=7$
$(100+3)(100+7)=(100)^{2}+10 \times 100+3 \times 7$
$=10000+1000+21$
$=11021$
(ii) $95 \times 96=(100-5)(100-4)$

We know that $(x+a)(x+b)=x^{2}+(a+b) x+a b$
Here $\mathrm{x}=100, \mathrm{a}=-5, \mathrm{~b}=-4$
$95 \times 96=(100-5)(100-4)$
$=(100)^{2}+(-5+(-4)) 100+(-5)(-4)$
$=10000-900+20$
$=9120$.
(iii) $104 \times 96=(100+4)(100-4)$

We know that $(x+a)(x-a)=x^{2}-a^{2}$
Here $\mathrm{x}=100, \mathrm{a}=4$
$(100+4)(100-4)=(100)^{2}-(4)^{2}$
$=10000-16$
$=9984$
3. Factorise the following using appropriate identities:
(i) $9 x^{2}+6 x y+y^{2}$
(ii) $4 y^{2}-4 y+1$
(iii) $\mathrm{x}^{2}-\frac{\mathrm{y}^{2}}{100}$

Solution:

(i) $\quad 9 x^{2}+6 x y+y^{2}=(3 x)^{2}+2 \cdot 3 x \cdot y+(y)^{2}$

We know that $x^{2}+2 x y+y^{2}=(x+y)^{2}$
Comparing obtained expression with above identity
$9 x^{2}+6 x y+y^{2}=\left(3 x^{2}\right)+2 \cdot 3 x \cdot y+(y)^{2}$
$=(3 x+y)^{2}$
$=(3 x+y)(3 x+y)$
(ii) $\quad 4 y^{2}-4 y+1=(2 y)^{2}-2 \cdot 2 y+1$

We know that $x^{2}-2 x y+y^{2}=(x-y)^{2}$
Comparing obtained expression with above identity

$$
\begin{aligned}
& (2 y)^{2}-2 \cdot 2 y+1=(2 y-1)^{2} \\
& =(2 y-1)(2 y-1)
\end{aligned}
$$

(iii) $x^{2}-\frac{y^{2}}{100}=x^{2}-\left(\frac{y}{10}\right)^{2}$

We know that $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})$

$$
x^{2}-\left(\frac{y}{10}\right)^{2}=\left(x-\frac{y}{10}\right)\left(x+\frac{y}{10}\right)
$$

4. Expand each of the following, using suitable Identities
(i) $\quad(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(3 a-7 b-c)^{2}$
(v) $(-2 x+5 y-3 z)^{2}$
(vi) $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Solution:

We know that
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z$
(i) $(x+2 y+4 z)^{2}=x^{2}+(2 y)^{2}+(4 z)^{2}+2 \cdot x \cdot 2 y+2 \cdot 2 y \cdot 4 z+2 \cdot x \cdot 4 z$
$=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 x z$
(ii) $\quad(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+(z)^{2}+2 \cdot 2 x(-y)+2(-y)(z)+2$.
$2 \mathrm{x} \cdot \mathrm{z}$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$
(iii) $\quad(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+2 \cdot(-2 x) \cdot 3 y+2 \cdot 3 y$.
$2 \mathrm{z}+2 \cdot(-2 \mathrm{x}) \cdot 2 \mathrm{z}$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z$
(iv) $\quad(3 \mathrm{a}-7 \mathrm{~b}-\mathrm{c})^{2}=(3 \mathrm{a})^{2}+(-7 \mathrm{~b})^{2}+(-\mathrm{c})^{2}+2 \cdot 3 \mathrm{a} \cdot(-7 \mathrm{~b})+2$.
$(-7 b)(-c)+2 .(3 a) \cdot(-c)$
$=9 \mathrm{a}^{2}+49 \mathrm{~b}^{2}+\mathrm{c}^{2}-42 \mathrm{ab}+14 \mathrm{bc}-6 \mathrm{ac}$.
(v) $\quad(-2 x+5 y-3 z)^{2}=(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}+2 \cdot(-2 x)(5 y)+2 \cdot$
$(5 y)(-3 z)+2 \cdot(-2 x)(-3 z)$
$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 x z$
(vi) $\left(\frac{1}{4} a-\frac{1}{2} b+1\right)^{2}$
$=\left(\frac{1}{4} a\right)^{2}+\left(\frac{-1}{2} b\right)^{2}+(1)^{2}+2 \cdot\left(\frac{1}{4} a\right)\left(\frac{-1}{2} b\right)+2 \cdot\left(\frac{-1}{2} b\right)(1)+2$ - $\left(\frac{1}{4} \mathrm{a}\right)(1)$

$$
=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{a}{2} .
$$

5. Factorise
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

Solution:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

$$
\begin{gathered}
=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2 \cdot 2 x \cdot 3 y+2 \cdot(3 y)(-4 z)+2 \\
\cdot(2 x)(-4 z)
\end{gathered}
$$

We know that $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z=(x+y+z)^{2}$
$=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2 \cdot 2 x \cdot 3 y+2 \cdot(3 y)(-4 z)+2$ - $(2 \mathrm{x})(-4 \mathrm{z})$
$=(2 x+3 y-4 z)^{2}$
$=(2 x+3 y-4 z)(2 x+3 y-4 z)$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

$$
\begin{aligned}
=(-\sqrt{2} x)^{2}+ & (y)^{2}+(2 \sqrt{2} z)^{2}+2 \cdot(-\sqrt{2} x)(y)+2 \cdot(y)(2 \sqrt{2} z)+2 \\
\cdot & (-\sqrt{2} x)(2 \sqrt{2} z)
\end{aligned}
$$

We know that $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z=(x+y+z)^{2}$
$2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x y=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}$
$=(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z)$
6. Write the following cubes in expanded form:
(i) $\quad(2 x+1)^{3}$
(ii) $(2 a-3 b)^{3}$
(iii) $\left(\frac{3}{2} x+1\right)^{3}$
(iv) $\left(x-\frac{2}{3} y\right)^{3}$

Solution:

(i) We know that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$

Given polynomial is $(2 x+1)^{3}$
$\mathrm{a}=2 \mathrm{x}, \mathrm{b}=1$
$(2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3 \cdot(2 x) \cdot(1)(2 x+1)$
$=8 x^{3}+1+6 x(2 x+1)$
$=8 \mathrm{x}^{3}+1+12 \mathrm{x}^{2}+6 \mathrm{x}$
$=8 \mathrm{x}^{3}+12 \mathrm{x}^{2}+6 \mathrm{x}+1$
(ii) We know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

$$
\begin{aligned}
& (2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-3(2 a)(3 b)(2 a-3 b) \\
& =8 a^{3}-27 b^{3}-18 a b(2 a-3 b) \\
& =8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2} \\
& =8 a^{3}-36 a^{2} b+54 a b^{2}-27 b^{3}
\end{aligned}
$$

(iii) We know that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$

$$
\begin{aligned}
& {\left[\frac{3}{2} x+1\right]^{3}=\left(\frac{3}{2} x\right)^{3}+(1)^{3}+3 \cdot \frac{3 x}{2} \cdot 1\left(\frac{3}{2} x+1\right)} \\
& =\frac{27 x^{3}}{8}+1+\frac{9 x}{2}\left(\frac{3 x}{2}+1\right) \\
& =\frac{27}{8} x^{3}+1+\frac{27 x^{2}}{4}+\frac{9 x}{2} \\
& =\frac{27}{8} x^{3}+\frac{27 x^{2}}{4}+\frac{9 x}{2}+1
\end{aligned}
$$

(iv) We know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

$$
\begin{aligned}
& \left(x-\frac{2}{3} y\right)^{3}=x^{3}-\left(\frac{2 y}{3}\right)^{3}-3 \cdot x \cdot \frac{2}{3} y\left(x-\frac{2}{3} y\right) \\
& =x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right) \\
& =x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2} \\
& =x^{3}-2 x^{2} y+\frac{4}{3} x y^{2}-\frac{8 x}{27} y^{3}
\end{aligned}
$$

7. Evaluate the following using suitable identities
(i) $(99)^{3}$
(ii) $(102)^{3}$
(iii) $(998)^{3}$

Solution:

(i)
$(99)^{3}=(100-1)^{3}$
We know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
$\mathrm{a}=100, \mathrm{~b}=1$
$(99)^{3}=(100-1)^{3}=(100)^{3}-(1)^{3}-3(100)(1)(99)$
$=1000000-1-29,700$
$=970299$.
(ii) $(102)^{3}=(100+2)^{3}$

We know that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
$\mathrm{a}=100, \mathrm{~b}=2$

$$
\begin{aligned}
& \quad(102)^{3}=(100+2)^{3}=(100)^{3}+(2)^{3}+3 \cdot 100 \cdot 2(100+2) \\
& =1000000+8+600 \times 102 \\
& =1000008+61,200 \\
& \\
& =1061208 . \\
& \text { (iii) } \quad(998)^{3}=(1000-2)^{3}
\end{aligned}
$$

We know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
Here $\mathrm{a}=1000, \mathrm{~b}=2$

$$
(998)^{3}=(1000-2)^{3}=(1000)^{3}-8-3(1000)(2)(998)
$$

$$
=1000000000-8-6000 \times 998
$$

$$
=994011992
$$

8. Factorise each of the following:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
(v) $27 \mathrm{p}^{3}-\frac{1}{216}-\frac{9}{2} \mathrm{p}^{2}+\frac{1}{4} \mathrm{p}$

Solution:

(i)

$$
\begin{aligned}
& 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \\
& =(2 a)^{3}+(b)^{3}+3 \cdot(2 a)(b)(2 a+b)
\end{aligned}
$$

We know that $\mathrm{a}^{3}+\mathrm{b}^{3}+3 \mathrm{ab}(\mathrm{a}+\mathrm{b})=(\mathrm{a}+\mathrm{b})^{3}$

$$
8 a^{3}+b^{3}+3(2 a) \cdot b(2 a+b)=(2 a+b)^{3}
$$

$$
=(2 a+b)(2 a+b)(2 a+b)
$$

(ii) We know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

$$
\begin{aligned}
& 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}=(2 a)^{3}-(b)^{3}-3 \cdot(2 a)(b)(2 a-b) \\
& =(2 a-b)^{3} \\
& =(2 a-b)(2 a-b)(2 a-b)
\end{aligned}
$$

(iii) we know that $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$

$$
\begin{aligned}
& 27-125 a^{3}-135 a+225 a^{2}=-\left(125 a^{3}-27-225 a^{2}+135 a\right) \\
& =-\left[(5 a)^{3}-(3)^{3}-3 \cdot(5 a)(3)(5 a-3)\right]
\end{aligned}
$$

$=-[5 a-3]^{3}$
$=(3-5 \mathrm{a})^{3}$
$=(3-5 a)(3-5 a)(3-5 a)$
(iv) we know that $a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}$
$64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
$=(4 a)^{3}-(3 b)^{3}-3 \cdot(4 a) \cdot(3 b)(4 a-3 b)$
$=(4 a-3 b)^{3}$
$=(4 a-3 b)(4 a-3 b)(4 a-3 b)$
(v) we know that $a^{3}-b^{3}-3 a b(a-b)=(a-b)^{3}$
$27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
$=(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3 \cdot(3 p) \cdot \frac{1}{6}\left(3 p-\frac{1}{6}\right)$
$=\left(3 p-\frac{1}{6}\right)^{3}$
$=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)$
9. Verify
(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Solution:

(i) We know that $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$\Rightarrow x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y)$
$=(x+y)\left((x+y)^{2}-3 x y\right)$
We know that $(x+y)^{2}=x^{2}+y^{2}+2 x y$
Now, $x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}+2 x y-3 x y\right)$
$=(x+y)\left(x^{2}+y^{2}-x y\right)$
Hence verified.
(ii) We know that

$$
(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)
$$

$$
\begin{aligned}
& \Rightarrow x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \\
& =(x-y)\left((x-y)^{2}+3 x y\right)
\end{aligned}
$$

We know that $(x-y)^{2}=x^{2}+y^{2}-2 x y$
$x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}-2 x y+3 x y\right)$
$=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{xy}\right)$
Hence verified.
10. Factorise each of the following
(i) $27 y^{3}+125 z^{3}$
(ii) $64 m^{3}-343 n^{3}$

Solution:

(i)

$$
27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}
$$

We know that $x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)$

$$
\begin{aligned}
& (3 y)^{3}+(5 z)^{3}=(3 y+5 z)\left((3 y)^{2}+(5 z)^{2}-(3 y)(5 z)\right) \\
& 27 y^{3}+125 z^{3}=(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right) \\
& \text { (ii) } \quad 64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}
\end{aligned}
$$

We know that $(x)^{3}-(y)^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

$$
\begin{aligned}
& (4 m)^{3}-(7 n)^{3}=(4 m-7 n)\left((4 m)^{2}+(4 m) 7 n+(7 n)^{2}\right) \\
& =(4 m-7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)
\end{aligned}
$$

11. Factorise $27 x^{2}+y^{3}+z^{3}-9 x y z$

Solution:

$27 x^{2}+y^{3}+z^{3}-9 x y z$
$=(3 x)^{3}+(y)^{3}+(z)^{3}-3(3 x)(y)(z)$
We know that
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
Now, $27 \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-9 \mathrm{xyz}=(3 \mathrm{x})^{3}+(\mathrm{y})^{3}+(\mathrm{z})^{3}-3(3 \mathrm{x})(\mathrm{y})(\mathrm{z})$
$=(3 x+y+z)\left((3 x)^{2}+(y)^{2}+(z)^{2}-3 x y-y z-3 x z\right)$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)$
12. Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+\right.$ $\left.(x-z)^{2}\right]$

Solution:

We know that

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right) \\
& =(x+y+z) \frac{1}{2}\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 x z\right) \\
& =(x+y+z) \frac{1}{2}\left(x^{2}+y^{2}-2 x y+y^{2}+z^{2}-2 y z+x^{2}+z^{2}-2 x z\right)
\end{aligned}
$$

We know that $\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}=(\mathrm{a}-\mathrm{b})^{2}$
$=\frac{1}{2}(x+y+z)\left((x+y)^{2}+(y-z)^{2}+(x-z)^{2}\right)$
$x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(x-z)^{2}\right)$
Hence verified.
13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$

Solution:

We know that,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
Given that $x+y+z=0$
$x^{3}+y^{3}+z^{3}-3 x y z=(0)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
$\Rightarrow x^{3}+y^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=0$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=3 \mathrm{xyz}$

Hence proved

14. Without actually calculating the cubes, find the value of each of the following:
(i) $\quad(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Solution:

(i) $\quad(-12)^{3}+(7)^{3}+(5)^{3}$

Let $\mathrm{x}=-12, \mathrm{y}=7, \mathrm{z}=5$
$x+y+z=-12+7+5=0$
We know that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-\right.$ $y z-x z)$

But here $x+y+z=0$
Hence, $x^{3}+y^{3}+z^{3}=3 x y z$
Therefore, $(-12)^{3}+(7)^{3}+(5)^{3}=3(12)(7)(5)$
$=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Let $\mathrm{x}=-28, \mathrm{y}=-15, \mathrm{z}=-13$
$x+y+z=28-15-13$
$=0$
We know that $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{xy}-\right.$ $y z-x z)$

But here $x+y+z=0$
Hence, $x^{3}+y^{3}+z^{3}=3 x y z$
Therefore, $(28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)$
$=16380$
15. Give possible expressions for the length and breadth of each of the following rectangles, in which the areas are given
(i) Area: $25 a^{3}-35 a+12$
(ii) Area: $35 y^{3}-13 y-12$

Solution:

(i) \quad Given area $=25 a^{2}-35 a+12$
$=25 a^{2}-15 a-20 a+12$
$=5 a(5 a-3)-4(5 a-3)$
$=(5 a-3)(5 a-4)$
We know that area $=$ length \times breadth
So possible expression for breadth $=5 a-3$
possible expression for breadth $=5 \mathrm{a}-4$.
(ii) \quad Given area $=35^{2}+13 y^{2}-12$
$=35 y^{2}+28 y-15 y-12$
$=7 y(5 y+4)-3(5 y+4)$
$=(5 y+4)(7 y-3)$

We know that area $=$ length \times breadth
So possible expression for breadth $=5 y+4$
possible expression for breadth $=7 \mathrm{y}-3$.
16. What are the possible expressions for the dimension of the cuboids whose volume are given below?
(i) Volume $=3 x^{2}-12 x$
(ii) Volume $=12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$

Solution:

(i) Given volume $=3 x^{2}-12 x$
$=3\left(x^{2}-4 \mathrm{x}\right)$
$=3 \mathrm{x}(\mathrm{x}-4)$
We know that Volume of cuboid $=$ length \times breadth \times height
Possible value of length of cuboid $=3$
Possible expression for breadth $=\mathrm{x}$
Possible expression for height $=x-4$.
(ii) \quad Given Volume $=12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$
$=4 \mathrm{k}\left(3 \mathrm{y}^{2}+2 \mathrm{y}-5\right)$
$=4 \mathrm{k}\left(3 \mathrm{y}^{2}+5 \mathrm{y}-3 \mathrm{y}-5\right)$
$=4 \mathrm{k}(\mathrm{y}(3 \mathrm{y}+5)-1(3 \mathrm{y}+5)$
$=4 \mathrm{k}(3 \mathrm{y}+5)(\mathrm{y}-1)$
Possible value of length of cuboid $=4 \mathrm{k}$
Possible expression for breadth $=3 y+5$
Possible expression for breadth $=y-1$.

