81. The unit's place digit in the number
$$13^{25} + 11^{25} - 3^{25}$$
 is

(a) 0 (b) 1 (c) 2 (d) 3

82. The angle of intersection of the curves
$$y = x^2$$
,
 $6y = 7 - x^3$ at (1, 1) is

digit in the number

on of the curves
$$y = x^2$$
,

83. The value of x for which the equation
$$1 + r + r^2 + ... + r^x$$

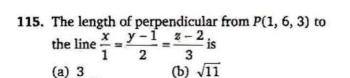
= $(1 + r)(1 + r^2)(1 + r^4)(1 + r^8)$ holds is

(a) $\frac{\pi}{4}$

(c) $\frac{\pi}{2}$

83. The value of x for which the equation
$$1 + r + r^2 + ... + r^x$$

(b) $\frac{\pi}{2}$


(d) None of these

	(a) 12 (b) 13	(a) $x^2 + ax + a^2 = 0$
	(c) 14 (d) 15	(b) $x^2 + a^2x + a = 0$
84	I. If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every real number x, then	(c) $x^2 - ax + a^2 = 0$
	x^2+1	(d) $x^2 - a^2x + a = 0$
	minimum value of $f(x)$	93. The value of
	(a) does not exist (b) is equal to 1	The state of the s
	(c) is equal to 0 (d) is equal to -1	$1 + \sum_{k=0}^{14} \left\{ \cos \frac{(2k+1)}{15} \pi + i \sin \frac{(2k+1)}{15} \pi \right\} is$
85	. The value of a for which the sum of the squares	(a) 0 (b) -1
	of the roots of the equation	(c) 1 (d) i
	$x^2 - (a-2)x - a - 1 = 0$ assumes the least	94. Locus of complex number z such the
	value is	$ z-1 ^2 + z+1 ^2 = 4$ is
	(a) 0 (b) 1 (c) 2 (d) 3	(a) parabola (b) hyperbola
06		(c) circle (d) None of these
00	Suppose A ₁ , A ₂ ,, A ₃₀ are thirty sets each	95. If α , β are the roots of $ax^2 + bx + c = 0$; $\alpha +$
	having 5 elements and $B_1, B_2,, B_n$ are n sets	
	each with 3 elements, let $\bigcup_{i=1}^{n} A_i = \bigcup_{j=1}^{n} B_j = S$	$\beta + h$ are the roots of $px^2 + qx + r = 0$; a
	and each element of S belongs to exactly 10 of	D_1 , D_2 the respective discriminants of the
	the A_i 's and exactly 9 of the B_i 's. Then n is equal	equations, then $D_1:D_2$ is equal to
	to	(a) $\frac{u}{r^2}$ (b) $\frac{v}{r^2}$
	(a) 115 (b) 83	.2 q
	(c) 45 (d) None of these	(a) $\frac{a^2}{p^2}$ (b) $\frac{b^2}{q^2}$ (c) $\frac{c^2}{r^2}$ (d) None of these
87.	The number of onto mappings from the set	V Section 25 mg
	$A = \{1, 2,, 100\}$ to set $B = \{1, 2\}$ is	96. If a, b, c are three unequal numbers such the
	(a) $2^{100} - 2$ (b) 2^{100}	a, b, c are in AP and $b-a$, $c-b$, a are in C
	(c) $2^{99} - 2$ (d) 2^{99}	then a: b: c is (a) 1:2:3 (b) 1:3:4
88.	Which of the following functions is inverse of	(c) 2:3:4 (d) 1:2:4
	itself?	97. The number of divisors of 3×7^3 , 7×11^2 a
	(a) $f(x) = \frac{1-x}{1+x}$ (b) $f(x) = 3^{\log x}$	2×61 are in
	1	(a) AP (b) GP
	(c) $f(x) = 3^{x(x+1)}$ (d) None of these	(c) HP (d) None of these
89.	If $f(x) = \log(x + \sqrt{x^2 + 1})$, then $f(x)$ is	98. Suppose a , b , c are in AP and $ a $, $ b $, $ c < 1$,
	(a) even function	$x = 1 + a + a^2 + \dots \infty$
•	(b) odd function	$y = 1 + b + b^2 + \dots \infty$
	(c) periodic function	
	(d) None of the above	and $z = 1 + c + c^2 + \dots \infty$
90.	The solution of $\log_{99} (\log_2 (\log_3 x)) = 0$ is	then x , y , z are in
	(a) 4 (b) 9	(a) AP (b) GP
	(c) 44 (d) 99	(c) HP (d) None of these
91.	If $n = 1000$, then the value of sum	99. $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \infty$ is
	$\frac{1}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$ is	5 5 5 5° 16 11
	$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{1000} n}$ is	(a) $\frac{25}{35}$ (b) $\frac{11}{9}$
	(a) 0 (b) 1	35 7
	(c) 10 (d) 10 ³	(a) $\frac{16}{35}$ (b) $\frac{11}{8}$ (c) $\frac{35}{16}$ (d) $\frac{7}{16}$
00	16 1 2 1	

92. If ω and ω^2 are the two imaginary cube roots of unity, then the equation whose roots are $a\omega^{317}$ and $a\omega^{382}$, is

100. If the sum of first *n* natural numbers is $\frac{1}{78}$ times the sum of their cubes, then the value of *n* is

	(a) 11 (b) 12 (c) 13 (d) 14		the ellipse, then $(S_1M_1)(S_2M_2)$ is equal to (a) 16 (b) 9
101.	If $p = \cos 55^{\circ}$, $q = \cos 65^{\circ}$ and $r = \cos 175^{\circ}$, then		(c) 4 (d) 3
101.	1 1 r.	110.	If the chords of contact of tangents from two
	the value of $\frac{1}{p} + \frac{1}{q} + \frac{r}{pq}$ is	110.	points (x_1, y_1) and (x_2, y_2) to the hyperbola
			$4x^2 - 9y^2 - 36 = 0$ are at right angles, then
	(a) 0 (b) -1		4x - yy - 30 = 0 are at right angles, then
	(c) 1 (d) None of these		$\frac{x_1}{x_2}$ is equal to
102.	The value of sin 20° (4 + sec 20°) is		$y_1 y_2$
			(a) $\frac{9}{}$ (b) $-\frac{9}{}$
	(a) 0 (b) 1 (c) $\sqrt{2}$ (d) $\sqrt{3}$		$\frac{(a)}{4} = \frac{(b)}{4} = \frac{1}{4}$
103.	If $4 \sin^{-1} x + \cos^{-1} x = \pi$, then x is equal to		(a) $\frac{9}{4}$ (b) $-\frac{9}{4}$ (c) $\frac{81}{16}$ (d) $-\frac{81}{16}$
	(a) 0 (b) $\frac{1}{3}$		
	(2) 2	111.	In a chess tournament where the participants
. 2	(c) $-\frac{1}{2}$ (d) 1		were to play one game with one another, two players fell ill having played 6 games each,
			without playing among themselves. If the total
104.	If the line $\frac{x}{a} + \frac{y}{b} = 1$ moves such that		number of games is 117, then the number of
			participants at the beginning was
	$\frac{1}{c^2} + \frac{1}{b^2} = \frac{1}{c^2}$ where c is a constant, then the		(a) 15 (b) 16
	u b c		(c) 17 (d) 18
	locus of the foot of the perpendicular from the	112	The coefficient of x^2 term in the binomial
	origin to the line is	112.	
	(a) straight line (b) circle		expansion of $\left(\frac{1}{3}x^{1/2} + x^{-1/4}\right)^{10}$ is
	(c) parabola (d) ellipse		
105.	The straight line whose sum of the intercepts		(a) $\frac{70}{243}$ (b) $\frac{60}{423}$
	on the axes is equal to half of the product of the		
	intercepts, passes through the point		(c) $\frac{50}{12}$ (d) None of these
			$\frac{(c)}{13}$ (d) None of these
	(a) (1, 1) (b) (2, 2) (c) (3, 3) (d) (4, 4)	112	The solution set of the equation
120202		. 113.	
106.	If the circle $x^2 + y^2 + 4x + 22y + c = 0$,		$\left[4\left(1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\right)\right]^{\log_2 x}$
	bisects the circumference of the circle		7 27)
	$x^{2} + y^{2} - 2x + 8y - d = 0$, then $c + d$ is equal		r / Jog 2
	to		$= \left[54\left(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\right)\right]^{\log_x 2}$ is
	(a) 60 (b) 50		3 9 27
	(c) 40 (d) 30		[1] [1]
			(a) $\left\{4, \frac{1}{4}\right\}$ (b) $\left\{2, \frac{1}{2}\right\}$
107.	The radius of the circle whose tangents are		
	x + 3y - 5 = 0, $2x + 6y + 30 = 0$, is		(c) $\{1, 2\}$ (d) $\{8, \frac{1}{8}\}$
	(a) $\sqrt{5}$ (b) $\sqrt{10}$		(3, 8)
	(c) $\sqrt{15}$ (d) $\sqrt{20}$		$r^2 r^3 r^4$
108.	The latusrectum of the parabola $y^2 = 4ax$	114.	If $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ and if $ x < 1$
	whose focal chord is PSQ such that $SP = 3$ and		then
	SQ = 2 is given by		(a) $x = 1 - y + \frac{y^2}{2} - \frac{y^3}{3} + \dots$
	(a) $\frac{24}{5}$ (b) $\frac{12}{5}$		(a) $x = 1 - y + \frac{1}{2} - \frac{1}{3} + \dots$
			$v^2 v^3$
	(c) $\frac{6}{5}$ (d) $\frac{1}{5}$		(b) $x = 1 + y + \frac{y^2}{2} + \frac{y^3}{3} + \dots$
	5 5		4 J
109.	If M_1 and M_2 are the feet of the perpendiculars		(c) $x = y - \frac{y^2}{21} + \frac{y^3}{21} - \frac{y^4}{41} + \dots$
-1-1-1-10 E	from the foci S_1 and S_2 of the ellipse		2! 3! 4!
			(d) $x = y + \frac{y^2}{21} + \frac{y^3}{31} + \frac{y^4}{41} + \dots$
	$\frac{x^2}{2} + \frac{y^2}{16} = 1$ on the tangent at any point P on		(a) $x = y + \frac{1}{21} + \frac{1}{31} + \frac{1}{41} + \dots$
	9 10		2. 3. 7.

(d) 5

116. The plane 2x + 3y + 4z = 1 meets the coordinate axes in A, B, C. The centroid of the triangle ABC is

(a)
$$(2, 3, 4)$$
 (b) $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$ (c) $\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$ (d) $\left(\frac{3}{2}, \frac{3}{3}, \frac{3}{4}\right)$

117. The vector equation of the sphere whose centre is the point (1, 0, 1) and radius is 4, is

(a)
$$|\vec{\mathbf{r}} - (\hat{\mathbf{i}} + \hat{\mathbf{k}})| = 4$$

(b)
$$|\vec{r} + (\hat{i} + \hat{k})| = 4^2$$

(c)
$$\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4$$

(c) $\sqrt{13}$

(d)
$$\overrightarrow{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4^2$$

118. The plane $2x - (1 + \lambda)y + 3\lambda z = 0$ passes through the intersection of the planes

(a)
$$2x - y = 0$$
 and $y + 3z = 0$

(b)
$$2x - y = 0$$
 and $y - 3z = 0$

(c)
$$2x + 32 = 0$$
 and $y = 0$

(d) None of the above

119. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = \sqrt{37}$, $|\vec{b}| = 3$, $|\vec{c}| = 4$, then the angle between \vec{b} and \vec{c} is

(a) 30°

(b) 45°

(c) 60°

(d) 90°

120. If $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{k}$, $\vec{c} = 2\hat{i} + \hat{j}$, then value of λ such that $\vec{a} + \lambda \vec{c}$ is perpendicular to \vec{b} is

(3)

(a) 1

(b) - 1

(c) 0

(d) None of these

121. The total work done by two forces $\vec{\mathbf{F}}_1 = 2\hat{\mathbf{i}} - \hat{\mathbf{j}}$ and $\vec{\mathbf{F}}_2 = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ acting on a particle when it is displaced from the point $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ to $5\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is

(a) 8 unit

(b) 9 unit

(c) 10 unit

(d) 11 unit

122. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors, and let \vec{p} , \vec{q} and \vec{r} be vectors defined by the relations

$$\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]} \quad \text{and} \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}$$

Then, the value of the expression

$$(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$$
 is equal to

(a) 0

(b) 1

(c) 2

(d) 3

123. If
$$\begin{vmatrix} x^n & x^{n+2} & x^{n+3} \\ y^n & y^{n+2} & y^{n+3} \\ z^n & z^{n+2} & z^{n+3} \end{vmatrix}$$

$$=(y-z)(z-x)(x-y)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$$

then n is equal to

(a) 2

(b) -2

(c) - 1

(d) 1

124. If $a_1, a_2, ..., a_n$... are in GP and $a_i > 0$ for each i, then the determinant

$$\Delta = \begin{vmatrix} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16} \end{vmatrix}$$

is equal to

(a) 0

(b) 1

(c) 2

(d) n

125. The values of a for which the system of equations x + y + z = 0, x + ay + az = 0, x - ay + z = 0, possesses non-zero solutions, are given by

(a) 1, 2

(b) 1, -1

(c) 1, 0

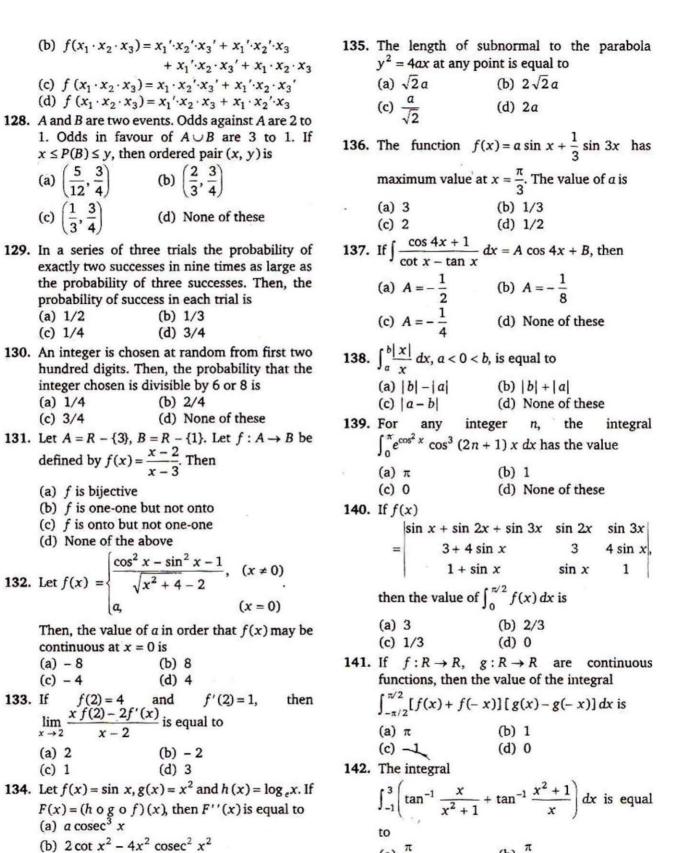
(d) None of these

126. If a square matrix A is such that $AA^T = I = A^TA$, then |A| is equal to

(a) 0

(b) ± 1

(c) ± 2


(d) None of these

The Boolean function of the input/output table as given below

V	Input			
x_1	x ₂	x3	s	
1	1	1	1	
1	1	0	1	
1	0	1	1	
1	0	0	0	
0	1	0	0	
0	0	0	1	

is

(a)
$$f(x_1 \cdot x_2 \cdot x_3) = x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_3' + x_1 \cdot x_2' \cdot x_3 + x_1' \cdot x_2' \cdot x_3$$

(a) $\frac{-4}{4}$ (b) $\frac{-2}{2}$ (c) π (d) 2

(c) $2x \cot x^2$ (d) $-2 \csc^2 x$

143. The value of the integral
$$\int_0^{2a} \frac{f(x)}{f(x) + f(2a - x)} dx$$
 is (a) 0 (b) a

(c) 2a

are

the incentre, is

144. The area bounded by the curves
$$y = xe^x$$
, $y = xe^{-x}$ and the line $x = 1$, is

(d) None of these

(a)
$$\frac{2}{e}$$
 sq unit (b) $1 - \frac{2}{e}$ sq unit (c) $\frac{1}{e}$ sq unit (d) $1 - \frac{1}{e}$ sq unit

145. The solution of
$$x dy - y dx + x^2 e^x dx = 0$$
 is

(a)
$$\frac{y}{x} + e^x = c$$
 (b) $\frac{x}{y} + e^x = c$ (c) $x + e^y = c$ (d) $y + e^x = c$

(a)
$$P + Q + R = 0$$

(a)	sin A	sin B	sin C	= 0	
(4)	P	Q	R	•	
	P sec A				. 1
		100			

(b) $P \cos A + O \cos B + R \cos C = 0$

148. The resultant of two forces P and Q is R. If Q is doubled, R is doubled and if Q is reversed, R is again doubled. If the ratio

$$P^2: Q^2: R^2 = 2: 3: x$$
, then x is equal to

149. A particle is dropped under gravity from rest from a height
$$h$$
 ($g = 9.8 \text{ m/s}^2$) and it travels a distance $\frac{9h}{25}$ in the last second, the height h is

Answer - Key

81.	b	82. c	83. d	84. d	85. b	86. c	87. a	88. a	89. b	90. b
91.	b	92. a	93. c	94. c	95. a	96. a	97. a	98. c	99. c	100 . b
101.	a	102. d	103. b	104. b	105. b	106. b	107. b	108. a	109. b	110. d
111.	a	112. a	113. a	114. d	115. c	116. c	117. a	118. b	119. c	120. b
121.	d	122. d	123. c	124. a	125. b	126. b	127. a	128. a	129. c	130. a
131.	a	132. c	133. c	134. d	135. d	136. c	137. b	138. a	139. c	140. c
141.	d	142. d	143. b	144 . a	145. a	146. b	147 . a	148. d	149. b	150. c