Mathematics

Single correct answer type:

1. The value of $\frac{2\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right)}$ is
(A) $\frac{5}{\sqrt{2}}(1+i)$
(B) $\frac{10}{\sqrt{2}}(1+i)$
(C) $\frac{10}{\sqrt{2}}(1-i)$
(D) $\frac{5}{\sqrt{2}}(1-i)$
(E) $\frac{1}{\sqrt{2}}(1+i)$

Solution: (B)
$\frac{2\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.2\left(\cos 30^{\circ} i \sin 30^{\circ}\right)}=\frac{2 \cdot e^{i 75^{\circ}}}{0.2 \cdot e^{i 30^{\circ}}}$
$\left(\because \cos \theta+i \sin \theta=e^{i \theta}\right)$
$=10 \cdot e^{i 75^{\circ}} \cdot e^{-i 30^{\circ}}$
$=10 \cdot e^{i 45^{\circ}}$
$=10\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
$\left(e^{i \theta}=\cos \theta+i \sin \theta\right)$
$=10\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$
$=\frac{10}{\sqrt{2}}(1+i)$
2. If the conjugate of a complex number z is $\frac{1}{i-1}$, then z is
(A) $\frac{1}{i-1}$
(B) $\frac{1}{i+1}$
(C) $\frac{-1}{i-1}$
(D) $\frac{-1}{i+1}$
(E) $\frac{1}{i}$

Solution: (D)
$z=\frac{1}{i-1} \times \frac{i+1}{i+1}$
$\Rightarrow \quad z=\frac{i+1}{i^{2}-1^{2}}$
$z=-\frac{1}{2} \times(i+1)$
$\Rightarrow \bar{z}=-\frac{1}{2}(1-i) \times \frac{(1+i)}{(1+i)}$
$=-\frac{1}{2} \frac{(1+1)}{(1+i)}=-\frac{1}{(1+i)}$
3. The value of $\left(i^{18}+\left(\frac{1}{i}\right)^{25}\right)^{3}$ is equal to
(A) $\frac{1+i}{2}$
(B) $2+2 i$
(C) $\frac{1-i}{2}$
(D) $\sqrt{2}-\sqrt{2} i$
(E) $2-2 i$

Solution: (E)
$\left\{i^{18}+\left(\frac{1}{i}\right)^{25}\right\}^{3}=\left\{\left(i^{4}\right)^{4} \cdot i^{2}+\left(\frac{1}{i^{4}}\right)^{6} \cdot \frac{1}{i}\right\}^{3}$
$=\left[1 \cdot(-1)+1 \cdot \frac{1}{i}\right]^{3}$
$=\left[\frac{1}{i}-1\right]^{3}$
$=\frac{1}{i^{3}}-1+\frac{3}{i}\left(1-\frac{1}{i}\right)$
$=i-1-3 i+3$
$=2-2 i$
4. The modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$ is
(A) 2
(B) $\sqrt{2}$
(C) 4
(D) 8
(E) 10

Solution: (A)

$$
\begin{aligned}
& \frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{1^{2}-i^{2}} \\
& =\frac{1+i^{2}+2 i-1-i^{2}+2 i}{2}=\frac{4 i}{2} \\
& =2 i=0+2 i
\end{aligned}
$$

Modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}=|0+2 i|$
$=\sqrt{0^{2}+2^{2}}=\sqrt{4}=2$
5. If $z=e^{\frac{i 4 \pi}{3}}$, then $\left(z^{192}+z^{194}\right)^{3}$ is equal to
(A) -2
(B) -1
(C) $-i$
(D) $-2 i$
(E) 0

Solution: (B)
$z=e^{\frac{i 4 \pi}{3}}$
$z=\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$
$z=-\frac{1}{2}-i \frac{\sqrt{3}}{2}$
$z=\omega^{2}$
$\left(z^{192}+z^{194}\right)^{3}=\left[\left(\omega^{2}\right)^{192}+\left(\omega^{2}\right)^{194}\right]^{3}$
$=\left[\omega^{384}+\omega^{388}\right]^{3}$
$=\left[\left(\omega^{3}\right)^{128}+\left(\omega^{3}\right)^{129} \cdot \omega\right]^{3}$
$=(1+\omega)^{3}$
$=1+\omega^{3}+3 \omega^{2}+3 \omega$
$=1+1+3\left(\omega+\omega^{2}\right)$
$=1+1+3(-1)$
$=1+1-3$
$=-1$
6. If a and b are real numbers and $(a+i b)^{11}=1+3 i$, then $(b+i a)^{11}$ is equal to (A) $i+3$
(B) $1+3 i$
(C) $1-3 i$
(D) 0
(E) $-i-3$

Solution: (E)
Given, $(a+i b)^{11}=1+3 i$
So, $(a-i b)^{11}=1-3 i$
Then, $(b+i a)^{11}=(i)^{11}\left\{\frac{b}{i}+a\right\}^{11}$
$=(i)^{11}\{-b i+a\}^{11}$
$=-i(a-i b)^{11}$
From Equation (i), we get
$=-i(1-3 i)$
$=-i+3 i^{2}$
$=-i-3$
7. If $\alpha \neq \beta, \alpha^{2}=5 \alpha-3, \beta^{2}=5 \beta-3$, then the equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is
(A) $3 x^{2}-19 x-3=0$
(B) $3 x^{2}+19 x-3=0$
(C) $x^{2}+19 x+3=0$
(D) $3 x^{2}-19 x-19=0$
(E) $3 x^{2}-19 x+3=0$

Solution: (E)
Given, $\alpha^{2}=5 \alpha-3$ and $\beta^{2}=5 \beta-3$
$\alpha^{2}-5 \alpha+3=0$
$\Rightarrow \alpha=\frac{5 \pm \sqrt{25-12}}{2}$
$=\frac{5 \pm \sqrt{13}}{2}$
Similarly, $\beta=\frac{5 \pm \sqrt{13}}{2}$
$\because \alpha \neq \beta$
$\therefore \alpha=\frac{5+\sqrt{13}}{2}, \beta=\frac{5-\sqrt{13}}{2}$
Now, addition of roots
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{5+\sqrt{13}}{5-\sqrt{13}}+\frac{5-\sqrt{13}}{5+\sqrt{13}}=\frac{19}{3}$
Multiplication of roots $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}=1$
$\therefore \quad x^{2}-\left(\frac{19}{3}\right) x+1=0$
$\Rightarrow 3 x^{2}-19 x+3=0$
8. The focus of the parabola $y^{2}-4 y-x+3=0$ is
(A) $\left(\frac{3}{4}, 2\right)$
(B) $\left(\frac{3}{4},-2\right)$
(C) $\left(2, \frac{3}{4}\right)$
(D) $\left(\frac{-3}{4}, 2\right)$
(E) $\left(2, \frac{-3}{4}\right)$

Solution: (D)
$y^{2}-4 y-x+3=0$
$(y-2)^{2}-4-x+3=0$
$(y-2)^{2}-x-1=0$
$(y-2)^{2}=(x+1)$

Let $Y^{2}=X$
Here, $Y=(y-2), X=(x+1)$
Vertices $(X=0, Y=0)=(2,-1)$
Equation (i) comparing on $y^{2}=4 a x$
$4 a=1$
$\Rightarrow a=\frac{1}{4}$
\therefore Focus $=\left(\frac{1}{4}-1,2\right)=\left(-\frac{3}{4}, 2\right)$
9. If $f: R \rightarrow(0, \infty)$ is an increasing function and if $\lim _{x \rightarrow 2018} \frac{f(3 x)}{f(x)}=1$, then $\lim _{x \rightarrow 2018} \frac{f(2 x)}{f(x)}$ is equal to
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) 2
(D) 3
(E) 1

Solution: (E)
Given $f: R \rightarrow(0, \infty)$ is an increasing function.
And $\lim _{x \rightarrow 2018} \frac{f(3 x)}{f(x)}=1$
So, $\lim _{x \rightarrow 2018} f(3 x)=\lim _{x \rightarrow 2018} f(x)$
$\Rightarrow f(x)=$ constant.
Therefore, $\lim _{x \rightarrow 2018} \frac{f(2 x)}{f(x)}=1$
10. If f is differentiable at $x=1$, then $\lim _{x \rightarrow 1} \frac{x^{2} f(1)-f(x)}{x-1}$ is
(A) $-f^{\prime}(1)$
(B) $f(1)-f^{\prime}(1)$
(C) $2 f(1)-f^{\prime}(1)$
(D) $2 f(1)+f^{\prime}(1)$
(E) $f(1)+f^{\prime}(1)$

Solution: (C)
$\lim _{x \rightarrow 1} \frac{x^{2} f(1)-f(x)}{x-1}$
By L' Hospital's Rule,
$\lim _{x \rightarrow 1} \frac{2 x f(1)-f^{\prime}(x)}{1-0}=2 f(1)-f^{\prime}(1)$
11. Eccentricity of the ellipse
$4 x^{2}+y^{2}-8 x+4 y-8=0$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{3}}{4}$
(C) $\frac{\sqrt{3}}{\sqrt{2}}$
(D) $\frac{\sqrt{3}}{8}$
(E) $\frac{\sqrt{3}}{16}$

Solution: (A)
Equation $4 x^{2}+y^{2}-8 x+4 y-8=0$ is an ellipse.
$\Rightarrow 4(x-1)^{2}+(y+2)^{2}-8-8=0$
$=4(x-1)^{2}+(y+2)^{2}=16$
$=\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1$, where $b>a$
\therefore Eccentricity $(e)=\sqrt{1-\frac{a^{2}}{b^{2}}}$
$=\sqrt{1-\frac{4}{16}}=\sqrt{\frac{12}{16}}=\frac{\sqrt{3}}{2}$
12. The focus of the parabola $(y+1)^{2}=-8(x+2)$ is
(A) $(-4,-1)$
(B) $(-1,-4)$
(C) $(1,4)$
(D) $(4,1)$
(E) $(-1,4)$

Solution: (A)
Given, $(y+1)^{2}=-8(x+2)$
$Y^{2}=-8 X$
Here, $Y=y+1, X=(x+2)$
Vertices $(X=0, Y=0)=(-2,-1)$
Comparing Equation (i) from $y^{2}=4 a x$
$4 a=-8$
$a=-2$
Focus $=(-2-2,-1)$
$=(-4,-1)$
13. Which of the following is the equation of a hyperbola?
(A) $x^{2}-4 x+16 y+17=0$
(B) $4 x^{2}+4 y^{2}-16 x+4 y-60=0$
(C) $x^{2}+2 y^{2}+4 x+2 y-27=0$
(D) $x^{2}-y^{2}+3 x-2 y-43=0$
(E) $x^{2}+4 x+6 y-2=0$

Solution: (D)

$$
\begin{aligned}
& x^{2}-y^{2}+3 x-2 y-43=0 \\
& =\left(x+\frac{3}{2}\right)^{2}-(y+1)^{2}-\frac{5}{4}-43=0 \\
& =\left(x+\frac{3}{2}\right)^{2}-(y+1)^{2}=\frac{177}{4} \\
& =\frac{\left(x+\frac{3}{2}\right)^{2}}{\frac{177}{4}}-\frac{(y+1)^{2}}{\frac{177}{4}}=1
\end{aligned}
$$

It is hyperbola equation.
14. Let $f(x)=p x^{2}+q x+r$, where p, q, r are constants and $p \neq 0$. If $f(5)=-3 f(2)$ and $f(-4)=0$, then the other root of f is
(A) 3
(B) -7
(C) -2
(D) 2
(E) 6

Solution: (A)
$f(x)=p x^{2}+q x+r$
$f(-4)=0$
$\Rightarrow 16 p-4 q+r=0$
One root is $x=-4$
and $f(5)=-3 f(2)$
$25 p+5 q+r=-3(4 p+2 q+r)$
$\Rightarrow 37 p+11 q+4 r=0$
Equation (ii) - Equation (i), we get
$\Rightarrow-27 p+27 q=0$
$\Rightarrow \quad p=q$
Then, equation is $p x^{2}+q x+r=0$
Roots $=-4, \alpha$
Sum of roots $=-4 x+\alpha=-\frac{p}{q}=-1$
So, another root $\alpha=3$.
15. Let $f: \rightarrow$ satisfy $f(x) f(y)=f(x y)$ for all real numbers x and y. If $f(2)=4$, then $f\left(\frac{1}{2}\right)=$
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
(E) 2

Solution: (B)
Given \rightarrow
$f(x) f(y)=f(x y) \quad \ldots$ (i)
On taking $\quad x=1, y=1$
$f(1) f(1)=f(1 \cdot 1)=f(1)^{2}=f(1)=f(1)=1$
Now, $x=2, y=\frac{1}{2}$, then from equation (i)
$f(2) f\left(\frac{1}{2}\right)=f\left(2 \cdot \frac{1}{2}\right)$
$\Rightarrow 4 f\left(\frac{1}{2}\right)=f(1) \quad[\because f(2)=4]$
$\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4} f(1)$
On putting the value of $f(1)$,
$\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4} \cdot 1=\frac{1}{4}$
16. Sum of last 30 coefficents in the binomial expansion of $(1+x)^{59}$ is
(A) 2^{29}
(B) 2^{59}
(C) 2^{58}
(D) $2^{59}-2^{29}$
(E) 2^{60}

Solution: (C)
We have, $(1+x)^{59}$
Sum of last 30 coefficient of the binomial expansion
$={ }^{59} C_{30}+{ }^{59} C_{31}+\ldots+{ }^{59} C_{59}$
We know that,
${ }^{59} C_{0}+{ }^{59} C_{1}+{ }^{59} C_{2}+\cdots+{ }^{59} C_{59}=2^{59}$
$\Rightarrow\left({ }^{59} C_{0}+{ }^{59} C_{59}\right)+\left({ }^{59} C_{1}+{ }^{59} C_{58}\right)+\cdots+\left({ }^{59} C_{29}+{ }^{59} C_{30}\right)=2^{59}$
$\Rightarrow 2\left({ }^{59} C_{59}+{ }^{59} C_{58}+\cdots+{ }^{59} C_{31}+{ }^{59} C_{30}\right)=2^{59} \quad\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
$\Rightarrow{ }^{59} C_{30}+{ }^{59} C_{31}+\cdots{ }^{59} C_{39}+\frac{2^{59}}{2}=2^{58}$
\therefore Sum of last 30 coefficient of the binomial expansion $(1+x)^{59}$ is 2^{58}.
17. $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=$
(A) $20 \sqrt{6}$
(B) $30 \sqrt{6}$
(C) $5 \sqrt{10}$
(D) $40 \sqrt{6}$
(E) $10 \sqrt{6}$

Solution: (D)
Take,
$(a+b)^{4}={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}$
$={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{1} a b^{3}+{ }^{4} C_{0} b^{4} \quad\left(\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right)$
$=1 \times a^{4}+4 a^{3} b+\frac{4 \times 3}{2} a^{2} b^{2}+4 a b^{3}+1 \times b^{4}$
$\Rightarrow(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
Similarly, $(a-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}$
On subtracting Equation (ii) from Equation (i), we get
$(a+b)^{4}-(a-b)^{4}=8 a^{3} b+8 a b^{3}=8 a b\left(a^{2}+b^{2}\right)$
Now, putting $a=\sqrt{3}$ and $b=\sqrt{2}$
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=8 \sqrt{3} \sqrt{2}\left[(\sqrt{3})^{2}+(\sqrt{2})^{2}\right]$
$=8 \sqrt{6}(3+2)=8 \sqrt{6} \times 5=40 \sqrt{6}$
18. Three players A, B and C play a game. The probability that A, B and C will finish the game are respectively $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. The probability that the game is finished is.
(A) $\frac{1}{8}$
(B) 1
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
(E) $\frac{1}{2}$

Solution: (D)
We have, $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(C)=\frac{1}{4}$
\therefore Required probability
$=1-P(\bar{A}) P(\bar{B}) P(\bar{C})$
$=1-\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}$
$=1-\frac{1}{4}=\frac{3}{4}$
19. If $z_{1}=2-i$ and $z_{2}=1+i$, then $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|$ is
(A) 2
(B) $2 \sqrt{2}$
(C) 3
(D) $\sqrt{3}$
(E) 1

Solution: (B)
Given, $z_{1}=2-i$ and $z_{2}=1+i$
Then, $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+i}\right|=\left|\frac{2-i+1+i+1}{2-i-1-i+i}\right|$
$=\left|\frac{4}{(1-i)} \times \frac{(1+i)}{(1+i)}\right|$

$$
\begin{aligned}
& =\left|\frac{4(1+i)}{2}\right| \\
& =|2+2 i| \\
& =\sqrt{(2)^{2}+(2)^{2}} \\
& =\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

20. If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is equal to
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) 0
(E) ∞

Solution: (A)
Given, $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$
Now, $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$
$=\lim _{x \rightarrow \infty} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\cos ^{2} x}{x}}}$
$=\sqrt{\frac{1-0}{1+0}} \quad\left(\because \frac{\sin x}{x} \rightarrow 0, \frac{\cos ^{2} x}{x} \rightarrow 0\right.$ as $\left.x \rightarrow \infty\right)$
$=1$
21. The value of $\sin \frac{31}{3} \pi$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{-\sqrt{3}}{2}$
(D) $\frac{-1}{\sqrt{2}}$
(E) $\frac{1}{2}$

Solution: (A)
$\sin \frac{31}{3} \pi=\sin \left(10 \pi+\frac{\pi}{3}\right)$
$=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
22. The sum of odd integers from 1 to 2001 is
(A) $(1121)^{2}$
(B) $(1101)^{2}$
(C) $(1001)^{2}$
(D) $(1021)^{2}$
(E) $(1011)^{2}$

Solution: (C)
$1+3+5+\cdots+2001$
Sum of odd integers $=n^{2}=(1001)^{2}$
23. If $y=\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}$, then $y^{\prime}(x)$ is equal to
(A) $2 \cos ^{2} x$
(B) $2 \cos ^{3} x$
(C) $-\cos 2 x$
(D) $\cos 2 x$
(E) $3 \cos x$

Solution: (C)

$$
\begin{aligned}
& y=\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x} \\
& =\frac{\sin ^{3} x}{\sin x+\cos x}+\frac{\cos ^{3} x}{\sin x+\cos x} \\
& =\frac{\sin ^{3} x+\cos ^{3} x}{(\sin x+\cos x)} \\
& =\sin ^{2} x+\cos ^{2} x-\sin x \cos x \\
& =y(x)=1-\frac{\sin 2 x}{2} \\
& =y^{\prime}(x)=0-\frac{\cos 2 x}{x} \cdot 2 \\
& =y^{\prime}(x)=-\cos 2 x
\end{aligned}
$$

24. The foci of the hyperbola $16 x^{2}-9 y^{2}-64 x+18 y-90=0$ are
(A) $\left(\frac{24 \pm 5 \sqrt{145}}{12}, 1\right)$
(B) $\left(\frac{21 \pm 5 \sqrt{145}}{12}, 1\right)$
(C) $\left(1, \frac{24 \pm 5 \sqrt{145}}{2}\right)$
(D) $\left(1, \frac{21 \pm 5 \sqrt{145}}{2}\right)$
(E) $\left(\frac{21 \pm 5 \sqrt{145}}{2},-1\right)$

Solution: (A)
$16 x^{2}-9 y^{2}-64 x+18 y-90=0$
$=16\left(x^{2}-4 x\right)-9\left(y^{2}-2 y\right)=90$
$=16(x-2)^{2}-9(y-1)^{2}=90+16 \times 4-9 \times 1$
$=16(x-2)^{2}-9(y-1)^{2}=145$
$=\frac{(x-2)^{2}}{\frac{145}{16}}-\frac{(y-1)^{2}}{\frac{145}{9}}=1$
We know that, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Foci $\Rightarrow(a e, 0)$
On comparing Equations (i) and (ii), we get
$\because e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{1+\frac{16}{9}}=\frac{5}{3}$
$X=a e \Rightarrow x-2$
$=+\sqrt{\frac{145}{16}} \times \frac{5}{3}$
$= \pm \frac{5 \sqrt{145}}{12}$
$x=2 \pm \frac{5 \sqrt{145}}{12}$
$\Rightarrow x=\frac{24 \pm 5 \sqrt{145}}{12}$
$y=0 \Rightarrow y-1=0 \Rightarrow y=1$
Hence, $\left(\frac{24 \pm 5 \sqrt{145}}{12}, 1\right)$
25. If the sum of the coefficients in the expansions of $\left(a^{2} x^{2}-2 a x+1\right)^{51}$ is zero, then a is equal to
(A) 0
(B) 1
(C) -1
(D) -2
(E) 2

Solution: (B)
$\left(a^{2} x^{2}-2 a x+1\right)^{51}$
For sum of coefficients put $x=1$
$\left(a^{2}-2 a+1\right)^{51}=0$
$\Rightarrow\left\{(a-1)^{2}\right\}^{51}=0$
$\Rightarrow a=1$
26. The mean deviation of the data $2,9,9,3,6,9,4$ from the mean is
(A) 2.23
(B) 3.23
(C) 2.57
(D) 3.57
(E) 1.03

Solution: (C)
Mean of the given data is
$\bar{x}=\frac{2+9+9+3+6+9+4}{7}=\frac{42}{7}=6$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$ are
$2-6,9-6,9-6,3-6,6-6,9-6,4-6$
$\Rightarrow-4,3,3,-3,0,3,-2$
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$ are $4,3,3,3,0,3,2$
The required mean deviation about the mean is
$M D(\bar{x})=\frac{\sum_{i=1}^{7}\left|x_{i}-\bar{x}\right|}{7}$
$=\frac{4+3+3+3+0+3+2}{7}$
$=\frac{18}{7}=2.57$
27. The mean and variance of a binomial distribution are 8 and 4 respectively. What is ($X=1$)?
(A) $\frac{1}{2^{8}}$
(B) $\frac{1}{2^{12}}$
(C) $\frac{1}{2^{6}}$
(D) $\frac{1}{2^{4}}$
(E) $\frac{1}{2^{5}}$

Solution: (B)
Let n and p be the parameters of the binomial distribution.
Mean $=8$ and variance $=4$
$\Rightarrow n p=8$ and $n p q=4$
$\Rightarrow q=\frac{1}{2}=p$ and $n=16$
\therefore Required probability $=P(X=1)$
$={ }^{16} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{15}=16 \times\left(\frac{1}{2}\right)^{16}$
$=\frac{2^{4}}{2^{16}}=\frac{1}{2^{12}}$
28. The number of diagonals of a polygon with 15 sides is
(A) 90
(B) 45
(C) 60
(D) 70
(E) 10

Solution: (A)
The number of diagonals of a polygon with 15 sides is
$={ }^{n} C_{2}-n={ }^{15} C_{2}-15$
$=\frac{15 \times 14}{2}-15$
$=105-15=90$
29. In a class, 40% of students study Maths and Science and 60% of students study Maths. What is the probability of a students studying Science given the student is already studying Maths?
(A) $\frac{1}{3}$
(B) $\frac{1}{6}$
(C) $\frac{2}{3}$
(D) $\frac{1}{5}$
(E) $\frac{1}{4}$

Solution: (C)
Probability of Maths and Science students $=\frac{40}{100}=\frac{2}{5}$
Probability of maths students $=\frac{60}{100}=\frac{3}{5}$
$\mathrm{P}($ Science $/$ Maths $)=\frac{P(S \cap M)}{P(M)}=\frac{\frac{2}{5}}{\frac{3}{5}}=\frac{2}{3}$
30. The eccentricity of the conic $x^{2}+2 y^{2}-2 x+3 y+2=0$ is
(A) 0
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{2}$
(D) $\sqrt{2}$
(E) 1

Solution: (B)
$x^{2}+2 y^{2}-2 x+3 y+2=0$
$=(x-1)^{2}-1+2\left(y^{2}+\frac{3}{2} y+\frac{9}{16}-\frac{9}{16}\right)+2=0$
$=(x-1)^{2}+2\left(y+\frac{3}{4}\right)^{2}-\frac{9}{8}+1=0$
$=(x-1)^{2}+2\left(y+\frac{3}{4}\right)^{2}=\frac{1}{8}$
$=\frac{(x-1)^{2}}{\frac{1}{8}}+\frac{\left(y+\frac{3}{4}\right)^{2}}{\frac{1}{16}}=1$

Ellipse $: e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{\frac{1}{16}}{\frac{1}{8}}}$
$e=\sqrt{1-\frac{8}{16}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
31. If the mean of a set of observations $x_{1}, x_{2}, \ldots x_{10}$ is 20 , then the mean of $x_{1}+4, x_{2}+$ $8, x_{3}+12, \ldots x_{10}+40$ is
(A) 34
(B) 32
(C) 42
(D) 38
(E) 40

Solution: (C)
Mean of a set of observations
$x_{1}, x_{2}, \ldots, x_{10}=20$
Then, according to question,
$\frac{x_{1}+4+x_{2}+8+x_{3}+12+\cdots+x_{10}+40}{10}$
$=\frac{x_{1}+x_{2}+\cdots+x_{10}}{10}+\frac{4(1+2+\cdots+10)}{10}$
$=20+\frac{4 \times 55}{10}=20+\frac{220}{10}$
$=20+22=42$
32. A letter is taken at random from the word "STATISTICS" and another letter is taken at random from the word "ASSISTANT". The probability that they are same letters is
(A) $\frac{1}{45}$
(B) $\frac{13}{90}$
(C) $\frac{19}{90}$
(D) $\frac{5}{18}$
(E) $\frac{9}{10}$

Solution: (C) Probability of take a random from the word STATISTICS $={ }^{10} C_{1}$
Probability of take a random from the word ASSISTANT
$={ }^{9} C_{1}$
The probability is that they are same letters T, A, I, S
$=\frac{{ }^{3} C_{1} \times{ }^{3} C_{1}+{ }^{1} C_{1} \times{ }^{2} C_{1}+{ }^{2} C_{1} \times{ }^{1} C_{1}+{ }^{2} C_{1} \times{ }^{3} C_{1}}{{ }^{10} C_{1} \times{ }^{9} C_{1}}$
$=\frac{9+2+2+6}{90}=\frac{19}{90}$
33. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then
(A) $a^{2}-b^{2}+2 a c=0$
(B) $(a-c)^{2}=b^{2}+c^{2}$
(C) $a^{2}+b^{2}-2 a c=0$
(D) $a^{2}+b^{2}+2 a c=0$
(E) $a+b+c=0$

Solution: (A)
$a x^{2}+b x+c=0$
Roots are $\cos \alpha$ and $\sin \alpha$
$\therefore \quad \cos \alpha \cdot \sin \alpha=\frac{c}{a} \quad \ldots$. (i)
and $\cos \alpha+\sin \alpha=-\frac{b}{a}$
$\Rightarrow(\cos \alpha+\sin \alpha)^{2}=\frac{b^{2}}{a^{2}}$
Using Equation (i), we get
$\left(1+2 \frac{c}{a}\right)=\frac{b^{2}}{a^{2}}$
$\Rightarrow a^{2}-b^{2}+2 a c=0$
34. If the sides of triangle are 4,5 and 6 cm . Then the area (in sq cm) of triangle is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{4} \sqrt{7}$
(C) $\frac{4}{15}$
(D) $\frac{4}{15} \sqrt{7}$
(E) $\frac{15}{4} \sqrt{7}$

Solution: (E)
Given, triangle of sides $=a, b, c=4,5,6 \mathrm{~cm}$
$\therefore S=\frac{a+b+c}{2}$
$=\frac{4+5+6}{2}=\frac{15}{2}$
Then, area of triangle
$=\sqrt{S(S-a)(S-b)(S-c)}$
$=\sqrt{\frac{15}{2}\left(\frac{15}{2}-4\right)\left(\frac{15}{2}-5\right)\left(\frac{15}{2}-6\right)}$
$=\sqrt{\frac{15}{2} \cdot\left(\frac{7}{2}\right)\left(\frac{5}{2}\right)\left(\frac{3}{2}\right)}=\frac{15}{4} \sqrt{7}$
35. In a group of 6 boys and 4 girls, a team consisting of four children is formed such that the team has atleast one boy. The number of ways of forming a team like this is
(A) 159
(B) 209
(C) 200
(D) 240
(E) 212

Solution: (B)

The team has atleast one boy
$=$ Total case - No anyone boy
$={ }^{10} C_{4}-{ }^{6} C_{0}$
$=\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2}-1=210-1=209$
36. A password is set with 3 distinct letters from the word LOGARITHMS. How many such passwords can be formed?
(A) 90
(B) 720
(C) 80
(D) 72
(E) 120

Solution: (B)
LOGARITHMS letters are 10.
A password is set with 3 distinct letters ${ }^{10} C_{3} \times 3$!
$=\frac{10 \times 9 \times 8}{3 \times 2} \times 3 \times 2=720$
37. If 5^{97} is divided by 52 , the remainder obtained is
(A) 3
(B) 5
(C) 4
(D) 0
(E) 1

Solution: (B) We know that, $5^{4}=625=3 \times 48+1$
$\Rightarrow 5^{4}=13 \lambda+1$, where λ is a positive integer.
$\Rightarrow\left(5^{4}\right)^{24}=(13 \lambda+1)^{24}$
$={ }^{24} C_{0}(13 \lambda)^{24}+{ }^{24} C_{1}(13 \lambda)^{23}+{ }^{24} C_{2}(13 \lambda)^{22}+\cdots+{ }^{24} C_{23}(13 \lambda)+{ }^{24} C_{24} \quad$ (by binomial theorem)
$\Rightarrow 5^{96}=13\left[{ }^{24} C_{0} 13^{23} \lambda^{24}+{ }^{24} C_{1} 13^{23} \lambda^{22}+\cdots+{ }^{24} C_{23} \lambda\right]+1$
$=(a$ multiple of 13$)+1$
On multiplying both sides by 5 , we get
$5^{97}=5^{96} \cdot 5=5$ (a multiple of 13) +5
Hence, the required remainder is 5 .
38. A quadratic equation $a x^{2}+b x+c=0$, with distinct coefficients is formed. It a, b, c are chosen from the numbers $2,3,5$, then the probability that the equation has real roots is
(A) $\frac{1}{3}$
(B) $\frac{2}{5}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
(E) $\frac{2}{3}$

Solution: (A)
Total number of ways of assigning values $2,3,5$ to $a, b, c,=3!=6$
Now, for quadratic equation $a x^{2}+b x+c=0$ to have real roots $b^{2}-4 a c \geq 0$. This is possible only when $a=2, b=5, c=3$ or $a=3, b=5, c=2$
\Rightarrow Required probability $=\frac{2}{6}=\frac{1}{3}$
39. $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}-7 x+9}{4 x^{3}+9 x-2}$ is equal to
(A) $\frac{2}{9}$
(B) $\frac{1}{2}$
(C) $\frac{-9}{2}$
(D) $\frac{3}{4}$
(E) $\frac{9}{2}$

Solution: (D)
$\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x^{2}-7 x+9}{4 x^{3}+9 x-2}$
$=\lim _{x \rightarrow \infty} \frac{x^{3}\left[3+\frac{2}{x}-\frac{7}{x^{2}}+\frac{9}{x^{3}}\right]}{x^{3}\left[4+\frac{9}{x^{2}}-\frac{2}{x^{3}}\right]}$
On putting $x \rightarrow \infty$, we get
$=\frac{[3+0-0+0]}{[4+0-0]}=\frac{3}{4}$
40. The minimum value of $f(x)=\max \{x, 1+x, 2-x\}$ is
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) 1
(D) 0
(E) 2

Solution: (B)
we have,
$f(x)=\max \{x, 1+x, 2-x\}$
The graph of $f(x)$ is

Clearly from graph minimum value of $f(x)$ at point $A\left(\frac{1}{2}, \frac{3}{2}\right)$.
\therefore Minimum value of $f(x)$ is $\frac{3}{2}$.
41. The equations of the asymptotes of the hyperbola $x y+3 y-2 y-10=0$ are
(A) $x=-2, y=-3$
(B) $x=2, y=-3$
(C) $x=2, y=3$
(D) $x=4, y=3$
(E) $x=3, y=4$

Solution: (B)
We have equation of hyperbola is
$x y+3 x-2 y-10=0$
$x y+3 x-2 y-6=4$
$(x-2)(y+3)=4$
We know that asymptote of hyperbola
$x y=c$ is $x=0$ and $y=0$.
\therefore Asymptote of hyperbola
$(x-2)(y+3)=4$ is $x-2=0, y+3=0$
$\Rightarrow \quad x=2, y=-3$
42. If $f(x)=x^{6}+6^{x}$, then $f^{\prime}(x)$ is equal to
(A) $12 x$
(B) $x+4$
(C) $6 x^{5}+6^{x} \log (6)$
(D) $6 x^{5}+x 6^{x-1}$
(E) x^{6}

Solution: (C)
$f(x)=x^{6}+6^{x}$
$f^{\prime}(x)=6 x^{5}+6^{x} \log (6)\left[\because \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right]$
$\left[\because \frac{d}{d x}\left(a^{x}\right)=a^{x} \log (a)\right]$
43. The standard deviation of the data $6,5,9,13,12,8,10$ is
(A) $\frac{\sqrt{52}}{7}$
(B) $\frac{52}{7}$
(C) $\frac{\sqrt{53}}{7}$
(D) $\frac{53}{7}$
(E) 6

Solution: (A)
Given data $6,5,9,13,12,8,10$ Mean of the given data (\bar{x})
$=\frac{6+5+9+13+12+8+10}{7}$
$=\frac{63}{7}=9$
The deviation of the respective data from the mean i.e. $\left(x_{i}-\bar{x}\right)$ are
$6-9,5-9,9-9,13-9,12-9,8-9,10-9$
$\left(x_{i}-\bar{x}\right)=-3,-4,0,4,3,-1,1$
$\left(x_{i}-\bar{x}\right)^{2}=9,16,0,16,9,1,1$
$\sum_{i=i}^{7}\left(x_{i}-\bar{x}\right)^{2}=9+16+0+16+9+1+1$
$=52$
\therefore Standard deviation (σ)
$=\sqrt{\frac{1}{n} \sum_{i=1}^{7}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\frac{52}{7}}$
44. $\lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}=$
(A) $\frac{m^{2}}{n^{2}}$
(B) $\frac{n^{2}}{m^{2}}$
(C) ∞
(D) $-\infty$
(E) 0

Solution: (A)
$\lim _{x \rightarrow 0} \frac{1-\cos m x}{1-\cos n x}=\lim _{x \rightarrow 0}\left\{\frac{2 \sin ^{2} \frac{m x}{2}}{2 \sin ^{2} \frac{n x}{2}}\right\}$
$=\lim _{x \rightarrow 0}\left[\left\{\frac{\sin \frac{m x}{2}}{\frac{m x}{2}}\right\} \cdot \frac{m^{2} x^{2}}{4} \cdot \frac{1}{\left\{\frac{\sin \frac{n x}{2}}{\frac{n x}{2}}\right\}^{2}} \cdot \frac{4}{n^{2} x^{2}}\right]$
$=\frac{m^{2}}{n^{2}} \times 1=\frac{m^{2}}{n^{2}}$
45. $\lim _{x \rightarrow 0} \frac{(\sqrt{1+2 x})-1}{x}=$
(A) 0
(B) -1
(C) $\frac{1}{2}$
(D) 1
(E) $\frac{-1}{2}$

Solution: (D)
$\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-1}{x}$
Using L'Hospital's Rule,
$\lim _{x \rightarrow 0} \frac{\frac{1}{2 \sqrt{1+2 x}} \cdot 2-0}{1}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{1}{\sqrt{1+2 x}}$
Using limit, we get
$=\frac{1}{\sqrt{1+2(0)}}=1$
46. Let f and g be differentiable functions such that $f(3)=5, g(3)=7, f^{\prime}(3)=$ $13, g^{\prime}(3)=6, f^{\prime}(7)=2$ and $g^{\prime}(7)=0$. If $h(x)=(f \circ g)(x)$, then $h^{\prime}(3)=$
(A) 14
(B) 12
(C) 16
(D) 0
(E) 10

Solution: (B)
$h(x)=f(g(x))$

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& h^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3) \quad\left[\begin{array}{c}
\because g(3)=7 \\
g^{\prime}(3)=6
\end{array}\right] \\
& =f^{\prime}(7) \cdot 6 \\
& =2 \times 6=12
\end{aligned}
$$

47. $\frac{\sqrt{3}}{\sin \left(20^{\circ}\right)}-\frac{1}{\cos \left(20^{\circ}\right)}=$
(A) 1
(B) $\frac{1}{\sqrt{2}}$
(C) 2
(D) 4
(E) 0

Solution: (D)
$\frac{\sqrt{3}}{\sin \left(20^{\circ}\right)}-\frac{1}{\cos \left(20^{\circ}\right)}$
$=\frac{\sqrt{3} \cos \left(20^{\circ}\right)-\sin \left(20^{\circ}\right)}{\sin \left(20^{\circ}\right) \cos \left(20^{\circ}\right)}$
$=\frac{4\left[\frac{\sqrt{3}}{2} \cos \left(20^{\circ}\right)-\frac{\sin (20)^{\circ}}{2}\right]}{2 \sin \left(20^{\circ}\right) \cos \left(20^{\circ}\right)}$
$[\because 2 \sin A \cos A=\sin 2 A]$
$=\frac{4\left(\sin 60^{\circ} \cos 20^{\circ}-\cos 60^{\circ} \sin 20^{\circ}\right)}{\sin 40^{\circ}}$
$=\frac{4 \sin \left(60^{\circ}-20^{\circ}\right)}{\sin 40^{\circ}}$
$[\because \sin (A-B)=\sin A \cos B-\cos A \sin B]$
$=\frac{4 \sin 40^{\circ}}{\sin 40^{\circ}}=4$
48. A poison variate X satisfies
$P(X-1)=P(X=2) \cdot P(X=6)$ is equal to
(A) $\frac{4}{45} e^{-2}$
(B) $\frac{1}{45} e^{-1}$
(C) $\frac{1}{9} e^{-2}$
(D) $\frac{1}{4} e^{-2}$
(E) $\frac{1}{45} e^{-2}$

Solution: (A)
Given that,
$P(X=1)=P(X=2)$

$$
\begin{aligned}
& =\frac{e^{-\lambda} \lambda^{1}}{1!}=\frac{e^{-\lambda} \lambda^{2}}{2!} \\
& \Rightarrow \lambda=2 \\
& \therefore \quad P(X=6)=\frac{e^{-2}(2)^{6}}{6!} \\
& =\frac{e^{-2} \times 4 \times 2^{4}}{6 \times 5 \times 4 \times 3 \times 2} \\
& =\frac{4 \times e^{-2} \times 2^{4}}{45 \times 2^{4}}=\frac{4 e^{-2}}{45}
\end{aligned}
$$

49. Let a and b be 2 consecutive integers selected from the first 20 natural numbers. The probability that $\sqrt{a^{2}+b^{2}+a^{2} b^{2}}$ is an odd positive integer is
(A) $\frac{9}{19}$
(B) $\frac{10}{19}$
(C) $\frac{13}{19}$
(D) 1
(E) 0

Solution: (D)
a and b are two consecutive number.
Let $a=n, b=n+1$
Now, $\sqrt{a^{2}+b^{2}+a^{2} b^{2}}$
$=\sqrt{n^{2}+(n+1)^{2}+n^{2}(n+1)^{2}}$
$=\sqrt{n^{2}+n^{2}+2 n+1+n^{2}\left(n^{2}+2 n+1\right)}$
$=\sqrt{n^{2}+n^{2}+2 n+1+n^{4}+2 n^{3}+n^{2}}$
$=\sqrt{n^{4}+n^{2}+1+2 n^{3}+2 n^{2}+2 n+1}$
$=\sqrt{\left(n^{2}+n+1\right)^{2}}$
$=n^{2}+n+1=n(n+1)+1$
It is always odd.
\because Probability of $\sqrt{a^{2}+b^{2}+a^{2} b^{2}}$ is an odd integer is 1
50. An ellipse of eccentricity $\frac{2 \sqrt{2}}{3}$ is inscribed in a circle. A point is chosen inside the circle at random. The probability that the point lies outside the ellipse is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{1}{9}$
(D) $\frac{2}{9}$
(E) $\frac{1}{27}$

Solution: (B)
Given, $e=\frac{2 \sqrt{2}}{3}$
$e^{2}=1-\frac{b^{2}}{a^{2}}$
$\Rightarrow \frac{b^{2}}{a^{2}}=1-\frac{8}{9}$

$P(x)=\frac{\pi a^{2}-\pi a b}{\pi a^{2}}$
$=1-\frac{b}{a}$
$=1-\frac{1}{3} \quad$ [using Equation (i)]
$P(x)=\frac{2}{3}$
51. If the vectors $4 \hat{\imath}+11 \hat{\jmath}+m \hat{k}, 7 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$ and $\hat{\imath}+5 \hat{\jmath}+4 \hat{k}$ are coplanar, then m is equal to
(A) 38
(B) 0
(C) 10
(D) -10
(E) 25

Solution: (C)
Given vectors $4 \hat{\imath}+11 \hat{\jmath}+m \hat{k}, 7 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}$ and $\hat{\imath}+5 \hat{\jmath}+4 \hat{k}$ are coplanar.
Then, $\left|\begin{array}{ccc}1 & 5 & 4 \\ 4 & 11 & m \\ 7 & 2 & 6\end{array}\right|$
$\Rightarrow 1(66-2 m)-5(24-7 m)+4(8-77)$
$=66-2 m-120+35 m+32-308$
$=33 m-330=0$
$\Rightarrow m=10$
52. Let $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ and $\vec{c}=7 \hat{\imath}+9 \hat{\jmath}+11 \hat{k}$. Then, the area of the parallelogram with diagonals $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ is
(A) $4 \sqrt{6}$
(B) $\frac{1}{2} \sqrt{21}$
(C) $\frac{\sqrt{6}}{2}$
(D) $\sqrt{6}$
(E) $\frac{1}{\sqrt{6}}$

Solution: (A)
Given, $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\vec{b}=\hat{\imath}+3 \hat{\jmath}+5 \hat{k}$
$\vec{c}=7 \hat{\imath}+9 \hat{\jmath}+11 \hat{k}$
Diagonals: $D_{1}=\vec{a}+\vec{b}$ and $D_{2}=\vec{b}+\vec{c}$
Area of parallelogram $=\frac{1}{2}\left[D_{1} \times D_{2}\right]$
$D_{1}=\vec{a}+\vec{b}=2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
$D_{2}=\vec{b}+\vec{c}=8 \hat{\imath}+12 \hat{\jmath}+16 \hat{k}$
From Equation (i),
\mid Area $\left.\left|=\frac{1}{2}\right| \begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 4 & 6 \\ 8 & 12 & 16\end{array} \right\rvert\,$
$=\frac{1}{2}[\hat{\imath}(64-72)+\hat{\jmath}(48-32)+\hat{k}(24-32)]$
$=\frac{1}{2}|-8 \hat{\imath}+16 \hat{\jmath}-8 \hat{k}|$
$=\frac{1}{2} \sqrt{64+256+64}=\frac{1}{2} \cdot 8 \sqrt{6}=4 \sqrt{6}$
53. If $|\vec{a}|=3,|\vec{b}|=1,|\vec{c}|=4$ and $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to
(A) 13
(B) 26
(C) -29
(D) -13
(E) -26

Solution: (D)
$|\vec{a}|=3,|\vec{b}|=1,|\vec{c}|=4$,
$\vec{a}+\vec{b}+\vec{c}=0$
$(\vec{a}+\vec{b}+\vec{c})^{2}=|a|^{2}+|b|^{2}+|c|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$\Rightarrow \quad 0=(3)^{2}+(1)^{2}+(4)^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{26}{2}=-13$
54. If $|\vec{a}-\vec{b}|=|\vec{a}|=|\vec{b}|=1$, then the angle between \vec{a} and \vec{b} is equal to
(A) $\frac{\pi}{3}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{\pi}{2}$
(D) 0
(E) π

Solution: (A)
$|\vec{a}-\vec{b}|=|\vec{a}|=|\vec{b}|=1$
$|\vec{a}-\vec{b}|^{2}=a^{2}+b^{2}-2 \vec{a} \cdot \vec{b}$
$1=1+1-2|\vec{a}||\vec{b}| \cos \theta$
$\cos \theta=\frac{1}{2} \Rightarrow \cos \frac{\pi}{3}$
$\theta=\frac{\pi}{3}$
55. If the vectors $\vec{a}=\hat{\imath}-\hat{\jmath}+2 \hat{k}, \vec{b}=2 \hat{\imath}+4 \hat{\jmath}+\hat{k}$ and $\vec{c}=\lambda \hat{\imath}+9 \hat{\jmath}+\mu \hat{k}$ are mutually orthogonal, then $\lambda+\mu$ is equal to
(A) 5
(B) -9
(C) -1
(D) 0
(E) -5

Solution: (B)
Given,
$\vec{a}=\hat{\imath}-\hat{\jmath}+2 \hat{k}, \vec{b}=2 \hat{\imath}+4 \hat{\jmath}+\hat{k}$
$\vec{c}=\lambda \hat{\imath}+9 \hat{\jmath}+\mu \hat{k}$
Vectors are mutually orthogonal, so
$\vec{a} \cdot \vec{b}=0=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
$\vec{a} \cdot \vec{b}=2-4+2$
$=2 \lambda+36+\mu$
$\Rightarrow 2 \lambda+36+\mu=0$
$\lambda-9+2 \mu=0$
On solving Equations (i) and (ii), we get
$\mu=18, \lambda=-27$
$\therefore \quad \lambda+\mu=18-27=-9$
56. The solution of $x^{\frac{2}{5}}+3 x^{\frac{1}{5}}-4=0$ are
(A) 1,1024
(B) $-1,1024$
(C) 1,1031
(D) $-1024,1$
(E) $-1,1031$

Solution: (D)
We have, $x^{\frac{2}{5}}+3 x^{\frac{1}{5}}-4=0$
Let $x^{\frac{1}{5}}=y$
$y^{2}+3 y-4=0$
$\Rightarrow y^{2}+4 y-y-4=0$
$\Rightarrow y(y+4)-1(y+4)=0$
$\Rightarrow(y+4)(y-1)=0$
$\Rightarrow y=-4,1$
$\therefore x^{\frac{1}{5}}=-4$ or $x^{\frac{1}{5}}=1$
$\Rightarrow x=(-4)^{5}$ or $x=1$
$\Rightarrow x=-1024$ or $x=1$
57. If the equations $x^{2}+a x+1=0$ and $x^{2}-x-a=0$ have a real common root b, then the value of b is equal to
(A) 0
(B) 1
(C) -1
(D) 2
(E) 3

Solution: (C)
Given equations, $x^{2}+a x+1=0$
$x^{2}-x-a=0$
$\because b$ is common root, so b satisfied both equations.
$b^{2}+a b+1=b^{2}-b-a$
$=a b+b=-a-1$
$\Rightarrow b(a+1)=-(a+1)$
$\Rightarrow b=-1$
58. If $\sin \theta-\cos \theta=1$, then the value of $\sin ^{3} \theta-\cos ^{3} \theta$ is equal to
(A) 1
(B) -1
(C) 0
(D) 2
(E) -2

Solution: (A)
Given, $\sin \theta-\cos \theta=1$
$\sin ^{3} \theta-\cos ^{3} \theta=(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)$
$=1(1+\sin \theta \cos \theta)$
$=1+\sin \theta \cos \theta$
$[\because \sin \theta-\cos \theta=1]$
On squaring both sides, $(\sin \theta-\cos \theta)^{2}=(1)^{2}$
$\Rightarrow \quad\left(\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta\right)=1$
$\Rightarrow 1-2 \sin \theta \cos \theta=1$
$\Rightarrow \sin \theta \cos \theta=0$
From Equations (ii) and (i), we get $\sin ^{3} \theta-\cos ^{3} \theta=1$
59. Two dice of different colours are thrown at a time. The probability that the sum is either 7 or 11 is
(A) $\frac{7}{36}$
(B) $\frac{2}{9}$
(C) $\frac{2}{3}$
(D) $\frac{5}{9}$
(E) $\frac{6}{7}$

Solution: (B)
Probability of sum of 7
$=(6,1),(5,2),(4,3),(3,4),(2,5),(1,6)$ and probability of sum of 11
$=(6,5),(5,6)$
$P(x)=\frac{6}{36}+\frac{2}{36}$
$=\frac{8}{36}=\frac{2}{9}$
60. $\frac{1}{9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{7!3!}+\frac{1}{9!}$ Is equal to
(A) $\frac{2^{9}}{10!}$
(B) $\frac{2^{10}}{8!}$
(C) $\frac{2^{11}}{9!}$
(D) $\frac{2^{10}}{7!}$
(E) $\frac{2^{8}}{9!}$

Solution: (A)
$\frac{1}{9!}+\frac{1}{3!7!}+\frac{1}{5!7!}+\frac{1}{7!3!}+\frac{1}{9!}$
$=\frac{1}{10!}\left[\frac{10!}{9!1!}+\frac{10!}{3!7!}+\frac{10!}{5!7!}+\frac{10!}{7!3!}+\frac{10!}{9!1!}\right]$
$=\frac{1}{10!}\left[{ }^{10} C_{1}+{ }^{10} C_{3}+{ }^{10} C_{5}+{ }^{10} C_{7}+{ }^{10} C_{9}\right]$
$=\frac{1}{10!} \cdot 2^{9}=\frac{2^{9}}{10!}$
61. The order and degree of the differential equation $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}-\left(y^{\prime}\right)^{4}+y^{5}=0$ is
(A) 3 and 2
(B) 1 and 2
(C) 2 and 3
(D) 1 and 4
(E) 3 and 5

Solution: (A)
The given differential equation is $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}-\left(y^{\prime}\right)^{4}+y^{5}=0$
Clearly, its order is 3 and degree is 2 . Hence, option 3 and 2 is correct.
62. $\int_{-2}^{2}|x| d x$ is equal to
(A) 0
(B) 1
(C) 2
(D) 4
(E) $\frac{1}{2}$

Solution: (D) Given that,
$I=\int_{-2}^{2}|x| d x$
$=-\int_{-2}^{0} x d x+\int_{0}^{2} d x$
$=-\left[\frac{x^{2}}{2}\right]_{-2}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{2}$
$=-(-2)+(2)=4$
63. $\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}$ is equal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{-\pi}{4}$
(D) $\frac{\pi}{2}$
(E) $\frac{-\pi}{2}$

Solution: (B)
Given that,
$I=\int_{-1}^{0} \frac{d x}{x^{2}+2 x+2}$
$=\int_{1}^{0} \frac{d x}{(x+1)^{2}+1}=\left[\tan ^{-1}(x+1)\right]_{-1}{ }^{0}$
$=\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]=\frac{\pi}{4}$
64. If $\int_{-1}^{4} f(x) d x=4$ and $\int_{2}^{4}(3-f(x)) d x=7$, then $\int_{-1}^{2} f(x) d x$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Solution: (E)
We know, $\int_{2}^{4}[3-f(x)] d x=7$
$\Rightarrow \int_{2}^{4} 3 d x-\int_{2}^{4} f(x) d x=7$
$\Rightarrow(3 x)_{2}^{4}-\int_{2}^{4} f(x) d x=7$
$\Rightarrow(12-6)-\int_{2}^{4} f(x) d x=7$
$\Rightarrow 6-\int_{2}^{4} f(x) d x=7$
$\Rightarrow \int_{2}^{4} f(x) d x=-1$
Now, $\int_{-1}^{4} f(x) d x=4$
$\Rightarrow \int_{-1}^{2} f(x) d x+\int_{2}^{4} f(x) d x=4$
$\Rightarrow \int_{-1}^{2} f(x) d x-1=4$
[from Equation (i)]
$\Rightarrow \int_{-1}^{2} f(x) d x=5$
65. $\int \frac{x e^{x}}{(1+x)^{2}} d x=$
(A) $\frac{e^{x}}{1+x}+C$
(B) $\frac{e^{x}}{1+e^{x}}+C$
(C) $\frac{e^{2 x}}{1+e^{x}}+C$
(D) $\frac{e^{-x}}{1+x}+C$
(E) $\frac{e^{-2 x}}{1+x}+C$

Solution: (A)
Given that,
$I=\int \frac{x e^{x}}{(1+x)^{2}} d x=\int \frac{(x+1-1)}{(1+x)^{2}} e^{x} d x$
$=\int e^{x}\left(\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right) d x$
$=\frac{e^{x}}{1+x}+C$
66. The remainder when 2^{2000} is divided by 17 is
(A) 1
(B) 2
(C) 8
(D) 12
(E) 4

Solution: (A)
$2^{2000}=\left(2^{4}\right)^{500}$
$=(16)^{500}=(17-1)^{500}$
When divided by 17 , then remainder $=(-1)^{500}=1$
Hence, remainder $=1$
67. The coefficient of x^{5} in the expansion of $(x+3)^{8}$ is
(A) 1542
(B) 1512
(C) 2512
(D) 12
(E) 4

Solution: (B)
$T_{r+1}={ }^{8} C_{r} x^{8-r} 3^{r}$
For the coefficient of x^{5},
$8-r=5 \Rightarrow r=3$
\therefore Coefficient of $x^{5}={ }^{8} C_{3} \cdot 3^{3}$
$=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \times 7 \times 6}{6} \times 3^{3}$
$=8 \times 7 \times 3^{3}=56 \times 27$
$=1512$
68. The maximum value of 5
$\cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$ is
(A) 5
(B) 11
(C) 10
(D) -1
(E) 2

Solution: (C)
$5 \cos \theta+3 \cos \left(\theta+\frac{\pi}{3}\right)+3$
$=5 \cos \theta+3\left[\cos \theta \cos 60^{\circ}-\sin \theta \sin 60^{\circ}\right]+3$
$=5 \cos \theta+3\left[\frac{\cos \theta}{2}-\frac{\sqrt{3}}{2} \sin \theta\right]+3$
$=\frac{13}{2} \cos \theta-\frac{3 \sqrt{3}}{2} \sin \theta+3$
Let $\frac{13}{2}=a$ and $\frac{3 \sqrt{3}}{2}=b$
Then expression becomes,
$a \cos \theta-b \sin \theta+3$
Maximum value of this type of expression is equal to $\left[a^{2}+b^{2}\right]^{\frac{1}{2}}+3=$ Maximum value
After putting values of a and b, we get $[49]^{\frac{1}{2}}+3=$ Max value
$10=$ Max value
69. The area of the triangle in the complex plane formed by $z, i z$ and $z+i z$ is
(A) $|z|$
(B) $|\bar{z}|^{2}$
(C) $\frac{1}{2}|z|^{2}$
(D) $\frac{1}{2}|z+i z|^{2}$
(E) $|z+i z|$

Solution: (C)
Let $z=x+i y ; z+i z=(x-y)+i(x+y)$ and $i z=-y+i x$. If A is the area of triangle formed by $z, z+i z$ and $i z$, then
$A=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ x-y & x+y & 1 \\ -y & x & 1\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}-R_{3}$
$A=\frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 0 & 0 & -1 \\ -y & x & 0\end{array}\right|$
$=\frac{1}{2}\left(x^{2}+y^{2}\right)=\frac{1}{2}|z|^{2}$
70. Let $f: f(-x) \rightarrow f(x)$ be a differentiable function. If f is even, then $f^{\prime}(0)$ is equal to
(A) 1
(B) 2
(C) 0
(D) -1
(E) $\frac{1}{2}$

Solution: (C)
$\because f(-x)=f(x)$
$-f^{\prime}(-x)=f^{\prime}(x) \Rightarrow-f^{\prime}(0)=f^{\prime}(0)$
$\Rightarrow 2 f^{\prime}(0)=0 \Rightarrow f^{\prime}(0)=0$
71. The coordinate of the point dividing internally the line joining the points $(4,-2)$ and $(8,6)$ in the ratio $7: 5$ is
(A) $(16,18)$
(B) $(18,16)$
(C) $\left(\frac{19}{3}, \frac{8}{3}\right)$
(D) $\left(\frac{8}{3}, \frac{19}{3}\right)$
(E) $(7,3)$

Solution: (C)
Here, $x_{1}=4, y_{1}=-2, x_{2}=8, y_{2}=6$ and $m: n=7: 5$
$\therefore x=\frac{m x_{2}+n x_{1}}{m+n}=\frac{7 \times 8+5 \times 4}{12}$
$=\frac{56+20}{12}=\frac{76}{12}=\frac{19}{3}$
and $y=\frac{m y_{2}+n y_{1}}{m+n}$
$=\frac{7 \times 6+5 \times(-2)}{7+5}$
$=\frac{42-10}{12}=\frac{32}{12}=\frac{8}{3}$
$\therefore \quad(x, y)=\left(\frac{19}{3}, \frac{8}{3}\right)$
72. The area of the triangle formed by the points $(a, b+c),(b, c+a),(c, a+b)$ is
(A) $a b c$
(B) $a^{2}+b^{2}+c^{2}$
(C) $a b+b c+c a$
(D) 0
(E) $a(a b+b c+c a)$

Solution: (D)
Area of triangle $=\frac{1}{2}\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{lll}a & a+b+c & 1 \\ b & a+b+c & 1 \\ c & a+b+c & 1\end{array}\right|$
[Applying $c_{2} \rightarrow c_{2}+c_{1}$]
$=\frac{a+b+c}{2}\left|\begin{array}{lll}a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1\end{array}\right|=0$
73. If (x, y) is equidistant from $(a+b, b-a)$ and $(a-b, a+b)$, then
(A) $a x+b y=0$
(B) $a x-b y=0$
(C) $b x+a y=0$
(D) $b x-a y=0$
(E) $x=y$

Solution: (D)
According to question,
$\{x-(a+b)\}^{2}+\{y-(b-a)\}^{2}$
$=\{x-(a-b)\}^{2}+\{y-(a+b)\}^{2}$
$\Rightarrow x^{2}+(a+b)^{2}-2 x(a+b)+y^{2}+(b-a)^{2}-2 y(b-a)$
$=x^{2}+(a+b)^{2}-2 x(a-b)+y^{2}+(a+b)^{2}-2 y(a+b)$
By solving, we get
$\Rightarrow b x-a y=0$
74. The equation of the line passing through (a, b) and parallel to the line $\frac{x}{a}+\frac{y}{b}=1$ is
(A) $\frac{x}{a}+\frac{y}{b}=3$
(B) $\frac{x}{a}+\frac{y}{b}=2$
(C) $\frac{x}{a}+\frac{y}{b}=0$
(D) $\frac{x}{a}+\frac{y}{b}+2=0$
(E) $\frac{x}{a}+\frac{y}{b}=4$

Solution: (B)
Given equation of line is
$\frac{x}{a}+\frac{y}{b}=1$
$\Rightarrow b x+a y=a b$
$\Rightarrow b x+a y-a b=0$
$\therefore m=-\frac{b}{a}$
So, equation of line passing through (a, b) and parallel to Equation (i) is
$y-b=-\frac{b}{a}(x-a)$
$a y-a b=-b x+a b$
$a y+b x=2 a b$
$\frac{y}{b}+\frac{x}{a}=2$
$\Rightarrow \frac{x}{a}+\frac{y}{b}=2$
75. If the points $(2 a, a),(a, 2 a)$ and (a, a) enclose a triangle of area 18 sq units, then the centroid of the triangle is equal to
(A) $(4,4)$
(B) $(8,8)$
(C) $(-4,-4)$
(D) $(4 \sqrt{2}, 4 \sqrt{2})$
(E) $(6,6)$

Solution: (B)
Given, that Area of triangle $=18$
$\Rightarrow \frac{1}{2}\left|\begin{array}{ccc}2 a & a & 1 \\ a & 2 a & 1 \\ a & a & 1\end{array}\right|= \pm 18$
$\Rightarrow\left|\begin{array}{ccc}2 a & a & 1 \\ a & 2 a & 1 \\ a & a & 1\end{array}\right|= \pm 36$
$\Rightarrow 2 a(2 a-a)-a(a-a)+1\left(a^{2}-2 a^{2}\right)= \pm 36$
$\Rightarrow 2 a^{2}-a^{2}= \pm 36$
$\Rightarrow a^{2}= \pm 36$
$\Rightarrow a^{2}=36$
$\Rightarrow a= \pm 6$
Now, centroid of the given triangle will be
$=\left(\frac{2 a+a+a}{3}, \frac{a+2 a+a}{3}\right)=\left(\frac{4 a}{3}, \frac{4 a}{3}\right)$
When $a=6$, centroid $=\left(\frac{4 \times 6}{3}, \frac{4 \times 6}{3}\right)=(8,8)$
76. The area of a triangle is $5 s q$ units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. The coordinates of the third vertex can be
(A) $\left(\frac{-3}{2}, \frac{-3}{2}\right)$
(B) $\left(\frac{3}{4}, \frac{-3}{2}\right)$
(C) $\left(\frac{7}{2}, \frac{13}{2}\right)$
(D) $\left(\frac{-1}{4}, \frac{1}{2}\right)$
(E) $\left(\frac{3}{2}, \frac{3}{2}\right)$

Solution: (C)
Let the coordinates of third vertex be (x, y). Given that, area of a triangle $=5$
$\Rightarrow \frac{1}{2}\left|\begin{array}{ccc}2 & 1 & 1 \\ 3 & -2 & 1 \\ x & y & 1\end{array}\right|=5$
$\Rightarrow 2(-2-y)-1(3-x)+1(3 y+2 x)=10$
$\Rightarrow-4-2 y-3+x+3 y+2 x=10$
$\Rightarrow 3 x+y=17$
Since, third vertex lies as $y=x+3$
By solving Equations (i) and (ii), we get
$x=\frac{7}{2}, y=\frac{13}{2}$
77. If $x^{2}+y^{2}+2 g x+2 f y+1=0$ represents a pair of straight lines, then $f^{2}+g^{2}$ is equal to
(A) 0
(B) 1
(C) 2
(D) 4
(E) 3

Solution: (B)
Given equation of pair of straight lines is $x^{2}+y^{2}+2 g x+2 f y+1=0$
Since, the necessary and sufficient condition for pair of straight lines is
$\left|\begin{array}{lll}a & h & g \\ h & b & f \\ h & f & c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{lll}1 & 0 & g \\ 0 & 1 & f \\ g & f & 1\end{array}\right|=0$
$\Rightarrow 1\left(1-f^{2}\right)+g(0-g)=0$
$\Rightarrow 1-f^{2}-g^{2}=0$
$\Rightarrow f^{2}+g^{2}=1$
78. If θ is the angle between the pair of straight lines $x^{2}-5 x y+4 y^{2}+3 x-4=0$, then $\tan ^{2} \theta$ is equal to
(A) $\frac{9}{16}$
(B) $\frac{16}{25}$
(C) $\frac{9}{25}$
(D) $\frac{21}{25}$
(E) $\frac{25}{9}$

Solution: (C)
Given equation of straight line is $x^{2}-5 x y+4 y^{2}+3 x-4=0$
$\therefore \tan \theta=\left|\frac{2 \sqrt{\left(-\frac{5}{2}\right)^{2}-4}}{5}\right|$
$=\left|\frac{2 \sqrt{\frac{25}{4}-4}}{5}\right|=\frac{2}{5} \times \sqrt{\frac{9}{4}}=\frac{2}{5} \times \frac{3}{2}=\frac{3}{5}$
$=\tan ^{2} \theta=\frac{9}{25}$
79. If $3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}=x(2 \hat{\imath}-\hat{\jmath}+\hat{k})+y(\hat{\imath}+3 \hat{\jmath}-2 \hat{k})+z(-2 \hat{\imath}+\hat{\jmath}-3 \hat{k})$, then
(A) $x=1, y=2, z=3$
(B) $x=2, y=3, z=1$
(C) $x=3, y=1, z=2$
(D) $x=1, y=3, z=2$
(E) $x=2, y=2, z=3$

Solution: (C)
Given that,
$3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}=x(2 \hat{\imath}-\hat{\jmath}+\hat{k})+y(\hat{\imath}+3 \hat{\jmath}-2 \hat{k})+2(-2 \hat{\imath}+\hat{\jmath}-3 \hat{k})$
$\Rightarrow 3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}=i(2 x+y-2 z)+\hat{\jmath}(-x+3 y+z)+\hat{k}(x-2 y-3 z)$
By equating the coefficients of $\hat{\imath}, \hat{\jmath}$ and \hat{k}, we get
$\Rightarrow 2 x+y-2 z=3$
$-x+3 y+z=2$
$x-2 y-3 z=-5 \ldots$ (iii)
By solving Equations (i), (ii) and (iii), we get
$x=3, y=1, z=2$
80. $\sin 15^{\circ}=$
(A) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(B) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(C) $\frac{1-\sqrt{3}}{2 \sqrt{2}}$
(D) $\frac{1+\sqrt{3}}{\sqrt{2}}$
(E) $\frac{-(1+\sqrt{3})}{2 \sqrt{2}}$

Solution: (A)
$\because \sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)$
$=\sin 45^{\circ} \cos 30^{\circ}-\sin 30^{\circ} \cos 45^{\circ}$
$=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}$
$=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
81. If \bar{a} and $\bar{b}=3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k}$ are collinear and $\bar{a} \cdot \bar{b}=27$, then \bar{a} is equal to
(A) $3(\hat{\imath}+\hat{\jmath}+\hat{k})$
(B) $\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
(C) $2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$
(D) $\hat{\imath}+3 \hat{\jmath}+3 \hat{k}$
(E) $\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$

Solution: (B)
Since, \vec{a} and \vec{b} are collinear vector. Therefore,
$\vec{a}=\lambda \vec{b}$
$\because \vec{a} \cdot \vec{b}=27$
$\Rightarrow|\vec{a}||\vec{b}| \cos 0^{\circ}=27$
$\Rightarrow|\vec{b}| \cdot \sqrt{9+36+36}=27$
$\Rightarrow|\vec{a}|=\frac{27}{9}=3$
By Equation (i),
$\vec{a}=\lambda \vec{b}$
$\Rightarrow|\vec{a}|=|\lambda||\vec{b}|$
$3=|\lambda| \cdot 9$
$\Rightarrow|\lambda|= \pm \frac{1}{3}$
$\therefore \vec{a}= \pm \frac{1}{3}(3 \hat{\imath}+6 \hat{\jmath}+6 \hat{k})$
$\vec{a}= \pm(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
82. If $|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=30$, then $|\vec{a} \times \vec{b}|$ is equal to
(A) 30
(B) $\frac{30}{25} \sqrt{233}$
(C) $\frac{30}{33} \sqrt{193}$
(D) $\frac{65}{23} \sqrt{493}$
(E) $\frac{65}{13} \sqrt{133}$

Solution: (E)
Given that,
$|\vec{a}|=13,|\vec{b}|=5$ and $\vec{a} \cdot \vec{b}=30$
$\because \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow 30=13.5 \cos \theta$
$\Rightarrow \cos \theta=\frac{30}{13.5}=\frac{6}{13}$
$\Rightarrow \sin ^{2} \theta=1-\frac{36}{169}$
$\Rightarrow \sin ^{2} \theta=\frac{133}{169}$
$\Rightarrow \sin \theta=\frac{\sqrt{133}}{13}$
$\therefore|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
$=13.5 \cdot \frac{\sqrt{133}}{13}$
$=\frac{65}{13} \sqrt{133}$
83. If ${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$, then r is equal to
(A) 69
(B) 41
(C) 51
(D) 61
(E) 49

Solution: (B)
Given that, ${ }^{56} P_{r+6}:{ }^{54} P_{r+3}=30800: 1$
$\frac{56!}{(50-r)!} \times \frac{(51-r)!}{54!}=\frac{30800}{1}$
$\Rightarrow 56 \times 55 \times(51-r)=30800$
$\Rightarrow \quad r=41$
84. Distance between two parallel lines $y=2 x+4$ and $y=2 x-1$ is
(A) 5
(B) $5 \sqrt{5}$
(C) $\sqrt{5}$
(D) $\frac{1}{5}$
(E) $\frac{3}{\sqrt{5}}$

Solution: (C)
Distance between parallel lines $y=2 x+4$
or $2 x-y+4=0$ and $y=2 x-1$
or $2 x-y-1=0$ is
$=\frac{4+1}{\sqrt{(2)^{2}+(1)^{2}}}=\frac{5}{\sqrt{5}}=\sqrt{5}$
85. $\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{2}+{ }^{7} C_{3}\right)+\cdots+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)=$
(A) $2^{8}-2$
(B) $2^{7}-1$
(C) 2^{7}
(D) $2^{8}-1$
(E) $2^{7}-2$

Solution: (C)
$\left({ }^{7} C_{0}+{ }^{7} C_{1}\right)+\left({ }^{7} C_{2}+{ }^{7} C_{3}\right)+\cdots+\left({ }^{7} C_{6}+{ }^{7} C_{7}\right)$
$={ }^{7} C_{0}+{ }^{7} C_{1}+\cdots+{ }^{7} C_{7}$
$=2^{7}\left[\because C_{0}+C_{1}+C_{2}+\cdots+C_{n}=2^{n}\right]$
86. The coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$ is
(A) 17
(B) 19
(C) -17
(D) -19
(E) 20

Solution: (D)
$\left(1-3 x+7 x^{2}\right)(1-x)^{16}$
$=\left(1-3 x+7 x^{2}\right)$
$=\left({ }^{16} C_{0}+{ }^{16} C_{1} x^{1}+{ }^{16} C_{2} x^{2}+\cdots+{ }^{16} C_{16} x^{16}\right)$
$=\left(1-3 x+7 x^{2}\right)\left(1-16 x+120 x^{2}+\cdots\right)$
\therefore Coefficient of $x=-16-3=-19$
87. The equation of the circle with centre $(2,2)$ which passes through $(4,5)$ is
(A) $x^{2}+y^{2}-4 x+4 y-77=0$
(B) $x^{2}+y^{2}-4 x-4 y-5=0$
(C) $x^{2}+y^{2}+2 x+2 y-59=0$
(D) $x^{2}+y^{2}-2 x-2 y-23=0$
(E) $x^{2}+y^{2}+4 x-2 y-26=0$

Solution: (B)
Radius of circle is $\sqrt{(4-2)^{2}+(5-2)^{2}}=\sqrt{13}$ So, equation of circle is $(x-2)^{2}+(y-2)^{2}=13$
$\Rightarrow x^{2}+4-4 x+y^{2}+4-4 y=13$
$\Rightarrow x^{2}+y^{2}-4 x-4 y-5=0$
88. The point in the $x y$-plane which is equidistant from $(2,0,3),(0,3,2)$ and $(0,0,1)$ is
(A) $(1,2,3)$
(B) $(-3,2,0)$
(C) $(3,-2,0)$
(D) $(3,2,0)$
(E) $(3,2,1)$

Solution: (D)
Let the points are $A(2,0,3), B(0,3,2)$ and $D(0,0,1)$.
We know that Z-coordinate of every point an $x y$-plane is zero so let $p(x, y, 0)$ be a point on $x y$-plane such that $P A=P B=P C$.
Now, $P A=P B$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(x-2)^{2}+(y-0)^{2}+(0-3)^{2}=(x-0)^{2}+(y-3)^{2}+(0-2)$
$\Rightarrow 4 x-6 y=0 \Rightarrow 2 x-3 y=0$
and, $P B=P C$
$\Rightarrow P B^{2}=P C^{2}$
$\Rightarrow(x-0)^{2}+(y-3)^{2}+(0-2)^{2}=(x-0)^{2}+(y-0)^{2}+(0-1)^{2}$
$\Rightarrow-6 y+12=0$
$\Rightarrow \quad y=2$
Putting $y=2$ in Equation (i), we get $x=3$
Hence, the required point is $(3,2,0)$.
89. Let $f: x \rightarrow y \square$ be such that $f(1)=2$ and $f(x+y)=f(x) f(y)$ for all natural numbers x and y. If $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$, then a is equal to
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Solution: (A)
We have,
$f(1)=2$ and $f(x+y)=f(x) \cdot f(y)$
Now, $f(2)=f(1+1)=f(1) \cdot f(1)=2 \cdot 2=2^{2}$
$f(3)=f(2+1)+f(2) \cdot f(1)=2^{2} \cdot 2=2^{3}$
and so on
$\therefore f(x)=2^{n} \ldots$ (i)
Now, we have
$\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$
$\Rightarrow f(a+1)+f(a+2)+\cdots+f(a+n)=16\left(2^{n}-1\right)$
$\Rightarrow f(a) \cdot f(1)+f(a) \cdot f(2)+\cdots+f(a) \cdot f(n)=16\left(2^{n}-1\right)$
$\Rightarrow f(a)=[f(1)+f(2)+\cdots+f(n)]=16\left(2^{n}-1\right)$
$\left.\Rightarrow f(a)\left[2+2^{2}+\cdots+2^{n}\right]=16\left(2^{n}-1\right)\right]$
$\Rightarrow f(a) \cdot\left[2 \frac{\left(2^{n}-1\right)}{2-1}\right]=16\left(2^{n}-1\right)$
$\Rightarrow 2 f(a) \cdot\left(2^{n}-1\right)=16 \cdot\left(2^{n}-1\right) \Rightarrow f(a)=8$
$\Rightarrow 2^{a}=8\left[\because f(x)=2^{n} \Rightarrow f(a)=2^{a}\right]$
$\Rightarrow 2^{a}=2^{3}=a=3$
90. If ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$, then $n=$
(A) 3
(B) 4
(C) 8
(D) 9
(E) 10

Solution: (D)
Given that,

$$
{ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84
$$

and ${ }^{n} C_{r+1}=126$
Here, ${ }^{{ }^{n} C_{r-1}}{ }^{n} C_{r} \quad \frac{36}{84}$ and $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{84}{126}$
$\Rightarrow 3 n-10 r=-3$ and $4 n-10 r=6$
By solving these equations, we get $n=9, r=3$
91. Let $f:(-1,1) \rightarrow(-1,1)$ be continuous, $f(x)=f(x)^{2}$ for all $x \in(-1,1)$ and $f(0)=$ $\frac{1}{2}$, then the value of $4 f\left(\frac{1}{4}\right)$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Solution: (B)
$\because f$ is continuous
$\therefore f(0)=f(0+h)=f(0-h)$
$f\left(\frac{1}{4}\right)=f\left(\frac{1}{4}+h\right)$
$f(0)=f\left(0+\frac{1}{4}\right)$
Given, $f\left(\frac{1}{2}\right)=f\left(\frac{1}{2^{2}}\right)$
$\therefore f(0)=f\left(0+\frac{1}{2^{2}}\right)=\frac{1}{2}$
Therefore, $4 f\left(\frac{1}{4}\right)$
$=4 \cdot \frac{1}{2}$ [using Equation (i)]
$=2$
92. $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x^{2}-1}=$
(A) -1
(B) 1
(C) 0
(D) 2
(E) 4

Solution: (C)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right) \\
& =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right) \frac{\left(\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right)}{\left(\sqrt{x^{2}+1}+\sqrt{x^{2}-1}\right)} \quad \text { (by rationalization) } \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}+1}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{x\left(\sqrt{1+\frac{1}{x^{2}}}+\sqrt{1-\frac{1}{x^{2}}}\right)}=0
\end{aligned}
$$

93. If f is differentiable at $x=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5, f^{\prime}(1)=$ (A) 0
(B) 1
(C) 3
(D) 4
(E) 5

Solution: (E)
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$; function is differentiable.
$f(1)=0$ and $\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$; Given function is continuous.
Hence, $f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)}{h}=5$
94. The maximum value of the function $2 x^{3}-15 x^{2}+36 x+4$ is attained at (A) 0
(B) 3
(C) 4
(D) 2
(E) 5

Solution: (D)
We have, $f(x)=2 x^{3}-15 x^{2}+36 x+4$
$\Rightarrow f^{\prime}(x)=6 x^{2}-30 x+36$
and $f^{\prime}(x)=12 x-30$
At point of local maximum as minimum, we must have
$f^{\prime}(x)=0 \Rightarrow 6\left(x^{2}-5 x+6\right)=0 \Rightarrow x=2,3$
Clearly, $f^{\prime}(2)=24-30=-6<0$
and $f^{\prime}(3)=36-30=6>0$
So, $f(x)$ has local maximum at $x=2$.
95. If $\int f(x) \cos x d x=\frac{1}{2}\{f(x)\}^{2}+C$, then $f\left(\frac{\pi}{2}\right)$ is
(A) C
(B) $\frac{\pi}{2}+C$
(C) $C+1$
(D) $2 \pi+C$
(E) $C+2$

Solution: (C)
We have,
$\int f(x) \cos x d x=\frac{1}{2}\{f(x)\}^{2}+C$
On differentiating both sides, we get
$f(x) \cos x=f(x) f^{\prime}(x)$
$\because f^{\prime}(x)=\cos x$
$\Rightarrow f(x)=\sin x+C$
$\because f\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}+C=1+C$
96. $\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x=$
(A) $\pi(\sqrt{2}-2)$
(B) $\pi(\sqrt{2}+1)$
(C) $2 \pi(\sqrt{2}-1)$
(D) $2 \pi(\sqrt{2}+1)$
(E) $\frac{\pi}{\sqrt{2}+1}$

Solution: (E)
Let $I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{x}{1+\sin x} d x$
$I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\left(\frac{3 \pi}{4}+\frac{\pi}{4}-x\right)}{1+\sin \left(\frac{3 \pi}{4}+\frac{\pi}{4}-x\right)}$
$=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{(\pi-x) d x}{1+\sin x}$
$\left[\because \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right]$
By adding Equations (i) and (ii), we get
$2 I=\int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{\pi d x}{1+\sin x}$
$\Rightarrow 2 I=\pi \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1-\sin x}{(1+\sin x)(1-\sin x)} d x$
$\Rightarrow 2 I=\pi \int_{\frac{\pi}{4}}^{\frac{3 \pi}{4}} \frac{1-\sin x}{\cos ^{2} x} d x$
$\Rightarrow 2 I=\pi \int_{\frac{\pi}{4}}^{4}\left[\sec ^{2} x-\sec x \tan x\right] d x$
$\Rightarrow 2 I=\pi[\tan x-\sec x] \frac{\pi^{\frac{3 \pi}{4}}}{}$
$\Rightarrow 2 I=\pi\left[-1-(-\sqrt{2})^{\frac{4}{4}}-(1-\sqrt{2})\right]$
$\Rightarrow 2 I=\pi[-1+\sqrt{2}-1+\sqrt{2}]$
$\Rightarrow 2 I=\pi[-2+2 \sqrt{2}]$
$\therefore I=\pi[\sqrt{2}-1]$
$=\frac{\pi(\sqrt{2}-1)}{(\sqrt{2}+1)}(\sqrt{2}+1)$
$=\frac{\pi}{\sqrt{2}+1}$
97. $\int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x=$
(A) 2
(B) π
(C) $\frac{\pi}{4}$
(D) 2π
(E) 0

Solution: (C)
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x}+2^{\cos x}} d x$
$\Rightarrow I=\int_{2}^{\frac{\pi}{2}} \frac{2^{\sin \left(\frac{\pi}{2}-x\right)}}{2^{\sin \left(\frac{\pi}{2}-x\right)}+2^{\cos \left(\frac{\pi}{2}-x\right)}}$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{2^{\cos x}}{2^{\cos x}+2^{\sin x}} \ldots$..(ii)
By adding Equations (i) and (ii), we get

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}+2^{\cos x}}{2^{\sin x}+2^{\cos x}} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x=[x]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 I=\frac{\pi}{2} \\
& \Rightarrow I=\frac{\pi}{4}
\end{aligned}
$$

98. $\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{2}}\right)=$
(A) $\frac{2}{3}$
(B) $\frac{2}{9}$
(C) $\frac{1}{3}$
(D) 0
(E) $\frac{1}{6}$

Solution: (D)
$\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sin \sqrt{t} d t}{x^{2}}$
Where, $f(0)=0, g(0)=0$
$\therefore I=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Where, $f^{\prime}(x)=\sin \sqrt{x^{2}} \frac{d}{d x}\left(x^{2}\right)-0$
$=2 x \sin x$
$\therefore I=\lim _{x \rightarrow 0} \frac{2 x \sin x}{2 x}$
$=\lim _{x \rightarrow 0} \sin x=0$
99. The area bounded by $y=\sin ^{2} x, x=\frac{\pi}{2}$ and $x=\pi$ is
(A) $\frac{\pi}{2}$
(B) $\frac{2}{4}$
(C) $\frac{\pi}{8}$
(D) $\frac{\pi}{16}$
(E) 2π

Solution: (B)
Required area $=\int_{\frac{\pi}{2}}^{\pi} \sin ^{2} x d x$

$$
\begin{aligned}
& =\int_{\frac{\pi}{2}}^{\pi}\left[\frac{1-\cos 2 x}{2}\right] d x \\
& =\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi}(1-\cos 2 x) d x \\
& =\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{\frac{\pi}{2}}^{\pi} \\
& =\frac{1}{2}\left[(\pi-0)-\left(\frac{\pi}{2}-0\right)\right] \\
& =\frac{1}{2}\left[\frac{\pi}{2}\right]=\frac{\pi}{4}
\end{aligned}
$$

100. The differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$, where A and B are arbitrary constants is
(A) $y^{\prime \prime}-2 y^{\prime}+2 y=0$
(B) $y^{\prime \prime}+2 y^{\prime}-2 y=0$
(C) $y^{\prime \prime}+y^{\prime 2}+y=0$
(D) $y^{\prime \prime}+2 y^{\prime}-y=0$
(E) $y^{\prime \prime}-2 y^{\prime}-2 y=0$

Solution: (A)
Given, system of equation is
$y=e^{x}(A \cos x+B \sin x)$
$\Rightarrow \frac{d y}{d x}=e^{x}(-A \cos x+B \cos x)+y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=e^{x}(-A \sin x+B \cos x)+e^{x}$
$[-A \cos x-B \sin x]+\frac{d y}{d x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}-y\right) y+\frac{d y}{d x}[$ by Equation (i)]
$\Rightarrow \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
$\Rightarrow y^{\prime \prime}-2 y^{\prime}+2 y=0$
This is required differential equation.
101. The real part of $(i-\sqrt{3})^{13}$ is
(A) 2^{-10}
(B) 2^{12}
(C) 2^{-12}
(D) -2^{-12}
(E) 2^{10}

Solution: (B)
$(i-\sqrt{3})^{13}$
$=2^{13} \times i^{13}\left[\frac{1+\sqrt{3} i}{2}\right]^{13}$
$=2^{13} i^{13}(-1)^{13}\left[\frac{-1-\sqrt{3 i}}{2}\right]^{13}$
$=-2^{13} \cdot 1^{13} w^{13}=-2^{13} \cdot i \cdot\left[\frac{-1+\sqrt{3} i}{2}\right]$
$=-2^{13}[-i-\sqrt{3}]=-i 2^{13}+2^{13} \sqrt{3}$
Hence, real part is $2^{13} \sqrt{3}$.
102. $\lim _{x \rightarrow 0} \frac{1+x-e^{x}}{x^{2}}=$
(A) $\frac{1}{2}$
(B) $\frac{-1}{2}$
(C) 1
(D) -1
(E) 0

Solution: (B) $\lim _{x \rightarrow 0} \frac{1+x-e^{x}}{x^{2}}$
$=\lim _{x \rightarrow 0} \frac{1-e^{x}}{2 x} \quad$ [by L^{\prime} Hospital's rule]
$=\lim _{x \rightarrow 0} \frac{-e^{x}}{2}=-\frac{e^{0}}{2}=-\frac{1}{2}$
103. $\int \frac{(\sin x+\cos x)(2-\sin 2 x)}{\sin ^{2} 2 x} d x=$
(A) $\frac{\sin x+\cos x}{\sin 2 x}+C$
(B) $\frac{\sin x-\cos x}{\sin 2 x}+C$
(C) $\frac{\sin x}{\sin x+\cos x}+C$
(D) $\frac{\sin x}{\sin x-\cos x}+C$
(E) $\frac{\sin x-\cos x}{\sin x+\cos x}+C$

Solution: (B)
We have,
$I=\int \frac{(\sin x+\cos x)(2-\sin 2 x)}{\sin ^{2} 2 x} d x$
Put $\sin x-\cos x=1 \Rightarrow(\sin x+\cos x) d x=d t \quad$ and $\quad(\sin x-\cos x)^{2}=t^{2} \Rightarrow 1-$ $\sin 2 x=t^{2}$
$\Rightarrow \sin 2 x=1-t^{2}$
$\therefore I=\int \frac{\left(2-\left(1-t^{2}\right)\right) d t}{\left(1-t^{2}\right)^{2}}$
$\Rightarrow I=\int \frac{\left(1+t^{2}\right) d t}{\left(1-t^{2}\right)^{2}}$
$\Rightarrow I=\int \frac{1+t^{2}}{1-2 t^{2}+t^{4}} d t$
$\Rightarrow I=\int \frac{1+\frac{1}{t^{2}}}{\frac{1}{t^{2}}+t^{2}-2} d t$
$\Rightarrow I=\int \frac{1+\frac{1}{t^{2}}}{\left(t-\frac{1}{t}\right)^{2}} d t$
Put $t-\frac{1}{t}=y \Rightarrow\left(1+\frac{1}{t^{2}}\right) d t=d y$
$\therefore I=\int \frac{d y}{y^{2}}=-\frac{1}{y}+C$
$\Rightarrow I=\frac{-1}{t-\frac{1}{t}}+C$
$\Rightarrow I=\frac{t}{1-t^{2}}+C$
$\Rightarrow I=\frac{\sin x-\cos x}{\sin 2 x}+C$
104. A plane is at a distance of 5 units from the origin and perpendicular to the vector $2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$. The equation of the plane is
(A) $\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-2 \hat{k})=15$
(B) $\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-\hat{k})=15$
(C) $\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})=15$
(D) $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+2 \hat{k})=15$
(E) $\vec{r} \cdot(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})=15$

Solution: (C)
Equation of plane whose distance from origin is P and normal is \hat{n} is
$P=\vec{r} \cdot \hat{n}$
Given that, $P=5$
$\therefore \hat{n}=\frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{\sqrt{2^{2}+1^{2}+2^{2}}}$
$=\frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{3}$
By formula,

$$
\begin{aligned}
& 5=\vec{r} \cdot \frac{2 \hat{\imath}+\hat{\jmath}+2 \hat{k}}{3} \\
& \Rightarrow \vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})=15
\end{aligned}
$$

105. $\frac{\sin A-\sin B}{\cos A+\cos B}$ is equal to
(A) $\sin \left(\frac{A+B}{2}\right)$
(B) $2 \tan (A+B)$
(C) $\cot \left(\frac{A-B}{2}\right)$
(D) $\tan \left(\frac{A-B}{2}\right)$
(E) $2 \cot (A+B)$

Solution: (D
Given that, $\frac{\sin A-\sin B}{\cos A+\cos B}$
$=\frac{2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)}{2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}$
$=\frac{\sin \left(\frac{A-B}{2}\right)}{\cos \left(\frac{A-B}{2}\right)}=\tan \left(\frac{A-B}{2}\right)$
106. If $x=A \cos 4 t+B \sin 4 t$, then $\frac{d^{2} x}{d t^{2}}=$
(A) x
(B) $-16 x$
(C) $15 x$
(D) $16 x$
(E) $-15 x$

Solution: (B)
Given that,
$x=A \cos 4 t+B \sin 4 t$
Differentiating w.r. t to t,
$\frac{d x}{d t}=4 \cdot A(-\sin 4 t)+4 \cdot B \cos 4 t$
$\Rightarrow \frac{d x}{d t}=4[-A \sin 4 t+B \cos 4 t]$
Again differentiating w.r.t to t,
$\Rightarrow \frac{d^{2} x}{d t^{2}}=4[-4 \cdot A \cos 4 t+(-4) B \sin 4 t]$
$=-16[A \cos 4 t+B \sin 4 t]$
$\Rightarrow \frac{d^{2} x}{d t^{2}}=-16 x$
[by Equation (i)]
107. The arithmetic mean of ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2} \ldots,{ }^{n} C_{n}$ is
(A) $\frac{2^{n}}{n+1}$
(B) $\frac{2^{n}}{n}$
(C) $\frac{2^{n-1}}{n+1}$
(D) $\frac{2^{n-1}}{n}$
(E) $\frac{2^{n+1}}{n}$

Solution: (A)
$\because(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} \cdot x^{2}+\cdots+{ }^{n} C_{n} \cdot x^{n}$
Take $x=1$
$(1+1)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} \cdot(1)+{ }^{n} C_{2} \cdot(1)^{2}+\cdots+{ }^{n} C_{0} \cdot(1)^{n}$
$2^{n}={ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}$
Now, arithmetic mean
$\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{N}$, where $N=(n+1)$
$\Rightarrow \bar{X}=\frac{{ }^{n} C_{0}+{ }^{n} C_{1}+{ }^{n} C_{2}+\cdots+{ }^{n} C_{n}}{n+1}$
$\Rightarrow \bar{X}=\frac{2^{n}}{n+1}$
108. The variance of first 20 natural numbers is
(A) $\frac{399}{2}$
(B) $\frac{379}{12}$
(C) $\frac{133}{2}$
(D) $\frac{133}{4}$
(E) $\frac{169}{2}$

Solution: (D)
Since, variance of first n natural number is
(S.D. $)^{2}=\frac{n^{2}-1}{12}$
\therefore Variance of first 20 natural number is
$(S . D .)^{2}=\frac{(20)^{2}-1}{12}$
$=\frac{400-1}{12}$
$=\frac{399}{12}=\frac{133}{4}$
109. If S is a set with 10 elements and $A=\{(x, y): x, y \in S, x \neq y\}$, then the number of elements in A is
(A) 100
(B) 90
(C) 80
(D) 150
(E) 45

Solution: (B)
Total numbers of elements in the set $A=$ The selection of two distinct elements from given 10 elements.
$\Rightarrow n(A)={ }^{10} C_{1} \times{ }^{9} C_{1}=10 \times 9=90$
110. A coin is tossed and a die is rolled. The probability that the coin shows head and the die shows 3 is
(A) $\frac{1}{6}$
(B) $\frac{1}{12}$
(C) $\frac{1}{9}$
(D) $\frac{11}{12}$
(E) $\frac{1}{11}$

Solution: (B)
$P\left(E_{1}\right)=\frac{1}{2}$ and $P\left(E_{2}\right)=\frac{1}{6}$

So, required probability $=\left(\frac{1}{2}\right)\left(\frac{1}{6}\right)=\frac{1}{12}$
111. If $A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right)$, then the sum of all the diagonal entries of A^{-1} is
(A) 2
(B) 3
(C) -3
(D) -4
(E) 4

Solution: (E)
$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
$\Rightarrow|A|=0(2-3)-1(1-9)+2(1-6)=8-10=-2$
$\therefore \quad C_{11}=(2-3)=-1, C_{12}=-(1-9)=8$
$C_{13}=(1-6)=-5, C_{21}=-(1-2)=1$
$C_{22}=(0-6)=-6, C_{23}=-(0-3)=-3$
$C_{31}=(3-4)=-1, C_{32}=-(0-2)=2$
$C_{33}=(0-1)=-1$
$\therefore \quad \operatorname{adj}|A|=\left[\begin{array}{ccc}-1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1\end{array}\right]$
$A^{-1}=\frac{\operatorname{adj}[A]}{|A|}=\frac{\left[\begin{array}{ccc}-1 & 8 & -5 \\ 1 & -6 & 3 \\ -1 & 2 & -1\end{array}\right]}{-2}$
$A^{-1}=\left[\begin{array}{ccc}\frac{1}{2} & 4 & \frac{5}{2} \\ -\frac{1}{2} & 3 & -\frac{3}{2} \\ \frac{1}{2} & -1 & \frac{1}{2}\end{array}\right]$
\therefore Sum of all diagonal entries of A^{-1}
$=\frac{1}{2}+3+\frac{1}{2}=4$
112. Let $f(x)=\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$. If $x=-9$ is a root of
$f(x)=0$, then the other roots are
(A) 2 and 7
(B) 3 and 6
(C) 7 and 3
(D) 6 and 2
(E) 6 and 7

Solution: (A)
Given, $f(x)=\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
$=\left|\begin{array}{ccc}x+9 & x+9 & x+9 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
[applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$]
$=(x+9)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
$=(x+9)\left|\begin{array}{ccc}0 & 0 & 1 \\ 2-x & x-2 & 2 \\ 1 & 6-x & x\end{array}\right|$
[applying $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$]
$=(x+9)[(2-x)(6-x)-(x-2)]$
$=(x+9)(x-2)[x-6-1]$
$f(x)=(x+9)(x-2)(x-7)$
at $f(x)=0$
$(x+9)(x-2)(x-7)=0$
$\Rightarrow \quad x=-9,2,7$
Hence, other roots are 2 and 7.
113. If $[1 \times 1]\left[\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$, then x can be
(A) -1
(B) 2
(C) 14
(D) -14
(E) 0

Solution: (D)

$$
\begin{aligned}
& \text { Given that, }[1 \times 1]\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 5 & 1 \\
15 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{c}
1+2 x+15 \\
3+5 x+3 \\
2+x+2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{c}
2 x+16 \\
5 x+6 \\
x+4
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
x
\end{array}\right]=0 \\
& \Rightarrow 2 x+16+2(5 x+6)+x(x+4)=0 \\
& \Rightarrow 2 x+16+10 x+12+x^{2}+4 x=0 \\
& \Rightarrow x^{2}+16 x+28=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x^{2}+2 x+14 x+28=0 \\
& \Rightarrow x(x+2)+14(x+2)=0 \\
& \Rightarrow(x+2)(x+14)=0 \\
& \Rightarrow x=-14
\end{aligned}
$$

114. If $A=\left[\begin{array}{cc}2 x & 0 \\ x & x\end{array}\right]$ and $A^{-1}=A=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$, then $x=$
(A) 2
(B) $\frac{1}{2}$
(C) 1
(D) 3
(E) 0

Solution: (B)
We have,
$A=\left[\begin{array}{cc}2 x & 0 \\ x & x\end{array}\right]$
$A^{-1}=\frac{1}{2 x^{2}}\left[\begin{array}{cc}x & 0 \\ -x & 2 x\end{array}\right]$
$\left\{\because A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\right\}$
$\Rightarrow A^{-1}=\left[\begin{array}{rr}\frac{1}{2 x} & 0 \\ -\frac{1}{2 x} & \frac{1}{x}\end{array}\right]$
Now, it is given that
$A^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}\frac{1}{2 x} & 0 \\ -\frac{1}{2 x} & \frac{1}{x}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right]$
$\therefore x=\frac{1}{2}$
115. If $\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|=a x^{4}+b x^{3}+c x^{2}+d x+e$, then $5 a+4 b+3 c+2 d+e$ is equal to
(A) 11
(B) -11
(C) 12
(D) -12
(E) 13

Solution: (B)

Given that, $\left|\begin{array}{ccc}x & 2 & x \\ x^{2} & x & 6 \\ x & x & 6\end{array}\right|=a x^{4}+b x^{3}+c x^{2}+d x+e$,
$\Rightarrow x(6 x-6 x)-2\left(6 x^{2}-6 x\right)+x\left(x^{3}-x^{2}\right)$
$=a x^{4}+b x^{3}+c x^{2}+d x+e$
$\Rightarrow-12 x^{2}+12 x+x^{4}-x^{3}=a x^{4}=b x^{3}+c x^{2}+d x+e$
$\Rightarrow x^{4}-x^{3}-12 x^{2}+12 x=a x^{4}+b x^{3}+c x^{2}+d x+e$
On equating the coefficient of both sides, we get
$a=1, b=-1, c=-12, d=12, e=0$
$\therefore 5 a+4 b+3 c+2 d+e=5 \times 1+4 \times(-1)+3(-12)+2(12)+0$
$=5-4-36+24$
$=29+40=-11$
116. $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=$
(A) 1
(B) 0
(C) $(1-a)(1-b)(1-c)$
(D) $a+b+c$
(E) $2(a+b+c)$

Solution: (B)
Given that,

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|=\left|\begin{array}{lll}
1 & a & a+b+c \\
1 & b & a+b+c \\
1 & c & a+b+c
\end{array}\right| \\
& \quad\left[\text { applying } C_{3} \rightarrow C_{3}+C_{2}\right] \\
& =(a+b+c)\left|\begin{array}{lll}
1 & a & 1 \\
1 & b & 1 \\
1 & c & 1
\end{array}\right| \\
& =(a+b+c) \times 0 \\
& =0 .
\end{aligned}
$$

117. If $f(x)=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & x-1 & x \\ 3 x(x-1) & (x-1)(x-2) & x(x-1)\end{array}\right|$, then $f(50)=$
(A) 0
(B) 2
(C) 4
(D) 1
(E) 3

Solution: (A)
Given,
$\begin{aligned} & f(x)=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 x & x-1 & x \\ 3 x(x-1) & (x-1)(x-2) & x(x-1)\end{array}\right| \\ & 0\end{aligned}\left|\begin{array}{ccc}x+1 & 0 & 1 \\ 2(x+1)(x-1) & -2(x-1) & x(x-1)\end{array}\right|, ~ l$
[applying $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$]
$=(x-1)\left|\begin{array}{ccc}0 & 0 & 1 \\ (x+1) & -1 & x \\ 2(x+1) & -2 & x\end{array}\right|$
$=(x-1)[-2(x+1)+2(x+1)]$
$\Rightarrow f(x)=0$
$\therefore f(50)=0$
118. If $\Delta(x)=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right|$, then $\int_{0}^{\frac{\pi}{2}} \Delta(x) d x=$
(A) $\frac{-1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) -1
(E) 0

Solution: (A)
Given,
$\Delta(x)=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right|$
$=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 0 & -\sin x & \sin x-1 \\ \sin x & \sin x & 1\end{array}\right|$
$=\left|\begin{array}{ccc}1 & \cos x & 1 \\ 0 & -\sin x & -1 \\ \sin x & \sin x & 1+\sin x\end{array}\right|$
[applying $R_{1} \rightarrow R_{2}-\left(R_{1}+R_{3}\right)$]
[applying $C_{3} \rightarrow C_{3}+C_{2}$]
$=1\left(0+\sin ^{2} x\right)+1(\sin x-\sin x \cos x)+(1+\sin x)(-\sin x-0)$
$=\sin ^{2} x+\sin x-\sin x \cos x-\sin x-\sin ^{2} x$
$=-\sin x \cos x$
$\Delta x=-\frac{\sin 2 x}{2}$
$\therefore \int_{0}^{\frac{\pi}{2}} \Delta(x) d x=-\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2 x d x$
$=-\frac{1}{2}\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{2}}$
$=-\frac{1}{4}[\cos \pi-\cos 0]$
$-\frac{1}{4}[-1-1]$
$=-\frac{2}{4}=-\frac{1}{2}$
119. The equation of the plane passing through the points $(1,2,3),(-1,4,2)$ and $(3,1,1)$ is
(A) $5 x+y+12 z=23$
(B) $5 x+6 y+2 z=23$
(C) $5 x-6 y+2 z=23$
(D) $x+y+z=13$
(E) $2 x+6 y+5 z=7$

Solution: (B)
Given that,
$x_{1}=1, y_{1}=2, z_{1}=3$
$x_{2}=-1, y_{2}=4, z_{2}=2$
and $x_{3}=3, y_{3}=1, z_{3}=1$
Equation of plane passing through these points is
$\left|\begin{array}{ccc}x-1 & y-2 & z-3 \\ -2 & 2 & -1 \\ 2 & -1 & -2\end{array}\right|=0$
$\Rightarrow(x-1)(-4-1)-(y-2)(y+2)+(z-3)(2-4)=0$
$\Rightarrow(x-1)(-5)-(y-2)(6)+(z-3)(-2)=0$
$\Rightarrow-5 x+5-6 y+12-2 z+6=0$
$\Rightarrow-5 x-6 y-2 z+23=0$
$\Rightarrow 5 x+6 y+2 z-23=0$
$\Rightarrow 5 x+6 y+2 z=23$
120. In an arithmetic progression, if the k th term is $5 k+1$, then the sum of first 100 terms is
(A) 50(507)
(B) 51 (506)
(C) $50(506)$
(D) 51(507)
(E) $52(506)$

Solution: (A)
Let a be the first term of an $A P$ and d is the common difference.
$\therefore \quad a_{k}=a+(n-1) d$
Since, $a_{k}=5 k+1$
$a+(k-1) d=5(k-1)+6$
$\Rightarrow a+(k-1) d=6+(k-1) 6$
Equating both sides, we get
$a=6$ and $d=5$
$\therefore S_{100}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{100}{2}[2 \times 6+99 \times 5]$
$=50[12+495]=50(507)$

