Mathematics

Single correct answer type:

1. The value of $\frac{2(\cos 75^{\circ} + i\sin 75^{\circ})}{0.2(\cos 30^{\circ} + i\sin 30^{\circ})}$ is (A) $\frac{5}{\sqrt{2}}(1+i)$ (B) $\frac{10}{\sqrt{2}}(1+i)$ (C) $\frac{10}{\sqrt{2}}(1-i)$ (D) $\frac{5}{\sqrt{2}}(1-i)$ (E) $\frac{1}{\sqrt{2}}(1+i)$

Solution: (B) $\frac{2(\cos 75^{\circ} + i \sin 75^{\circ})}{0.2(\cos 30^{\circ} i \sin 30^{\circ})} = \frac{2 \cdot e^{i \, 75^{\circ}}}{0.2 \cdot e^{i \, 30^{\circ}}}$ $(\because \cos \theta + i \sin \theta = e^{i\theta})$ $= 10 \cdot e^{i \, 75^{\circ}} \cdot e^{-i \, 30^{\circ}}$ $= 10 \cdot e^{i \, 45^{\circ}}$ $= 10(\cos 45^{\circ} + i \sin 45^{\circ})$ $(e^{i\theta} = \cos \theta + i \sin \theta)$ $= 10 \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}\right)$ $= \frac{10}{\sqrt{2}}(1 + i)$

2. If the conjugate of a complex number z is $\frac{1}{i-1}$, then z is

(A) $\frac{1}{i-1}$ (B) $\frac{1}{i+1}$ (C) $\frac{-1}{i-1}$ (D) $\frac{-1}{i+1}$ (E) $\frac{1}{i}$

Solution: (D) $z = \frac{1}{i-1} \times \frac{i+1}{i+1}$

$$\Rightarrow z = \frac{i+1}{i^2 - 1^2}$$

$$z = -\frac{1}{2} \times (i+1)$$

$$\Rightarrow \bar{z} = -\frac{1}{2}(1-i) \times \frac{(1+i)}{(1+i)}$$

$$= -\frac{1}{2}\frac{(1+1)}{(1+i)} = -\frac{1}{(1+i)}$$
3. The value of $\left(i^{18} + \left(\frac{1}{i}\right)^{25}\right)^3$ is equal to
(A) $\frac{1+i}{2}$
(B) $2 + 2i$
(C) $\frac{1-i}{2}$
(D) $\sqrt{2} - \sqrt{2}i$
(E) $2 - 2i$
Solution: (E)
 $\left\{i^{18} + \left(\frac{1}{i}\right)^{25}\right\}^3 = \left\{(i^4)^4 \cdot i^2 + \left(\frac{1}{i^4}\right)^6 \cdot \frac{1}{i}\right\}^3$

$$= \left[1 \cdot (-1) + 1 \cdot \frac{1}{i}\right]^3$$

$$= \left[\frac{1}{i} - 1\right]^3$$

$$= \frac{1}{i^3} - 1 + \frac{3}{i}\left(1 - \frac{1}{i}\right)$$

$$= i - 1 - 3i + 3$$

$$= 2 - 2i$$
4. The modulus of $\frac{1+i}{1-i} - \frac{1-i}{1+i}$ is
(A) 2
(B) $\sqrt{2}$
(C) 4
(D) 8
(E) 10
Solution: (A)

 $\frac{1+i}{1-i} - \frac{1-i}{1+i} = \frac{(1+i)^2 - (1-i)^2}{1^2 - i^2}$ $= \frac{1+i^2 + 2i - 1 - i^2 + 2i}{2} = \frac{4i}{2}$ = 2i = 0 + 2i

Modulus of $\frac{1+i}{1-i} - \frac{1-i}{1+i} = |0 + 2i|$ $=\sqrt{0^2+2^2}=\sqrt{4}=2$ 5. If $z = e^{\frac{i4\pi}{3}}$, then $(z^{192} + z^{194})^3$ is equal to (A) −2 (B) −1 (C) −*i* (D) −2*i* (E) 0 Solution: (B) $z = e^{\frac{i 4\pi}{3}}$ $z = \left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$ $z = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$ $z = \omega^2$ $(z^{192} + z^{194})^3 = [(\omega^2)^{192} + (\omega^2)^{194}]^3$ $= [\omega^{384} + \omega^{388}]^3$ $= [(\omega^3)^{128} + (\omega^3)^{129} \cdot \omega]^3$ $=(1+\omega)^{3}$ $=1+\omega^3+3\omega^2+3\omega$ $= 1 + 1 + 3(\omega + \omega^2)$ = 1 + 1 + 3(-1)= 1 + 1 - 3= -16. If a and b are real numbers and $(a + ib)^{11} = 1 + 3i$, then $(b + ia)^{11}$ is equal to (A) *i* + 3 (B) 1 + 3i(C) 1 - 3i(D) 0 (E) -i - 3Solution: (E) Given, $(a + ib)^{11} = 1 + 3i$ So, $(a - ib)^{11} = 1 - 3i$...(i) Then, $(b + ia)^{11} = (i)^{11} \left\{ \frac{b}{i} + a \right\}^{11}$ $= (i)^{11} \{-bi + a\}^{11}$ $= -i(a-ib)^{11}$ From Equation (i), we get =-i(1-3i) $= -i + 3i^2$

= -i - 3

7. If $\alpha \neq \beta$, $\alpha^2 = 5 \alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is (A) $3x^2 - 19x - 3 = 0$ (B) $3x^2 + 19x - 3 = 0$ (C) $x^2 + 19x + 3 = 0$ (D) $3x^2 - 19x - 19 = 0$ (E) $3x^2 - 19x + 3 = 0$ Solution: (E) Given, $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$ $\alpha^2 - 5\alpha + 3 = 0$ $\Rightarrow \alpha = \frac{5 \pm \sqrt{25 - 12}}{2}$ $=\frac{5\pm\sqrt{13}}{2}$ Similarly, $\beta = \frac{5\pm\sqrt{13}}{2}$ $\therefore \alpha \neq \beta$ $\therefore \alpha = \frac{5 + \sqrt{13}}{2}, \beta = \frac{5 - \sqrt{13}}{2}$ Now, addition of roots $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{5 + \sqrt{13}}{5 - \sqrt{13}} + \frac{5 - \sqrt{13}}{5 + \sqrt{13}} = \frac{19}{3}$ Multiplication of roots $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha} = 1$ $\therefore \quad x^2 - \left(\frac{19}{3}\right)x + 1 = 0$ $\Rightarrow 3x^2 - 19x + 3 = 0$ 8. The focus of the parabola $y^2 - 4y - x + 3 = 0$ is (A) $\left(\frac{3}{4}, 2\right)$ (B) $\left(\frac{3}{4}, -2\right)$ (C) $\left(2,\frac{3}{4}\right)$ (D) $\left(\frac{-3}{4}, 2\right)$ (E) $\left(2, \frac{-3}{4}\right)$

Solution: (D) $y^2 - 4y - x + 3 = 0$ $(y - 2)^2 - 4 - x + 3 = 0$ $(y - 2)^2 - x - 1 = 0$ $(y - 2)^2 = (x + 1)$

Let
$$Y^2 = X$$
 ...(i)
Here, $Y = (y - 2), X = (x + 1)$
Vertices $(X = 0, Y = 0) = (2, -1)$
Equation (i) comparing on $y^2 = 4ax$
 $4a = 1$
 $\Rightarrow a = \frac{1}{4}$
 \therefore Focus $= (\frac{1}{4} - 1, 2) = (-\frac{3}{4}, 2)$

9. If $f: R \to (0, \infty)$ is an increasing function and if $\lim_{x \to 2018} \frac{f(3x)}{f(x)} = 1$, then $\lim_{x \to 2018} \frac{f(2x)}{f(x)}$ is equal to (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) 2 (D) 3 (E) 1 Solution: (E) Given $f: \mathbb{R} \to (0, \infty)$ is an increasing function. And $\lim_{x \to 2018} \frac{f(3x)}{f(x)} = 1$ So, $\lim_{x \to 2018} f(3x) = \lim_{x \to 2018} f(x)$ $\Rightarrow f(x) = \text{constant}.$ Therefore, $\lim_{x \to 2018} \frac{f(2x)}{f(x)} = 1$ 10. If *f* is differentiable at x = 1, then $\lim_{x \to 1} \frac{x^2 f(1) - f(x)}{x - 1}$ is (A) - f'(1)(B) f(1) - f'(1)(C) 2f(1) - f'(1)(D) 2f(1) + f'(1)(E) f(1) + f'(1)

Solution: (C) $\lim_{x \to 1} \frac{x^2 f(1) - f(x)}{x - 1}$ By *L'* Hospital's Rule, $\lim_{x \to 1} \frac{2x f(1) - f'(x)}{1 - 0} = 2f(1) - f'(1)$ 11. Eccentricity of the ellipse $4x^2 + y^2 - 8x + 4y - 8 = 0$ is (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{4}$ (C) $\frac{\sqrt{3}}{\sqrt{2}}$ (D) $\frac{\sqrt{3}}{8}$ (E) $\frac{\sqrt{3}}{16}$

Solution: (A) Equation $4x^2 + y^2 - 8x + 4y - 8 = 0$ is an ellipse. $\Rightarrow 4(x - 1)^2 + (y + 2)^2 - 8 - 8 = 0$ $= 4(x - 1)^2 + (y + 2)^2 = 16$ $= \frac{(x - 1)^2}{4} + \frac{(y + 2)^2}{16} = 1$, where b > a \therefore Eccentricity $(e) = \sqrt{1 - \frac{a^2}{b^2}}$ $= \sqrt{1 - \frac{4}{16}} = \sqrt{\frac{12}{16}} = \frac{\sqrt{3}}{2}$

12. The focus of the parabola $(y + 1)^2 = -8(x + 2)$ is (A) (-4, -1)(B) (-1, -4)(C) (1, 4)(D) (4, 1)(E) (-1, 4)Solution: (A) Given, $(y + 1)^2 = -8(x + 2)$

 $Y^2 = -8X$ Here, Y = y + 1, X = (x + 2)Vertices (X = 0, Y = 0) = (-2, -1)Comparing Equation (i) from $y^2 = 4ax$ 4a = -8a = -2Focus = (-2 - 2, -1)= (-4, -1)

13. Which of the following is the equation of a hyperbola? (A) $x^2 - 4x + 16y + 17 = 0$ (B) $4x^2 + 4y^2 - 16x + 4y - 60 = 0$ (C) $x^2 + 2y^2 + 4x + 2y - 27 = 0$ (D) $x^2 - y^2 + 3x - 2y - 43 = 0$ (E) $x^2 + 4x + 6y - 2 = 0$

Solution: (D)

$$x^{2} - y^{2} + 3x - 2y - 43 = 0$$

= $\left(x + \frac{3}{2}\right)^{2} - (y + 1)^{2} - \frac{5}{4} - 43 = 0$
= $\left(x + \frac{3}{2}\right)^{2} - (y + 1)^{2} = \frac{177}{4}$
= $\frac{\left(x + \frac{3}{2}\right)^{2}}{\frac{177}{4}} - \frac{(y + 1)^{2}}{\frac{177}{4}} = 1$

It is hyperbola equation.

14. Let $f(x) = px^2 + qx + r$, where p, q, r are constants and $p \neq 0$. If f(5) = -3f(2) and f(-4) = 0, then the other root of f is (A) 3 (B) −7 (C) −2 (D) 2 (E) 6 Solution: (A) $f(x) = px^2 + qx + r$ f(-4) = 0 $\Rightarrow 16p - 4q + r = 0$ (i) One root is x = -4and f(5) = -3f(2)25p + 5q + r = -3(4p + 2q + r) $\Rightarrow 37p + 11q + 4r = 0$(ii) Equation (ii) - Equation (i), we get $\Rightarrow -27p + 27q = 0$ $\Rightarrow p = q$ Then, equation is $px^2 + qx + r = 0$ Roots = $-4, \alpha$ Sum of roots = $-4x + \alpha = -\frac{p}{q} = -1$

So, another root $\alpha = 3$.

15. Let $f : \rightarrow$ satisfy f(x) f(y) = f(xy) for all real numbers x and y. If f(2) = 4, then $f\left(\frac{1}{2}\right) =$ (A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 1 (E) 2 Solution: (B) Given →

$$f(x) f(y) = f(xy) \quad \dots(i)$$

On taking $x = 1, y = 1$
$$f(1) f(1) = f(1 \cdot 1) = f(1)^2 = f(1) = f(1) = 1$$

Now, $x = 2, y = \frac{1}{2}$, then from equation (i)
$$f(2) f\left(\frac{1}{2}\right) = f\left(2 \cdot \frac{1}{2}\right)$$

 $\Rightarrow 4 f\left(\frac{1}{2}\right) = f(1) \quad [\because f(2) = 4]$
 $\Rightarrow f\left(\frac{1}{2}\right) = \frac{1}{4}f(1)$
On putting the value of $f(1)$,
 $\Rightarrow f\left(\frac{1}{2}\right) = \frac{1}{4} \cdot 1 = \frac{1}{4}$

16. Sum of last 30 coefficients in the binomial expansion of $(1 + x)^{59}$ is (A) 2^{29} (B) 2^{59} (C) 2^{58} (D) $2^{59} - 2^{29}$ (E) 2^{60}

Solution: (C) We have, $(1 + x)^{59}$ Sum of last 30 coefficient of the binomial expansion $= {}^{59}C_{30} + {}^{59}C_{31} + ... + {}^{59}C_{59}$ We know that, ${}^{59}C_0 + {}^{59}C_1 + {}^{59}C_2 + ... + {}^{59}C_{59} = 2^{59}$ $\Rightarrow ({}^{59}C_0 + {}^{59}C_{59}) + ({}^{59}C_1 + {}^{59}C_{58}) + ... + ({}^{59}C_{29} + {}^{59}C_{30}) = 2^{59}$ $\Rightarrow 2({}^{59}C_{59} + {}^{59}C_{58} + ... + {}^{59}C_{31} + {}^{59}C_{30}) = 2^{59} [: {}^{n}C_r = {}^{n}C_{n-r}]$ $\Rightarrow {}^{59}C_{30} + {}^{59}C_{31} + ... {}^{59}C_{39} + \frac{2^{59}}{2} = 2^{58}$

: Sum of last 30 coefficient of the binomial expansion $(1 + x)^{59}$ is 2^{58} .

17.
$$(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4 =$$

(A) $20\sqrt{6}$
(B) $30\sqrt{6}$
(C) $5\sqrt{10}$
(D) $40\sqrt{6}$
(E) $10\sqrt{6}$
Solution: (D)
Take,
 $(a + b)^4 = {}^4C_0a^4 + {}^4C_1a^3b + {}^4C_2a^2b^2 + {}^4C_3ab^3 + {}^4C_4b^4$

 $= {}^{4}C_{0}a^{4} + {}^{4}C_{1}a^{3}b + {}^{4}C_{2}a^{2}b^{2} + {}^{4}C_{1}ab^{3} + {}^{4}C_{0}b^{4} \quad (: {}^{n}C_{r} = {}^{n}C_{n-r})$

$$= 1 \times a^{4} + 4a^{3}b + \frac{4 \times 3}{2}a^{2}b^{2} + 4ab^{3} + 1 \times b^{4}$$

$$\Rightarrow (a + b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4} \dots (i)$$

Similarly, $(a - b)^{4} = a^{4} - 4a^{3}b + 6a^{2}b^{2} - 4ab^{3} + b^{4} \dots (ii)$
On subtracting Equation (ii) from Equation (i), we get
 $(a + b)^{4} - (a - b)^{4} = 8a^{3}b + 8ab^{3} = 8ab(a^{2} + b^{2})$
Now, putting $a = \sqrt{3}$ and $b = \sqrt{2}$
 $(\sqrt{3} + \sqrt{2})^{4} - (\sqrt{3} - \sqrt{2})^{4} = 8\sqrt{3}\sqrt{2}\left[(\sqrt{3})^{2} + (\sqrt{2})^{2}\right]$
 $= 8\sqrt{6}(3 + 2) = 8\sqrt{6} \times 5 = 40\sqrt{6}$

18. Three players A, B and C play a game. The probability that A, B and C will finish the game are respectively $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$. The probability that the game is finished is.

(A) $\frac{1}{8}$ (B) 1 (C) $\frac{1}{4}$ (D) $\frac{3}{4}$ (E) $\frac{1}{2}$

Solution: (D) We have, $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(C) = \frac{1}{4}$ \therefore Required probability $= 1 - P(\overline{A}) P(\overline{B})P(\overline{C})$ $= 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}$ $= 1 - \frac{1}{4} = \frac{3}{4}$ 19. If $z_1 = 2 - i$ and $z_2 = 1 + i$, then $\left|\frac{z_1 + z_2 + 1}{z_1 - z_2 + i}\right|$ is (A) 2 (B) $2\sqrt{2}$ (C) 3 (D) $\sqrt{3}$ (E) 1 Solution: (B) Given, $z_1 = 2 - i$ and $z_2 = 1 + i$ Then, $\left|\frac{z_1 + z_2 + 1}{z_1 - z_2 + i}\right| = \left|\frac{2 - i + 1 + i + 1}{2 - i - 1 - i + i}\right|$ $= \left|\frac{4}{(1 - i)} \times \frac{(1 + i)}{(1 + i)}\right|$

$$= \left|\frac{4(1+i)}{2}\right|$$

$$= |2+2i|$$

$$= \sqrt{(2)^{2} + (2)^{2}}$$

$$= \sqrt{8} = 2\sqrt{2}$$
20. If $f(x) = \sqrt{\frac{x-\sin x}{x+\cos^{2} x}}$, then $\lim_{x\to\infty} f(x)$ is equal to
(A) 1
(B) 2
(C) $\frac{1}{2}$
(D) 0
(E) ∞
Solution: (A)
Given, $f(x) = \sqrt{\frac{x-\sin x}{x+\cos^{2} x}}$
Now, $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \sqrt{\frac{x-\sin x}{x+\cos^{2} x}}$

$$= \lim_{x\to\infty} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\cos^{2} x}{x}}}$$

$$= \sqrt{\frac{1-0}{1+0}} \left(\because \frac{\sin x}{x} \to 0, \frac{\cos^{2} x}{x} \to 0 \text{ as } x \to \infty \right)$$

$$= 1$$
21. The value of $\sin \frac{31}{3}\pi$ is
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{-\sqrt{3}}{\sqrt{2}}$
(D) $\frac{-\sqrt{3}}{\sqrt{2}}$
(E) $\frac{1}{2}$
Solution: (A)
 $\sin \frac{31}{3}\pi = \sin \left(10\pi + \frac{\pi}{3}\right)$

$$= \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

22. The sum of odd integers from 1 to 2001 is (A) $(1121)^2$ (B) $(1101)^2$ $(C) (1001)^2$ (D) $(1021)^2$ $(E) (1011)^2$ Solution: (C) $1 + 3 + 5 + \dots + 2001$ Sum of odd integers = $n^2 = (1001)^2$ 23. If $y = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x}$, then y'(x) is equal to (A) $2\cos^2 x$ (B) $2\cos^3 x$ $(C) - \cos 2x$ (D) $\cos 2x$ (E) $3\cos x$ Solution: (C) $y = \frac{\sin^2 x}{1 + \cot x} + \frac{\cos^2 x}{1 + \tan x} \\ \cos^3 x$ $=\frac{\sin x + \cos x}{\sin^3 x + \cos^3 x} + \frac{\cos x}{\sin x + \cos x}$ = $(\sin x + \cos x)$ = sin² x + cos² x - sin x cos x $= y(x) = 1 - \frac{\sin 2x}{2}$ $= y'(x) = 0 - \frac{\cos 2x}{x} \cdot 2$ $= y'(x) = -\cos 2x$ 24. The foci of the hyperbola $16x^2 - 9y^2 - 64x + 18y - 90 = 0$ are (A) $\left(\frac{24 \pm 5\sqrt{145}}{12}, 1\right)$ (B) $\left(\frac{21 \pm 5\sqrt{145}}{12}, 1\right)$ (C) $\left(1, \frac{24 \pm 5\sqrt{145}}{2}, 1\right)$ (D) $\left(1, \frac{21 \pm 5\sqrt{145}}{2}\right)$ (E) $\left(\frac{21\pm5\sqrt{145}}{2},-1\right)$ Solution: (A) $16x^2 - 9y^2 - 64x + 18y - 90 = 0$

 $= 16(x^2 - 4x) - 9(y^2 - 2y) = 90$

$$= 16(x-2)^{2} - 9(y-1)^{2} = 90 + 16 \times 4 - 9 \times 1$$

$$= 16(x-2)^{2} - 9(y-1)^{2} = 145$$

$$= \frac{(x-2)^{2}}{\frac{145}{16}} - \frac{(y-1)^{2}}{\frac{145}{9}} = 1 \qquad \dots (i)$$

We know that, $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 \qquad \dots (i)$
Foci $\Rightarrow (ae, 0)$
On comparing Equations (i) and (ii), we get
 $\therefore e = \sqrt{1 + \frac{b^{2}}{a^{2}}} = \sqrt{1 + \frac{16}{9}} = \frac{5}{3}$
 $X = ae \Rightarrow x - 2$
 $= +\sqrt{\frac{145}{16}} \times \frac{5}{3}$
 $= \pm \frac{5\sqrt{145}}{12}$
 $x = 2 \pm \frac{5\sqrt{145}}{12}$
 $\Rightarrow x = \frac{24 \pm 5\sqrt{145}}{12}$
 $y = 0 \Rightarrow y - 1 = 0 \Rightarrow y = 1$
Hence, $(\frac{24 \pm 5\sqrt{145}}{12}, 1)$

25. If the sum of the coefficients in the expansions of $(a^2x^2 - 2ax + 1)^{51}$ is zero, then *a* is equal to

- (A) 0 (B) 1 (C) -1
- (D) 2
- (E) 2

Solution: (B) $(a^{2}x^{2} - 2ax + 1)^{51}$ For sum of coefficients put x = 1 $(a^{2} - 2a + 1)^{51} = 0$ $\Rightarrow \{(a - 1)^{2}\}^{51} = 0$ $\Rightarrow a = 1$

- 26. The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is
- (A) 2.23
- (B) 3.23
- (C) 2.57
- (D) 3.57
- (E) 1.03

Solution: (C) Mean of the given data is $\bar{x} = \frac{2+9+9+3+6+9+4}{7} = \frac{42}{7} = 6$

The deviations of the respective observations from the mean \bar{x} , i.e. $x_i - \bar{x}$ are 2 - 6, 9 - 6, 9 - 6, 3 - 6, 6 - 6, 9 - 6, 4 - 6 $\Rightarrow -4, 3, 3, -3, 0, 3, -2$ The absolute values of the deviations, i.e. $|x_i - \bar{x}|$ are 4, 3, 3, 3, 0, 3, 2

The required mean deviation about the mean is

$$MD(\bar{x}) = \frac{\sum_{i=1}^{7} |x_i - \bar{x}|}{7}$$

= $\frac{4 + 3 + 3 + 3 + 3 + 0 + 3 + 2}{7}$
= $\frac{18}{7}$ = 2.57

27. The mean and variance of a binomial distribution are 8 and 4 respectively. What is (X = 1)?

 $\begin{array}{c} (A) \frac{1}{2^8} \\ (B) \frac{1}{2^{12}} \\ (C) \frac{1}{2^6} \\ (D) \frac{1}{2^4} \\ (E) \frac{1}{2^5} \end{array}$

Solution: (B) Let *n* and *p* be the parameters of the binomial distribution. Mean = 8 and variance = 4 $\Rightarrow np = 8$ and npq = 4 $\Rightarrow q = \frac{1}{2} = p$ and n = 16 \therefore Required probability = P(X = 1) $= {}^{16}C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{15} = 16 \times \left(\frac{1}{2}\right)^{16}$ $= \frac{2^4}{2^{16}} = \frac{1}{2^{12}}$

28. The number of diagonals of a polygon with 15 sides is

- (A) 90
- **(B)** 45
- (C) 60
- (D) 70
- (E) 10

Solution: (A) The number of diagonals of a polygon with 15 sides is $= {}^{n}C_{2} - n = {}^{15}C_{2} - 15$ $= \frac{15 \times 14}{2} - 15$ = 105 - 15 = 90

29. In a class, 40% of students study Maths and Science and 60% of students study Maths. What is the probability of a students studying Science given the student is already studying Maths?

(A) $\frac{1}{3}$ (B) $\frac{1}{6}$ (C) $\frac{2}{3}$ (D) $\frac{1}{5}$ (E) $\frac{1}{4}$

Solution: (C)

Probability of Maths and Science students $=\frac{40}{100}=\frac{2}{5}$ Probability of maths students $=\frac{60}{100}=\frac{3}{5}$

P(Science/Maths) = $\frac{P(S \cap M)}{P(M)} = \frac{\frac{2}{5}}{\frac{3}{5}} = \frac{2}{3}$

30. The eccentricity of the conic $x^{2} + 2y^{2} - 2x + 3y + 2 = 0$ is (A) 0 (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{2}$ (D) $\sqrt{2}$ (E) 1 Solution: (B)

$$x^{2} + 2y^{2} - 2x + 3y + 2 = 0$$

= $(x - 1)^{2} - 1 + 2\left(y^{2} + \frac{3}{2}y + \frac{9}{16} - \frac{9}{16}\right) + 2 = 0$
= $(x - 1)^{2} + 2\left(y + \frac{3}{4}\right)^{2} - \frac{9}{8} + 1 = 0$
= $(x - 1)^{2} + 2\left(y + \frac{3}{4}\right)^{2} = \frac{1}{8}$
= $\frac{(x - 1)^{2}}{\frac{1}{8}} + \frac{\left(y + \frac{3}{4}\right)^{2}}{\frac{1}{16}} = 1$

Ellipse :
$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{\frac{1}{16}}{\frac{1}{8}}}$$

 $e = \sqrt{1 - \frac{8}{16}} = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$

31. If the mean of a set of observations $x_1, x_2, \dots x_{10}$ is 20, then the mean of $x_1 + 4, x_2 + 8, x_3 + 12, \dots x_{10} + 40$ is

- (A) 34
- **(B)** 32
- **(C)** 42
- (D) 38
- (E) 40

Solution: (C) Mean of a set of observations $x_1, x_2, ..., x_{10} = 20$ Then, according to question, $x_1 + 4 + x_2 + 8 + x_3 + 12 + \dots + x_{10} + 40$ $= \frac{x_1 + x_2 + \dots + x_{10}}{10} + \frac{4(1 + 2 + \dots + 10)}{10}$ $= 20 + \frac{4 \times 55}{10} = 20 + \frac{220}{10}$

= 20 + 22 = 42

32. A letter is taken at random from the word "STATISTICS" and another letter is taken at random from the word "ASSISTANT". The probability that they are same letters is

 $(A) \frac{1}{45} \\ (B) \frac{13}{90} \\ (C) \frac{19}{90} \\ (D) \frac{5}{18} \\ (E) \frac{9}{10}$

Solution: (C) Probability of take a random from the word STATISTICS = ${}^{10}C_1$

Probability of take a random from the word ASSISTANT = ${}^{9}C_{1}$

The probability is that they are same letters *T*, *A*, *I*, *S* = $\frac{{}^{3}C_{1} \times {}^{3}C_{1} + {}^{1}C_{1} \times {}^{2}C_{1} + {}^{2}C_{1} \times {}^{1}C_{1} + {}^{2}C_{1} \times {}^{3}C_{1}}{{}^{10}C_{1} \times {}^{9}C_{1}}$ = $\frac{9 + 2 + 2 + 6}{90} = \frac{19}{90}$ 33. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$, then (A) $a^2 - b^2 + 2ac = 0$ (B) $(a - c)^2 = b^2 + c^2$ (C) $a^2 + b^2 - 2ac = 0$ (D) $a^2 + b^2 + 2ac = 0$ (E) a + b + c = 0Solution: (A) $ax^2 + bx + c = 0$ Roots are $\cos \alpha$ and $\sin \alpha$ $\therefore \cos \alpha \cdot \sin \alpha = \frac{c}{a} \dots$ (i) and $\cos \alpha + \sin \alpha = -\frac{b}{a} \dots$ (ii) $\Rightarrow (\cos \alpha + \sin \alpha)^2 = \frac{b^2}{a^2}$ Using Equation (i), we get $(1 + 2\frac{c}{a}) = \frac{b^2}{a^2}$ $\Rightarrow a^2 - b^2 + 2ac = 0$

34. If the sides of triangle are 4, 5 and 6*cm*. Then the area (in sq cm) of triangle is (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{4}\sqrt{7}$ (C) $\frac{4}{7}$

(b)
$$\frac{\frac{15}{4}}{\frac{15}{15}}\sqrt{7}$$

(c) $\frac{\frac{15}{4}}{\frac{15}{4}}\sqrt{7}$

Solution: (E) Given, triangle of sides = a, b, c = 4, 5, 6 cm $\therefore S = \frac{a + b + c}{2}$ $= \frac{4 + 5 + 6}{2} = \frac{15}{2}$ Then, area of triangle $= \sqrt{S(S - a)(S - b)(S - c)}$ $= \sqrt{\frac{15}{2}(\frac{15}{2} - 4)(\frac{15}{2} - 5)(\frac{15}{2} - 6)}$ $= \sqrt{\frac{15}{2} \cdot (\frac{7}{2})(\frac{5}{2})(\frac{3}{2})} = \frac{15}{4}\sqrt{7}$ 35. In a group of 6 boys and 4 girls, a team consisting of four children is formed such that the team has atleast one boy. The number of ways of forming a team like this is

(A) 159

- (B) 209
- (C) 200
- (D) 240 (E) 212
- (=) = = =

Solution: (B) 10 6 Boys 4 Girls The team has atleast one boy = Total case – No anyone boy = ${}^{10}C_4 - {}^{6}C_0$ = $\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2} - 1 = 210 - 1 = 209$

36. A password is set with 3 distinct letters from the word LOGARITHMS. How many such passwords can be formed?

(A) 90

- (B) 720
- (C) 80
- (D) 72
- (E) 120

Solution: (B) LOGARITHMS letters are 10. A password is set with 3 distinct letters ${}^{10}C_3 \times 3!$ $=\frac{10\times9\times8}{3\times2}\times3\times2=720$ 37. If 5^{97} is divided by 52, the remainder obtained is (A) 3 **(B)** 5 (C) 4 (D) 0 (E) 1 Solution: (B) We know that, $5^4 = 625 = 3 \times 48 + 1$ $\Rightarrow 5^4 = 13\lambda + 1$, where λ is a positive integer. $\Rightarrow (5^4)^{24} = (13\lambda + 1)^{24}$ $= {}^{24}C_0(13\lambda)^{24} + {}^{24}C_1(13\lambda)^{23} + {}^{24}C_2(13\lambda)^{22} + \dots + {}^{24}C_{23}(13\lambda) + {}^{24}C_{24}$ (by binomial theorem) $\Rightarrow 5^{96} = 13 \left[{}^{24}C_0 13^{23}\lambda^{24} + {}^{24}C_1 13^{23}\lambda^{22} + \dots + {}^{24}C_{23}\lambda \right] + 1$

= (a multiple of 13) + 1On multiplying both sides by 5, we get $5^{97} = 5^{96} \cdot 5 = 5$ (a multiple of 13) + 5Hence, the required remainder is 5.

38. A quadratic equation $ax^2 + bx + c = 0$, with distinct coefficients is formed. It *a*, *b*, *c* are chosen from the numbers 2, 3, 5, then the probability that the equation has real roots is

(A) $\frac{1}{3}$ (B) $\frac{2}{5}$ (C) $\frac{1}{4}$ (D) $\frac{1}{5}$ (E) $\frac{2}{3}$

Solution: (A)

Total number of ways of assigning values 2, 3, 5 to a, b, c, = 3! = 6Now, for quadratic equation $ax^2 + bx + c = 0$ to have real roots $b^2 - 4ac \ge 0$. This is possible only when a = 2, b = 5, c = 3 or a = 3, b = 5, c = 2 \Rightarrow Required probability $= \frac{2}{6} = \frac{1}{3}$

39.
$$\lim_{x\to\infty} \frac{3x^3 + 2x^2 - 7x + 9}{4x^3 + 9x - 2}$$
 is equal to
(A) $\frac{2}{9}$
(B) $\frac{1}{2}$
(C) $\frac{-9}{2}$
(D) $\frac{3}{4}$
(E) $\frac{9}{2}$

Solution: (D)

$$\lim_{x \to \infty} \frac{3x^3 + 2x^2 - 7x + 9}{4x^3 + 9x - 2}$$

$$= \lim_{x \to \infty} \frac{x^3 \left[3 + \frac{2}{x} - \frac{7}{x^2} + \frac{9}{x^3}\right]}{x^3 \left[4 + \frac{9}{x^2} - \frac{2}{x^3}\right]}$$
On putting $x \to \infty$, we get
$$= \frac{\left[3 + 0 - 0 + 0\right]}{\left[4 + 0 - 0\right]} = \frac{3}{4}$$

40. The minimum value of $f(x) = \max\{x, 1 + x, 2 - x\}$ is (A) $\frac{1}{2}$

(B) $\frac{3}{2}$ (C) 1 (D) 0

(E) 2

Solution: (B) we have, $f(x) = \max\{x, 1 + x, 2 - x\}$ The graph of f(x) is

Clearly from graph minimum value of f(x) at point $A\left(\frac{1}{2}, \frac{3}{2}\right)$.

: Minimum value of f(x) is $\frac{3}{2}$.

41. The equations of the asymptotes of the hyperbola xy + 3y - 2y - 10 = 0 are (A) x = -2, y = -3(B) x = 2, y = -3(C) x = 2, y = 3(D) x = 4, y = 3(E) x = 3, y = 4

Solution: (B) We have equation of hyperbola is xy + 3x - 2y - 10 = 0 xy + 3x - 2y - 6 = 4 (x - 2) (y + 3) = 4We know that asymptote of hyperbola xy = c is x = 0 and y = 0. \therefore Asymptote of hyperbola (x - 2) (y + 3) = 4 is x - 2 = 0, y + 3 = 0 $\Rightarrow x = 2, y = -3$ 42. If $f(x) = x^6 + 6^x$, then f'(x) is equal to (A) 12x

(B) x + 4

(C) $6x^5 + 6^x \log(6)$

(D) $6x^5 + x6^{x-1}$

(E) x⁶

Solution: (C)

$$f(x) = x^{6} + 6^{x}$$

$$f'(x) = 6x^{5} + 6^{x} \log(6) \left[\because \frac{d}{dx}(x^{n}) = nx^{n-1} \right]$$

$$\left[\because \frac{d}{dx}(a^{x}) = a^{x} \log(a) \right]$$

43. The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is

(A) $\frac{\sqrt{52}}{7}$ (B) $\frac{52}{7}$ (C) $\frac{\sqrt{53}}{7}$ (D) $\frac{53}{7}$ (E) 6

Solution: (A) Given data 6, 5, 9, 13, 12, 8, 10 Mean of the given data (\bar{x}) $= \frac{6 + 5 + 9 + 13 + 12 + 8 + 10}{7}$

$$=\frac{63}{2}=9$$

 $= \frac{1}{7} = 9$ The deviation of the respective data from the mean i.e. $(x_i - \bar{x})$ are 6 - 9, 5 - 9, 9 - 9, 13 - 9, 12 - 9, 8 - 9, 10 - 9 $(x_i - \bar{x}) = -3, -4, 0, 4, 3, -1, 1$ $(x_i - \bar{x})^2 = 9, 16, 0, 16, 9, 1, 1$ $\sum_{\substack{r=i\\i=i\\}}^{7} (x_i - \bar{x})^2 = 9 + 16 + 0 + 16 + 9 + 1 + 1$ = 52 \therefore Standard deviation (σ) $= \sqrt{\frac{1}{n} \sum_{i=1}^{7} (x_i - \bar{x})^2} = \sqrt{\frac{52}{7}}$ 44. $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} =$

(A) $\frac{m^2}{n^2}$ (B) $\frac{n^2}{m^2}$ (C) ∞ (D) $-\infty$ (E) 0

Solution: (A)

$$\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} = \lim_{x \to 0} \left\{ \frac{2 \sin^2 \frac{mx}{2}}{2 \sin^2 \frac{nx}{2}} \right\}$$

$$= \lim_{x \to 0} \left[\left\{ \frac{\sin \frac{mx}{2}}{\frac{mx}{2}} \right\} \cdot \frac{m^2 x^2}{4} \cdot \frac{1}{\left\{ \frac{\sin \frac{nx}{2}}{\frac{m^2}{2}} \right\}^2} \cdot \frac{4}{n^2 x^2} \right]$$

$$= \frac{m^2}{n^2} \times 1 = \frac{m^2}{n^2}$$
45. $\lim_{x \to 0} \frac{\sqrt{(4+2x)-1}}{x} =$
(A) 0
(B) -1
(C) $\frac{1}{2}$
(D) 1
(E) $\frac{-1}{2}$
(D) 1
(E) $\frac{-1}{2}$
Using *I* Hospital's Rule,
 $\frac{1}{2\sqrt{1+2x}} \cdot 2 - 0$
 $\lim_{x \to 0} \frac{1}{\sqrt{1+2x}}$
Using *I* Hospital's Rule,
 $\frac{1}{2\sqrt{1+2x}} \cdot 2 - 0$
 $\lim_{x \to 0} \frac{1}{\sqrt{1+2x}}$
Using limit, we get
 $= \frac{1}{\sqrt{1+2(0)}} = 1$
46. Let *f* and *g* be differentiable functions such that $f(3) = 5, g(3) = 7, f'(3) =$
13, $g'(3) = 6, f'(7) = 2$ and $g'(7) = 0$. If $h(x) = (fog)(x)$, then $h'(3) =$
(A) 14
(B) 12

- (C) 16 (D) 0 (E) 10

Solution: (B) h(x) = f(g(x))

$h'(x) = f'(g(x)) \cdot g'(x)$
$h'(3) = f'(g(3)) \cdot g'(3) \qquad \begin{bmatrix} \because g(3) = 7 \\ g'(3) = 6 \end{bmatrix}$
$= f'(7) \cdot 6$
$= 2 \times 6 = 12$
$\sqrt{3}$ 1
$\frac{1}{\sin(20^{\circ})} - \frac{1}{\cos(20^{\circ})} - \frac{1}{\cos(20^{\circ})}$
(A) 1
(B) $\frac{1}{\sqrt{2}}$
(C) 2
(D) 4
(E) 0
Colution: (D)
$\frac{\sqrt{3}}{\sqrt{200}} = \frac{1}{\sqrt{200}}$
$\sin(20^{\circ})$ $\cos(20^{\circ})$
$=\frac{\sqrt{3}\cos(20^{\circ})-\sin(20^{\circ})}{\cos(20^{\circ})-\sin(20^{\circ})}$
$\sin(20^{\circ})\cos(20^{\circ})$
$4\left[\frac{\sqrt{3}}{2}\cos(20^{\circ}) - \frac{\sin(20)^{\circ}}{2}\right]$
$2\sin(20^{\circ})\cos(20^{\circ})$
$\begin{bmatrix} : 2 \sin A \cos A = \sin 2A \end{bmatrix}$
$=\frac{4(\sin 60^{\circ}\cos 20^{\circ}-\cos 60^{\circ}\sin 20^{\circ})}{\sin 20^{\circ}}$
$4\sin(60^{\circ}-20^{\circ})$
$=$ $\frac{1}{\sin 40^{\circ}}$
$[:: \sin(A - B) = \sin A \cos B - \cos A \sin B]$
$-\frac{4\sin 40^{\circ}}{4}$ - 4
$-\frac{1}{\sin 40^{\circ}}$

48. A poison variate *X* satisfies $P(X - 1) = P(X = 2) \cdot P(X = 6)$ is equal to (A) $\frac{4}{45}e^{-2}$ (B) $\frac{1}{45}e^{-1}$ (C) $\frac{1}{9}e^{-2}$ (D) $\frac{1}{4}e^{-2}$ (E) $\frac{1}{45}e^{-2}$ Solution: (A) Given that,

P(X = 1) = P(X = 2)

$$= \frac{e^{-\lambda}\lambda^{1}}{1!} = \frac{e^{-\lambda}\lambda^{2}}{2!}$$

$$\Rightarrow \lambda = 2$$

$$\therefore P(X = 6) = \frac{e^{-2}(2)^{6}}{6!}$$

$$= \frac{e^{-2} \times 4 \times 2^{4}}{6 \times 5 \times 4 \times 3 \times 2}$$

$$= \frac{4 \times e^{-2} \times 2^{4}}{45 \times 2^{4}} = \frac{4e^{-2}}{45}$$

49. Let a and b be 2 consecutive integers selected from the first 20 natural numbers. The probability that $\sqrt{a^2 + b^2 + a^2b^2}$ is an odd positive integer is

(A) $\frac{9}{19}$ (B) $\frac{10}{19}$ (C) $\frac{13}{19}$ (D) 1 (E) 0

Solution: (D) a and b are two consecutive number. Let a = n, b = n + 1Now, $\sqrt{a^2 + b^2 + a^2 b^2}$ $= \sqrt{n^2 + (n+1)^2 + n^2(n+1)^2}$ = $\sqrt{n^2 + n^2 + 2n + 1 + n^2(n^2 + 2n + 1)}$ $= \sqrt{n^2 + n^2 + 2n} + 1 + n^4 + 2n^3 + n^2$ $=\sqrt{n^4 + n^2 + 1 + 2n^3 + 2n^2 + 2n + 1}$ $=\sqrt{(n^2+n+1)^2}$ $= n^{2} + n + 1 = n(n + 1) + 1$ It is always odd. : Probability of $\sqrt{a^2 + b^2 + a^2b^2}$ is an odd integer is 1

50. An ellipse of eccentricity $\frac{2\sqrt{2}}{3}$ is inscribed in a circle. A point is chosen inside the circle at random. The probability that the point lies outside the ellipse is

- (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $\frac{1}{9}$ (D) $\frac{2}{9}$ (E) $\frac{1}{27}$

Given vectors $4\hat{\imath} + 11\hat{\jmath} + m\hat{k}$, $7\hat{\imath} + 2\hat{\jmath} + 6\hat{k}$ and $\hat{\imath} + 5\hat{\jmath} + 4\hat{k}$ are coplanar.

Then, $\begin{vmatrix} 1 & 5 & 4 \\ 4 & 11 & m \\ 7 & 2 & 6 \end{vmatrix}$ $\Rightarrow 1(66 - 2m) - 5(24 - 7m) + 4(8 - 77)$

= 66 - 2m - 120 + 35m + 32 - 308

= 33m - 330 = 0 $\Rightarrow m = 10$

52. Let $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ and $\vec{c} = 7\hat{\imath} + 9\hat{\jmath} + 11\hat{k}$. Then, the area of the parallelogram with diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ is (A) $4\sqrt{6}$

(B) $\frac{1}{2}\sqrt{21}$ (C) $\frac{\sqrt{6}}{2}$ (D) $\overline{\sqrt{6}}$ $(E)\frac{1}{\sqrt{6}}$ Solution: (A) Given, $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ $\vec{b} = \hat{\imath} + 3\hat{\imath} + 5\hat{k}$ $\vec{c} = 7\hat{\imath} + 9\hat{\jmath} + 11\hat{k}$ Diagonals: $D_1 = \vec{a} + \vec{b}$ and $D_2 = \vec{b} + \vec{c}$ Area of parallelogram = $\frac{1}{2}[D_1 \times D_2]$... (i) $D_1 = \vec{a} + \vec{b} = 2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$ $D_2 = \vec{b} + \vec{c} = 8\hat{\iota} + 12\hat{\jmath} + 16\hat{k}$ From Equation (i), $|\text{Area}| = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & 6 \\ 8 & 12 & 16 \end{vmatrix}$ $=\frac{1}{2}\left[\hat{\iota}(64-72)+\hat{\jmath}(48-32)+\hat{k}(24-32)\right]$ $=\frac{1}{2}\left|-8\hat{\imath}+16\hat{\jmath}-8\hat{k}\right|$ $=\frac{1}{2}\sqrt{64+256+64}=\frac{1}{2}\cdot 8\sqrt{6}=4\sqrt{6}$ 53. If $|\vec{a}| = 3$, $|\vec{b}| = 1$, $|\vec{c}| = 4$ and $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is equal to (A) 13 (B) 26 (C) -29 (D) −13 (E) -26 Solution: (D) $|\vec{a}| = 3, |\vec{b}| = 1, |\vec{c}| = 4,$ $\vec{a} + \vec{b} + \vec{c} = 0$ $(\vec{a} + \vec{b} + \vec{c})^2 = |a|^2 + |b|^2 + |c|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ $\Rightarrow 0 = (3)^{2} + (1)^{2} + (4)^{2} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ $\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{26}{2} = -13$

54. If $|\vec{a} - \vec{b}| = |\vec{a}| = |\vec{b}| = 1$, then the angle between \vec{a} and \vec{b} is equal to

(A) $\frac{\pi}{\frac{3}{3}\pi}$ (B) $\frac{\frac{\pi}{3}\pi}{\frac{4}{2}}$ (C) $\frac{\pi}{2}$ (D) 0 (E) π Solution: (A) $|\vec{a} - \vec{b}| = |\vec{a}| = |\vec{b}| = 1$ $\left|\vec{a} - \vec{b}\right|^2 = a^2 + b^2 - 2\vec{a} \cdot \vec{b}$ $1 = 1 + 1 - 2|\vec{a}||\vec{b}|\cos\theta$ $\cos \theta = \frac{1}{2} \Rightarrow \cos \frac{\pi}{3}$ $\theta = \frac{\pi}{3}$ 55. If the vectors $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$ and $\vec{c} = \lambda\hat{i} + 9\hat{j} + \mu\hat{k}$ are mutually orthogonal, then $\lambda + \mu$ is equal to (A) 5 (B) -9 (C) - 1(D) 0 (E) -5 Solution: (B) Given, $\vec{a} = \hat{\imath} - \hat{\jmath} + 2\hat{k}, \vec{b} = 2\hat{\imath} + 4\hat{\jmath} + \hat{k}$ $\vec{c} = \lambda \hat{\imath} + 9\hat{\jmath} + \mu \hat{k}$ Vectors are mutually orthogonal, so $\vec{a} \cdot \vec{b} = 0 = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$ $\vec{a} \cdot \vec{b} = 2 - 4 + 2$ $= 2\lambda + 36 + \mu$ $\Rightarrow 2\lambda + 36 + \mu = 0$ (i) $\lambda - 9 + 2\mu = 0$(ii) On solving Equations (i) and (ii), we get $\mu = 18, \lambda = -27$ $\lambda + \mu = 18 - 27 = -9$ 56. The solution of $x^{\frac{2}{5}} + 3x^{\frac{1}{5}} - 4 = 0$ are (A) 1,1024 (B) -1,1024 (C) 1,1031 (D) -1024,1 (E) -1,1031

Solution: (D) We have, $x^{\frac{2}{5}} + 3x^{\frac{1}{5}} - 4 = 0$ Let $x^{\frac{1}{5}} = y$ $v^2 + 3v - 4 = 0$ $\Rightarrow y^2 + 4y - y - 4 = 0$ $\Rightarrow y(y+4) - 1(y+4) = 0$ \Rightarrow (y + 4) (y - 1) = 0 $\Rightarrow y = -4, 1$ $\therefore x^{\frac{1}{5}} = -4 \text{ or } x^{\frac{1}{5}} = 1$ $\Rightarrow x = (-4)^5$ or x = 1 $\Rightarrow x = -1024 \text{ or } x = 1$ 57. If the equations $x^2 + ax + 1 = 0$ and $x^2 - x - a = 0$ have a real common root b, then the value of *b* is equal to (A) 0 **(B)** 1 (C) -1 (D) 2 (E) 3 Solution: (C) Given equations, $x^2 + ax + 1 = 0$ $x^2 - x - a = 0$ $\therefore b$ is common root, so b satisfied both equations. $b^2 + ab + 1 = b^2 - b - a$ = ab + b = -a - 1 $\Rightarrow b(a+1) = -(a+1)$ $\Rightarrow b = -1$ 58. If $\sin \theta - \cos \theta = 1$, then the value of $\sin^3 \theta - \cos^3 \theta$ is equal to (A) 1 (B) −1 (C) 0 (D) 2 (E) −2 Solution: (A) Given, $\sin \theta - \cos \theta = 1$ $\sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta) (\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)$ $= 1 (1 + \sin \theta \cos \theta)$ $= 1 + \sin\theta\cos\theta$(i) $[::\sin\theta - \cos\theta = 1]$ On squaring both sides, $(\sin\theta - \cos\theta)^2 = (1)^2$

 $\Rightarrow (\sin^2 \theta + \cos^2 \theta - 2\sin \theta \cos \theta) = 1$ $\Rightarrow 1 - 2\sin \theta \cos \theta = 1$ $\Rightarrow \sin \theta \cos \theta = 0 \quad \dots \quad \text{(ii)}$ From Equations (ii) and (i), we get $\sin^3 \theta - \cos^3 \theta = 1$

59. Two dice of different colours are thrown at a time. The probability that the sum is either 7 or 11 is

(A) $\frac{7}{36}$ (B) $\frac{2}{9}$ (C) $\frac{2}{3}$ (D) $\frac{5}{9}$ (E) $\frac{6}{7}$ Solution: (B) Probability of sum of 7 = (6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) and probability of sum of 11 = (6, 5), (5, 6) $P(x) = \frac{6}{36} + \frac{2}{36}$ $=\frac{8}{36}=\frac{2}{9}$ 60. $\frac{1}{9!} + \frac{1}{3!7!} + \frac{1}{5!5!} + \frac{1}{7!3!} + \frac{1}{9!}$ Is equal to (A) $\frac{2^9}{10!}$ (B) $\frac{2^{10}}{8!}$ (C) $\frac{2^{11}}{9!}$ (D) $\frac{2^{10}}{7!}$ (E) $\frac{2^{8}}{9!}$ Solution: (A) $\frac{1}{9!} + \frac{1}{3!7!} + \frac{1}{5!7!} + \frac{1}{7!3!} + \frac{1}{9!}$ $= \frac{1}{10!} \left[\frac{10!}{9!1!} + \frac{10!}{3!7!} + \frac{10!}{5!7!} + \frac{10!}{7!3!} + \frac{10!}{9!1!} \right]$ $=\frac{1}{10!} \Big[{}^{10}C_1 + {}^{10}C_3 + {}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9 \Big]$ $=\frac{1}{10!}\cdot 2^9 = \frac{2^9}{10!}$

61. The order and degree of the differential equation $(y''')^2 + (y'')^3 - (y')^4 + y^5 = 0$ is

(A) 3 and 2
(B) 1 and 2
(C) 2 and 3
(D) 1 and 4
(E) 3 and 5

Solution: (A)

The given differential equation is $(y''')^2 + (y'')^3 - (y')^4 + y^5 = 0$ Clearly, its order is 3 and degree is 2. Hence, option 3 and 2 is correct.

62. $\int_{-2}^{2} |x| dx$ is equal to (A) 0 (B) 1 (C) 2 (D) 4 (E) $\frac{1}{2}$

Solution: (D) Given that,

$$I = \int_{-2}^{2} |x| dx$$

= $-\int_{-2}^{0} x dx + \int_{0}^{2} dx$
= $-\left[\frac{x^{2}}{2}\right]_{-2}^{0} + \left[\frac{x^{2}}{2}\right]_{0}^{2}$
= $-(-2) + (2) = 4$
63. $\int_{-1}^{0} \frac{dx}{x^{2} + 2x + 2}$ is equal to
(A) 0
(B) $\frac{\pi}{4}$
(C) $\frac{-\pi}{4}$
(D) $\frac{\pi}{2}$
(E) $\frac{-\pi}{2}$

Solution: (B) Given that.

$$I = \int_{-1}^{0} \frac{dx}{x^2 + 2x + 2}$$

= $\int_{1}^{0} \frac{dx}{(x+1)^2 + 1} = [\tan^{-1}(x+1)]_{-1}^{0}$
= $[\tan^{-1}(1) - \tan^{-1}(0)] = \frac{\pi}{4}$

64. If
$$\int_{-1}^{4} f(x)dx = 4$$
 and $\int_{2}^{4} (3 - f(x))dx = 7$, then $\int_{-1}^{2} f(x)dx$ is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
Solution: (E)
We know, $\int_{2}^{4} [3 - f(x)]dx = 7$
 $\Rightarrow \int_{2}^{4} 3dx - \int_{2}^{4} f(x)dx = 7$
 $\Rightarrow (3x)_{2}^{4} - \int_{2}^{4} f(x)dx = 7$
 $\Rightarrow (12 - 6) - \int_{2}^{4} f(x)dx = 7$
 $\Rightarrow 6 - \int_{2}^{4} f(x)dx = 7$
 $\Rightarrow f_{2}^{4} f(x)dx = -1$ (i)
Now, $\int_{-1}^{4} f(x)dx = 4$
 $\Rightarrow \int_{-1}^{2} f(x)dx - 1 = 4$ [from Equation (i)]
 $\Rightarrow \int_{-1}^{2} f(x)dx = 5$
65. $\int \frac{xe^{x}}{1+x^{2}} dx = \frac{(x + 1 - 1)}{1+x^{2}} e^{x} dx$
(B) $\frac{e^{x}}{1+x} + C$
(C) $\frac{e^{x}}{1+x} + C$
Solution: (A)
Given that,
 $I = \int \frac{xe^{x}}{(1+x)^{2}} dx = \int \frac{(x + 1 - 1)}{(1+x)^{2}} e^{x} dx$
 $= \int e^{x} (\frac{1}{1+x} - \frac{1}{(1+x)^{2}}) dx$

$$=\frac{e^x}{1+x}+C$$

66. The remainder when 2²⁰⁰⁰ is divided by 17 is
(A) 1
(B) 2
(C) 8
(D) 12
(E) 4

Solution: (A) $2^{2000} = (2^4)^{500}$ $=(16)^{500}=(17-1)^{500}$ When divided by 17, then remainder = $(-1)^{500} = 1$ Hence, remainder = 167. The coefficient of x^5 in the expansion of $(x + 3)^8$ is (A) 1542 (B) 1512 (C) 2512 (D) 12 (E) 4 Solution: (B) $T_{r+1} = {}^{8}C_{r}x^{8-r}3^{r}$ For the coefficient of x^5 , $8 - r = 5 \Rightarrow r = 3$: Coefficient of $x^5 = {}^8C_3 \cdot 3^3$ $=\frac{8!}{3!5!} \times 3^3 = \frac{8 \times 7 \times 6}{6} \times 3^3$ $= 8 \times 7 \times 3^3 = 56 \times 27$ = 151268. The maximum value of 5 $\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3$ is (A) 5 (B) 11 (C) 10 (D) −1 (E) 2 Solution: (C) $5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3$ $= 5\cos\theta + 3[\cos\theta\cos60^{\circ} - \sin\theta\sin60^{\circ}] + 3$

 $= 5\cos\theta + 3\left[\frac{\cos\theta}{2} - \frac{\sqrt{3}}{2}\sin\theta\right] + 3$ $= \frac{13}{2}\cos\theta - \frac{3\sqrt{3}}{2}\sin\theta + 3$ $\text{Let } \frac{13}{2} = a \text{ and } \frac{3\sqrt{3}}{2} = b$ Then expression becomes, $a\cos\theta - b\sin\theta + 3$

Maximum value of this type of expression is equal to $[a^2 + b^2]^{\frac{1}{2}} + 3 =$ Maximum value After putting values of *a* and *b*, we get $[49]^{\frac{1}{2}} + 3 =$ Max value 10 = Max value

69. The area of the triangle in the complex plane formed by *z*, *iz* and *z* + *iz* is (A) |z|(B) $|\overline{z}|^2$ (C) $\frac{1}{2}|z|^2$ (D) $\frac{1}{2}|z + iz|^2$ (E) |z + iz|

Solution: (C)

Let z = x + iy; z + iz = (x - y) + i(x + y) and iz = -y + ix. If A is the area of triangle formed by z, z + iz and iz, then

$$A = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ x - y & x + y & 1 \\ -y & x & 1 \end{vmatrix}$$

Applying $R_2 \to R_2 - R_1 - R_3$
$$A = \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 0 & 0 & -1 \\ -y & x & 0 \end{vmatrix}$$

$$= \frac{1}{2} (x^2 + y^2) = \frac{1}{2} |z|^2$$

70. Let $f : f(-x) \rightarrow f(x)$ be a differentiable function. If f is even, then f'(0) is equal to (A) 1 (B) 2 (C) 0 (D) -1 (E) $\frac{1}{2}$

Solution: (C) $\therefore f(-x) = f(x)$ $-f'(-x) = f'(x) \Rightarrow -f'(0) = f'(0)$ $\Rightarrow 2f'(0) = 0 \Rightarrow f'(0) = 0$ 71. The coordinate of the point dividing internally the line joining the points (4, -2) and (8, 6) in the ratio 7:5 is

(A) (16, 18)

- (B) (18, 16)
- (C) $\left(\frac{19}{3}, \frac{8}{3}\right)$
- (D) $\left(\frac{8}{3}, \frac{19}{3}\right)$
- (E) (7,3)

Solution: (C) Here, $x_1 = 4, y_1 = -2, x_2 = 8, y_2 = 6$ and m : n = 7:5 $\therefore x = \frac{mx_2 + nx_1}{m + n} = \frac{7 \times 8 + 5 \times 4}{12}$ $= \frac{56 + 20}{12} = \frac{76}{12} = \frac{19}{3}$ and $y = \frac{my_2 + ny_1}{m + n}$ $= \frac{7 \times 6 + 5 \times (-2)}{7 + 5}$ $= \frac{42 - 10}{12} = \frac{32}{12} = \frac{8}{3}$ $\therefore (x, y) = (\frac{19}{3}, \frac{8}{3})$

72. The area of the triangle formed by the points (a, b + c), (b, c + a), (c, a + b) is (A) *abc* (B) $a^2 + b^2 + c^2$ (C) ab + bc + ca(D) 0

(E) a(ab + bc + ca)

Solution: (D)

Area of triangle
$$=\frac{1}{2}\begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$

 $=\frac{1}{2}\begin{vmatrix} a & a+b+c & 1 \\ b & a+b+c & 1 \\ c & a+b+c & 1 \end{vmatrix}$
[Applying $c_2 \to c_2 + c_1$]
 $=\frac{a+b+c}{2}\begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix} = 0$

73. If (x, y) is equidistant from (a + b, b - a) and (a - b, a + b), then (A) ax + by = 0(B) ax - by = 0(C) bx + ay = 0 (D) bx - ay = 0(E) x = y

Solution: (D) According to question, $\{x - (a + b)\}^2 + \{y - (b - a)\}^2$ $= \{x - (a - b)\}^2 + \{y - (a + b)\}^2$ $\Rightarrow x^2 + (a + b)^2 - 2x(a + b) + y^2 + (b - a)^2 - 2y(b - a)$ $= x^2 + (a + b)^2 - 2x(a - b) + y^2 + (a + b)^2 - 2y(a + b)$ By solving, we get $\Rightarrow bx - ay = 0$

74. The equation of the line passing through (a, b) and parallel to the line $\frac{x}{a} + \frac{y}{b} = 1$ is

(A) $\frac{x}{a} + \frac{y}{b} = 3$ (B) $\frac{x}{a} + \frac{y}{b} = 2$ (C) $\frac{x}{a} + \frac{y}{b} = 0$ (D) $\frac{x}{a} + \frac{y}{b} + 2 = 0$ (E) $\frac{x}{a} + \frac{y}{b} = 4$

Solution: (B) Given equation of line is $\frac{x}{a} + \frac{y}{b} = 1$ (i) $\Rightarrow bx + ay = ab$ $\Rightarrow bx + ay - ab = 0$ $\therefore m = -\frac{b}{a}$ So, equation of line passing through (a, b) and parallel to Equation (i) is $y - b = -\frac{b}{a}(x - a)$ ay - ab = -bx + ab ay + bx = 2ab $\frac{y}{b} + \frac{x}{a} = 2$ $\Rightarrow \frac{x}{a} + \frac{y}{b} = 2$

75. If the points (2a, a), (a, 2a) and (a, a) enclose a triangle of area 18 sq units, then the centroid of the triangle is equal to

(A) (4, 4)(B) (8, 8)(C) (-4, -4)(D) $(4\sqrt{2}, 4\sqrt{2})$ (E) (6, 6) Solution: (B) Given, that Area of triangle = 18 $\Rightarrow \frac{1}{2} \begin{vmatrix} 2a & a & 1 \\ a & 2a & 1 \\ a & a & 1 \end{vmatrix} = \pm 18$ $\Rightarrow \begin{vmatrix} 2a & a & 1 \\ a & 2a & 1 \\ a & a & 1 \end{vmatrix} = \pm 36$ $\Rightarrow 2a(2a - a) - a(a - a) + 1(a^2 - 2a^2) = \pm 36$ $\Rightarrow 2a^2 - a^2 = \pm 36$ $\Rightarrow a^2 = \pm 36$ $\Rightarrow a^2 = \pm 36$ $\Rightarrow a^2 = \pm 6$ Now, centroid of the given triangle will be $= \left(\frac{2a + a + a}{3}, \frac{a + 2a + a}{3}\right) = \left(\frac{4a}{3}, \frac{4a}{3}\right)$ When a = 6, centroid = $\left(\frac{4 \times 6}{3}, \frac{4 \times 6}{3}\right) = (8, 8)$

76. The area of a triangle is 5 sq units. Two of its vertices are (2, 1) and (3, -2). The third vertex lies on y = x + 3. The coordinates of the third vertex can be

 $(A) \left(\frac{-3}{2}, \frac{-3}{2}\right)$ $(B) \left(\frac{3}{4}, \frac{-3}{2}\right)$ $(C) \left(\frac{7}{2}, \frac{13}{2}\right)$ $(D) \left(\frac{-1}{4}, \frac{1}{2}\right)$ $(E) \left(\frac{3}{2}, \frac{3}{2}\right)$

Solution: (C)

Let the coordinates of third vertex be (x, y). Given that, area of a triangle = 5

 $\Rightarrow \frac{1}{2} \begin{vmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ x & y & 1 \end{vmatrix} = 5$ $\Rightarrow 2(-2 - y) - 1(3 - x) + 1(3y + 2x) = 10$ $\Rightarrow -4 - 2y - 3 + x + 3y + 2x = 10$ $\Rightarrow 3x + y = 17 \qquad \dots (i)$ Since, third vertex lies as $y = x + 3 \qquad \dots (ii)$ By solving Equations (i) and (ii), we get $x = \frac{7}{2}, y = \frac{13}{2}$ 77. If $x^2 + y^2 + 2gx + 2fy + 1 = 0$ represents a pair of straight lines, then $f^2 + g^2$ is equal to (A) 0 (B) 1 (C) 2

(D) 4

(E) 3

Solution: (B)

Given equation of pair of straight lines is $x^2 + y^2 + 2gx + 2fy + 1 = 0$ Since, the necessary and sufficient condition for pair of straight lines is

 $\begin{vmatrix} a & h & g \\ h & b & f \\ h & f & c \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 1 & 0 & g \\ 0 & 1 & f \\ g & f & 1 \end{vmatrix} = 0$ $\Rightarrow 1(1 - f^{2}) + g(0 - g) = 0$ $\Rightarrow 1 - f^{2} - g^{2} = 0$ $\Rightarrow f^{2} + g^{2} = 1$

78. If θ is the angle between the pair of straight lines $x^2 - 5xy + 4y^2 + 3x - 4 = 0$, then $\tan^2 \theta$ is equal to

 $\begin{array}{c} \text{(A)} \ \frac{9}{16} \\ \text{(B)} \ \frac{16}{25} \\ \text{(C)} \ \frac{9}{25} \\ \text{(D)} \ \frac{21}{25} \\ \text{(E)} \ \frac{9}{9} \end{array}$

Solution: (C) Given equation of straight line is $x^2 - 5xy + 4y^2 + 3x - 4 = 0$

$$\therefore \tan \theta = \left| \frac{2\sqrt{\left(-\frac{5}{2}\right)^2 - 4}}{5} \right|$$
$$= \left| \frac{2\sqrt{\frac{25}{4} - 4}}{5} \right| = \frac{2}{5} \times \sqrt{\frac{9}{4}} = \frac{2}{5} \times \frac{3}{2} = \frac{3}{5}$$
$$= \tan^2 \theta = \frac{9}{25}$$

79. If $3\hat{\imath} + 2\hat{\jmath} - 5\hat{k} = x(2\hat{\imath} - \hat{\jmath} + \hat{k}) + y(\hat{\imath} + 3\hat{\jmath} - 2\hat{k}) + z(-2\hat{\imath} + \hat{\jmath} - 3\hat{k})$, then (A) x = 1, y = 2, z = 3(B) x = 2, y = 3, z = 1(C) x = 3, y = 1, z = 2(D) x = 1, y = 3, z = 2

(E)
$$x = 2, y = 2, z = 3$$

Solution: (C) Given that, $3\hat{\imath} + 2\hat{\jmath} - 5\hat{k} = x(2\hat{\imath} - \hat{\jmath} + \hat{k}) + y(\hat{\imath} + 3\hat{\jmath} - 2\hat{k}) + 2(-2\hat{\imath} + \hat{\jmath} - 3\hat{k})$ $\Rightarrow 3\hat{i} + 2\hat{j} - 5\hat{k} = i(2x + y - 2z) + \hat{j}(-x + 3y + z) + \hat{k}(x - 2y - 3z)$ By equating the coefficients of \hat{i} , \hat{j} and \hat{k} , we get $\Rightarrow 2x + y - 2z = 3$ (i) -x + 3y + z = 2....(ii) $x - 2y - 3z = -5 \dots$ (iii) By solving Equations (i), (ii) and (iii), we get x = 3, y = 1, z = 280. $\sin 15^{\circ} =$ 80. $\sin 15^{\circ}$ (A) $\frac{\sqrt{3}-1}{2\sqrt{2}}$ (B) $\frac{\sqrt{3}+1}{2\sqrt{2}}$ (C) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ (D) $\frac{1+\sqrt{3}}{\sqrt{2}}$ (E) $\frac{-(1+\sqrt{3})}{2\sqrt{2}}$ Solution: (A) $:: \sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ})$ $= \sin 45^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 45^{\circ}$ $=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{2} \times \frac{1}{\sqrt{2}}$ $=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}$ $=\frac{\sqrt{3}-1}{2\sqrt{2}}$ 81. If \bar{a} and $\bar{b} = 3\hat{i} + 6\hat{j} + 6\hat{k}$ are collinear and $\bar{a} \cdot \bar{b} = 27$, then \bar{a} is equal to (A) $3(\hat{\imath} + \hat{\jmath} + \hat{k})$ (B) $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ (C) $2\hat{i} + 2\hat{j} + 2\hat{k}$ (D) $\hat{i} + 3\hat{j} + 3\hat{k}$ (E) $\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ Solution: (B) Since, \vec{a} and \vec{b} are collinear vector. Therefore, $\vec{a} = \lambda \vec{b}$(i)

 $\therefore \vec{a} \cdot \vec{b} = 27$ $\Rightarrow |\vec{a}| |\vec{b}| \cos 0^o = 27$ $\Rightarrow |\vec{b}| \cdot \sqrt{9 + 36 + 36} = 27$ \Rightarrow $|\vec{a}| = \frac{27}{9} = 3$ By Equation (i), $\vec{a} = \lambda \vec{b}$ \Rightarrow $|\vec{a}| = |\lambda| |\vec{b}|$ $3 = |\lambda| \cdot 9$ $\Rightarrow |\lambda| = \pm \frac{1}{3}$ $\therefore \vec{a} = \pm \frac{1}{3} (3\hat{\imath} + 6\hat{\jmath} + 6\hat{k})$ $\vec{a} = \pm \left(\hat{\imath} + 2\hat{j} + 2\hat{k}\right)$ 82. If $|\vec{a}| = 13$, $|\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 30$, then $|\vec{a} \times \vec{b}|$ is equal to (A) 30 (B) $\frac{30}{25}\sqrt{233}$ (C) $\frac{30}{33}\sqrt{193}$ (D) $\frac{65}{23}\sqrt{493}$ (E) $\frac{65}{13}\sqrt{133}$ Solution: (E) Given that, $|\vec{a}| = 13, |\vec{b}| = 5$ and $\vec{a} \cdot \vec{b} = 30$ $\therefore \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ $\Rightarrow 30 = 13.5 \cos \theta$ $\Rightarrow \cos \theta = \frac{30}{13.5} = \frac{6}{13}$ $\Rightarrow \sin^2 \theta = 1 - \frac{36}{169}$ $\Rightarrow \sin^2 \theta = \frac{133}{169}$ $\Rightarrow \sin \theta = \frac{\sqrt{133}}{13}$ $\therefore |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$ $= 13.5 \cdot \frac{\sqrt{133}}{13}$ $=\frac{65}{13}\sqrt{133}$

83. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800$: 1, then *r* is equal to

(A) 69 **(B)** 41 (C) 51 (D) 61 (E) 49 Solution: (B) Given that, ${}^{56}P_{r+6}$: ${}^{54}P_{r+3} = 30800 : 1$ $\frac{56!}{(50-r)!} \times \frac{(51-r)!}{54!} = \frac{30800}{1}$ $\Rightarrow 56 \times 55 \times (51 - r) = 30800$ \Rightarrow r = 4184. Distance between two parallel lines y = 2x + 4 and y = 2x - 1 is (A) 5 (B) 5√5 (C) √5 (D) $\frac{1}{5}$ (E) $\frac{3}{\sqrt{5}}$ Solution: (C) Distance between parallel lines y = 2x + 4or 2x - y + 4 = 0 and y = 2x - 1or 2x - y - 1 = 0 is $=\frac{4+1}{\sqrt{(2)^2+(1)^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}$ 85. $\binom{7}{C_0} + \binom{7}{C_1} + \binom{7}{C_2} + \binom{7}{C_3} + \dots + \binom{7}{C_6} + \binom{7}{C_7} =$ (A) $2^8 - 2$ (B) $2^7 - 1$ $(C) 2^7$ (D) $2^8 - 1$ (E) $2^7 - 2$ Solution: (C) $\binom{7}{C_0} + \binom{7}{C_1} + \binom{7}{C_2} + \binom{7}{C_3} + \dots + \binom{7}{C_6} + \binom{7}{C_7}$ $= {}^{7}C_{0} + {}^{7}C_{1} + \dots + {}^{7}C_{7}$ $=2^{7}[:: C_{0} + C_{1} + C_{2} + \cdots + C_{n} = 2^{n}]$ 86. The coefficient of x in the expansion of $(1 - 3x + 7x^2)(1 - x)^{16}$ is (A) 17 **(B)** 19

(C) −17

(D) -19 (E) 20

Solution: (D) $(1 - 3x + 7x^2) (1 - x)^{16}$ $= (1 - 3x + 7x^2)$ $= ({}^{16}C_0 + {}^{16}C_1x^1 + {}^{16}C_2x^2 + \dots + {}^{16}C_{16}x^{16})$ $= (1 - 3x + 7x^2) (1 - 16x + 120x^2 + \dots)$ \therefore Coefficient of x = -16 - 3 = -19

87. The equation of the circle with centre (2, 2) which passes through (4, 5) is

(A) $x^{2} + y^{2} - 4x + 4y - 77 = 0$ (B) $x^{2} + y^{2} - 4x - 4y - 5 = 0$ (C) $x^{2} + y^{2} + 2x + 2y - 59 = 0$ (D) $x^{2} + y^{2} - 2x - 2y - 23 = 0$ (E) $x^{2} + y^{2} + 4x - 2y - 26 = 0$

Solution: (B) Radius of circle is $\sqrt{(4-2)^2 + (5-2)^2} = \sqrt{13}$ So, equation of circle is $(x-2)^2 + (y-2)^2 = 13$ $\Rightarrow x^2 + 4 - 4x + y^2 + 4 - 4y = 13$ $\Rightarrow x^2 + y^2 - 4x - 4y - 5 = 0$

88. The point in the xy -plane which is equidistant from (2, 0, 3), (0, 3, 2) and (0, 0, 1) is (A) (1, 2, 3) (B) (-3, 2, 0) (C) (3, -2, 0) (D) (3, 2, 0) (E) (3, 2, 1)

Solution: (D) Let the points are A (2,0,3), B(0,3,2) and D(0,0,1). We know that Z-coordinate of every point an xy-plane is zero so let p(x, y, 0) be a point on *xy*-plane such that PA = PB = PC. Now, PA = PB $\Rightarrow PA^2 = PB^2$ $\Rightarrow (x-2)^2 + (y-0)^2 + (0-3)^2 = (x-0)^2 + (y-3)^2 + (0-2)$ $\Rightarrow 4x - 6y = 0 \Rightarrow 2x - 3y = 0$ (i) and, PB = PC $\Rightarrow PB^2 = PC^2$ $\Rightarrow (x-0)^{2} + (y-3)^{2} + (0-2)^{2} = (x-0)^{2} + (y-0)^{2} + (0-1)^{2}$ $\Rightarrow -6v + 12 = 0$ $\Rightarrow y = 2$ (ii) Putting y = 2 in Equation (i), we get x = 3Hence, the required point is (3, 2, 0).

89. Let $f: x \to y \square$ be such that f(1) = 2 and f(x + y) = f(x)f(y) for all natural numbers x and y. If $\sum_{k=1}^{n} f(a + k) = 16(2^n - 1)$, then a is equal to

(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Solution: (A) We have, f(1) = 2 and $f(x + y) = f(x) \cdot f(y)$ Now, $f(2) = f(1+1) = f(1) \cdot f(1) = 2 \cdot 2 = 2^2$ $f(3) = f(2+1) + f(2) \cdot f(1) = 2^2 \cdot 2 = 2^3$ and so on $\therefore f(x) = 2^n \dots (i)$ Now, we have $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$ $\Rightarrow f(a+1) + f(a+2) + \dots + f(a+n) = 16(2^n - 1)$ $\Rightarrow f(a) \cdot f(1) + f(a) \cdot f(2) + \dots + f(a) \cdot f(n) = 16(2^n - 1)$ $\Rightarrow f(a) = [f(1) + f(2) + \dots + f(n)] = 16(2^n - 1)$ $\Rightarrow f(a)[2+2^2+\cdots+2^n] = 16(2^n-1)]$ $\Rightarrow f(a) \cdot \left[2\frac{(2^n - 1)}{2 - 1}\right] = 16(2^n - 1)$ $\Rightarrow 2f(a) \cdot (2^n - 1) = 16 \cdot (2^n - 1) \Rightarrow f(a) = 8$ $\Rightarrow 2^a = 8 [: f(x) = 2^n \Rightarrow f(a) = 2^a]$ $\Rightarrow 2^a = 2^3 = a = 3$ 90. If ${}^{n}C_{r-1} = 36$, ${}^{n}C_{r} = 84$ and ${}^{n}C_{r+1} = 126$, then n =(A) 3 **(B)** 4 (C) 8 (D) 9 (E) 10 Solution: (D) Given that, ${}^{n}C_{r-1} = 36, \; {}^{n}C_{r} = 84$ and ${}^{n}C_{r+1} = 126$ Here, $\frac{n_{C_{r-1}}}{n_{C_r}} = \frac{36}{84}$ and $\frac{n_{C_r}}{n_{C_{r+1}}} = \frac{84}{126}$ \Rightarrow 3n - 10r = -3 and 4n - 10r = 6 By solving these equations, we get n = 9, r = 3

91. Let $f: (-1,1) \to (-1,1)$ be continuous, $f(x) = f(x)^2$ for all $x \in (-1,1)$ and f(0) = (-1,1) $\frac{1}{2}$, then the value of $4f\left(\frac{1}{4}\right)$ is (A) 1 (B) 2 (C) 3 (D) 4 (E) 5 Solution: (B) :: f is continuous $\therefore f(0) = f(0+h) = f(0-h)$ $f\left(\frac{1}{4}\right) = f\left(\frac{1}{4} + h\right)$ $f(0) = f\left(0 + \frac{1}{4}\right)$ Given, $f\left(\frac{1}{2}\right) = f\left(\frac{1}{2^2}\right)$ $\therefore f(0) = f\left(0 + \frac{1}{2^2}\right) = \frac{1}{2}$... (i) Therefore, $4f\left(\frac{1}{4}\right)$ $=4 \cdot \frac{1}{2}$ [using Equation (i)] = 292. $\lim_{x \to \infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1} =$ (A) -1 (B) 1 (C) 0 (D) 2 (E) 4 Solution: (C) $\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right)$ $= \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right) \frac{(\sqrt{x^2 + 1} + \sqrt{x^2 - 1})}{(\sqrt{x^2 + 1} + \sqrt{x^2 - 1})}$ (by rationalization) $= \lim_{x \to \infty} \frac{x^2 + 1 - x^2 + 1}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \lim_{x \to \infty} \frac{2}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$ $= \lim_{x \to \infty} \frac{2}{x \left(\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x^2}}\right)} = 0$

93. If *f* is differentiable at x = 1 and $\lim_{h\to 0} \frac{1}{h}f(1+h) = 5$, f'(1) = (A) 0

(B) 1

(C) 3

(D) 4

(E) 5

Solution: (E) $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$; function is differentiable. f(1) = 0 and $\lim_{h \to 0} \frac{f(1+h)}{h} = 5$; Given function is continuous. Hence, $f'(1) = \lim_{h \to 0} \frac{f(1+h)}{h} = 5$

94. The maximum value of the function $2x^3 - 15x^2 + 36x + 4$ is attained at (A) 0 (B) 3 (C) 4 (D) 2 (E) 5 Solution: (D) We have $f(x) = 2x^3 - 15x^2 + 36x + 4$

We have, $f(x) = 2x^3 - 15x^2 + 36x + 4$ $\Rightarrow f'(x) = 6x^2 - 30x + 36$ and f'(x) = 12x - 30At point of local maximum as minimum, we must have $f'(x) = 0 \Rightarrow 6(x^2 - 5x + 6) = 0 \Rightarrow x = 2, 3$ Clearly, f'(2) = 24 - 30 = -6 < 0and f'(3) = 36 - 30 = 6 > 0So, f(x) has local maximum at x = 2.

95. If $\int f(x) \cos x dx = \frac{1}{2} \{f(x)\}^2 + C$, then $f\left(\frac{\pi}{2}\right)$ is (A) C (B) $\frac{\pi}{2} + C$ (C) C + 1(D) $2\pi + C$ (E) C + 2

Solution: (C) We have,

$$\int f(x) \cos x dx = \frac{1}{2} \{f(x)\}^2 + C$$
On differentiating both sides, we

On differentiating both sides, we get $f(x) \cos x = f(x)f'(x)$ $\therefore f'(x) = \cos x$ $\Rightarrow f(x) = \sin x + C$ $\therefore f(\frac{\pi}{2}) = \sin \frac{\pi}{2} + C = 1 + C$

96.
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1+\sin x} dx =$$

(A) $\pi(\sqrt{2}-2)$
(B) $\pi(\sqrt{2}+1)$
(C) $2\pi(\sqrt{2}-1)$
(D) $2\pi(\sqrt{2}+1)$
(E) $\frac{\pi}{\sqrt{2}+1}$

Solution: (E)
Let
$$I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1+\sin x} dx$$
(i)
 $I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{(\frac{3\pi}{4} + \frac{\pi}{4} - x)}{1+\sin(\frac{3\pi}{4} + \frac{\pi}{4} - x)}$
 $= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{(\pi - x)dx}{1+\sin x}$ (ii)
 $\left[\because \int_{a}^{b} f(x)dx = \int_{a}^{b} f(a + b - x)dx\right]$
By adding Equations (i) and (ii), we get
 $2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi dx}{1+\sin x}$
 $\Rightarrow 2I = \pi \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1-\sin x}{(1+\sin x)(1-\sin x)} dx$
 $\Rightarrow 2I = \pi \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1-\sin x}{\cos^{2} x} dx$
 $\Rightarrow 2I = \pi \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1-\sin x}{\cos^{2} x} dx$
 $\Rightarrow 2I = \pi \int_{\frac{\pi}{4}}^{1} [\sec^{2} x - \sec x \tan x] dx$
 $\Rightarrow 2I = \pi [\tan x - \sec x] \frac{\pi}{4}^{\frac{3\pi}{4}}$
 $\Rightarrow 2I = \pi [-1 - (-\sqrt{2}) - (1 - \sqrt{2})]$
 $\Rightarrow 2I = \pi [-1 + \sqrt{2} - 1 + \sqrt{2}]$

$$\begin{array}{l} \therefore I = \pi [\sqrt{2} - 1] \\ = \frac{\pi (\sqrt{2} - 1)}{(\sqrt{2} + 1)} (\sqrt{2} + 1) \\ = \frac{\pi}{\sqrt{2} + 1} \\ \end{array} \\ \begin{array}{l} 97. \int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x + 2\cos x}} dx = \\ (A) 2 \\ (B) \pi \\ (C) \frac{\pi}{4} \\ (D) 2\pi \\ (E) 0 \\ \end{array} \\ \begin{array}{l} \text{Solution: (C)} \\ \text{Let } I = \int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x}}{2^{\sin x + 2\cos x}} dx & \dots (i) \\ \Rightarrow I = \int_{2}^{\frac{\pi}{2}} \frac{2^{\sin (\frac{\pi}{2} - x)}}{2^{\sin (\frac{\pi}{2} - x)} + 2^{\cos (\frac{\pi}{2} - x)}} \\ \Rightarrow I = \int_{0}^{\frac{\pi}{2}} \frac{2^{\cos x}}{2^{\cos x + 2\sin x}} \dots (ii) \\ \text{By adding Equations (i) and (ii), we get} \\ 2I = \int_{0}^{\frac{\pi}{2}} \frac{2^{\sin x} + 2^{\cos x}}{2^{\sin x} + 2^{\cos x}} dx \\ \Rightarrow 2I = \int_{0}^{\frac{\pi}{2}} 1 \cdot dx = [x]_{0}^{\frac{\pi}{2}} \\ \Rightarrow I = \frac{\pi}{4} \\ \end{array} \\ \begin{array}{l} 98. \lim_{x \to 0} \left(\frac{\int_{0}^{x^{2}} \sin \sqrt{t} \, dt}{x^{2}} \right) = \\ (A) \frac{2}{3} \\ (D) 0 \\ (E) \frac{1}{3} \\ (D) 0 \\ (E) \frac{1}{6} \end{array} \end{array}$$

Solution: (D) $\lim_{x \to 0} \frac{\int_0^{x^2} \sin \sqrt{t} \, dt}{x^2}$ Where, f(0) = 0, g(0) = 0 $\therefore I = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$ Where, $f'(x) = \sin \sqrt{x^2} \frac{d}{dx} (x^2) - 0$ $= 2x \sin x$ $\therefore I = \lim_{x \to 0} \frac{2x \sin x}{2x}$ $= \lim_{x \to 0} \sin x = 0$ 99. The area bounded by $y = \sin^2 x$, $x = \frac{\pi}{2}$ and $x = \pi$ is (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{8}$ (D) $\frac{\pi}{16}$ (E) 2π Solution: (B) Required area = $\int_{\frac{\pi}{2}}^{\pi} \sin^2 x \, dx$ $= \int_{\frac{\pi}{2}}^{\pi} \left[\frac{1-\cos 2x}{2}\right] dx$ $=\frac{1}{2}\int_{\underline{\pi}}^{\pi} (1-\cos 2x) \, dx$ $=\frac{1}{2}\left[x-\frac{\sin 2x}{2}\right]_{\frac{\pi}{2}}^{\pi}$ $=\frac{1}{2}\left[(\pi-0)-\left(\frac{\pi}{2}-0\right)\right]$ $=\frac{1}{2}\left[\frac{\pi}{2}\right]=\frac{\pi}{4}$

100. The differential equation of the family of curves $y = e^x (A \cos x + B \sin x)$, where *A* and *B* are arbitrary constants is

(A) y'' - 2y' + 2y = 0(B) y'' + 2y' - 2y = 0(C) $y'' + {y'}^2 + y = 0$ (D) y'' + 2y' - y = 0(E) y'' - 2y' - 2y = 0 Solution: (A) Given, system of equation is $y = e^{x}(A\cos x + B\sin x)$ $\Rightarrow \frac{dy}{dx} = e^{x}(-A\cos x + B\cos x) + y$ (i) $\Rightarrow \frac{d^{2}y}{dx^{2}} = e^{x}(-A\sin x + B\cos x) + e^{x}$ $[-A\cos x - B\sin x] + \frac{dy}{dx}$ $\Rightarrow \frac{d^{2}y}{dx^{2}} = (\frac{dy}{dx} - y)y + \frac{dy}{dx}$ [by Equation (i)] $\Rightarrow \frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} + 2y = 0$ $\Rightarrow y'' - 2y' + 2y = 0$ This is required differential equation.

101. The real part of $(i - \sqrt{3})^{13}$ is (A) 2^{-10} (B) 2^{12} (C) 2^{-12} (D) -2^{-12} (E) 2^{10}

Solution: (B) $(i - \sqrt{3})^{13}$ $= 2^{13} \times i^{13} \left[\frac{1 + \sqrt{3}i}{2}\right]^{13}$ $= 2^{13}i^{13}(-1)^{13} \left[\frac{-1 - \sqrt{3}i}{2}\right]^{13}$ $= -2^{13} \cdot 1^{13}w^{13} = -2^{13} \cdot i \cdot \left[\frac{-1 + \sqrt{3}i}{2}\right]$ $= -2^{13}[-i - \sqrt{3}] = -i2^{13} + 2^{13}\sqrt{3}$ Hence, real part is $2^{13}\sqrt{3}$.

102.
$$\lim_{x\to 0} \frac{1+x-e^x}{x^2} =$$

(A) $\frac{1}{2}$
(B) $\frac{-1}{2}$
(C) 1
(D) -1
(E) 0

Solution: (B) $\lim_{x\to 0} \frac{1+x-e^x}{x^2}$ $= \lim_{x \to 0} \frac{1 - e^x}{2x}$ [by *L'* Hospital's rule] $= \lim_{x \to 0} \frac{-e^x}{2} = -\frac{e^0}{2} = -\frac{1}{2}$ 103. $\int \frac{(\sin x + \cos x) (2 - \sin 2x)}{\sin^2 2x} dx =$ (A) $\frac{\sin x + \cos x}{\sin 2x} + C$ (B) $\frac{\sin x - \cos x}{\sin 2x} + C$ (C) $\frac{\sin x}{\sin x + \cos x} + C$ (D) $\frac{\sin x}{\sin x - \cos x} + C$ (E) $\frac{\sin x - \cos x}{\sin x + \cos x} + C$ Solution: (B) We have, $I = \int \frac{(\sin x + \cos x) (2 - \sin 2x)}{\sin^2 2x} dx$ $\sin x - \cos x = 1 \Rightarrow (\sin x + \cos x) \, dx = dt$ $(\sin x - \cos x)^2 = t^2 \Rightarrow 1 - t^2$ Put and $\sin 2x = t^2$ \Rightarrow sin 2x = 1 - t² $\therefore I = \int \frac{(2 - (1 - t^2))dt}{(1 - t^2)^2}$ $\Rightarrow I = \int \frac{(1+t^2)dt}{(1-t^2)^2}$ $\Rightarrow I = \int \frac{1+t^2}{1-2t^2+t^4} dt$ $\Rightarrow I = \int \frac{1 + \frac{1}{t^2}}{\frac{1}{t^2} + t^2 - 2} dt$ $\Rightarrow I = \int \frac{1 + \frac{1}{t^2}}{\left(t - \frac{1}{t}\right)^2} dt$ Put $t - \frac{1}{t} = y \Rightarrow \left(1 + \frac{1}{t^2}\right) dt = dy$ $\therefore I = \int \frac{dy}{y^2} = -\frac{1}{y} + C$ $\Rightarrow I = \frac{-1}{t - \frac{1}{t}} + C$ $\Rightarrow I = \frac{t}{1 - t^2} + C$

 $\Rightarrow I = \frac{\sin x - \cos x}{\sin 2x} + C$

104. A plane is at a distance of 5 units from the origin and perpendicular to the vector $2\hat{i} + \hat{j} + 2\hat{k}$. The equation of the plane is

(A) $\vec{r} \cdot (2\hat{\imath} + \hat{\jmath} - 2\hat{k}) = 15$ (B) $\vec{r} \cdot (2\hat{\imath} + \hat{\jmath} - \hat{k}) = 15$ (C) $\vec{r} \cdot (2\hat{\imath} + \hat{\jmath} + 2\hat{k}) = 15$ (D) $\vec{r} \cdot (\hat{\imath} + \hat{\jmath} + 2\hat{k}) = 15$ (E) $\vec{r} \cdot (2\hat{\imath} - \hat{\jmath} + 2\hat{k}) = 15$

 $=\frac{\sin\left(\frac{A-B}{2}\right)}{\cos\left(\frac{A-B}{2}\right)}=\tan\left(\frac{A-B}{2}\right)$

Solution: (C) Equation of plane whose distance from origin is P and normal is \hat{n} is $P = \vec{r} \cdot \hat{n}$ Given that, P = 5 $\therefore \hat{n} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{2^2 + 1^2 + 2^2}}$ $=\frac{2\hat{\imath}+\hat{\jmath}+2\hat{k}}{3}$ By formula, $5 = \vec{r} \cdot \frac{2\hat{\iota} + \hat{j} + 2\hat{k}}{3}$ $\Rightarrow \vec{r} \cdot (2\hat{\imath} + \hat{j} + 2\hat{k}) = 15$ 105. $\frac{\sin A - \sin B}{\cos A + \cos B}$ is equal to (A) $\sin\left(\frac{A+B}{2}\right)$ (B) $2 \tan(A + B)$ (C) $\cot\left(\frac{A - B}{2}\right)$ (D) $\tan\left(\frac{A - B}{2}\right)$ (E) $2 \cot(A + B)$ Solution: (D Given that, $\frac{\sin A - \sin B}{\cos A + \cos B} = \frac{2 \sin \left(\frac{A - B}{2}\right) \cos \left(\frac{A + B}{2}\right)}{2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right)}$

106. If $x = A \cos 4t + B \sin 4t$, then $\frac{d^2x}{dt^2} =$ (A) *x* (B) −16*x* (C) 15x (D) 16x (E) −15*x* Solution: (B) Given that, $x = A\cos 4t + B\sin 4t$(i) Differentiating w.r.t to t, $\frac{dx}{dt} = 4 \cdot A(-\sin 4t) + 4 \cdot B \cos 4t$ $\Rightarrow \frac{dx}{dt} = 4[-A\sin 4t + B\cos 4t]$ Again differentiating w.r.t to t, $\Rightarrow \frac{d^2x}{dt^2} = 4[-4 \cdot A\cos 4t + (-4)B\sin 4t]$ $= -16 [A \cos 4t + B \sin 4t]$ $\Rightarrow \frac{d^2x}{dt^2} = -16x$ [by Equation (i)] 107. The arithmetic mean of ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$..., ${}^{n}C_{n}$ is (A) $\frac{2^n}{n+1}$ (B) $\frac{\frac{2^{n}}{n}}{\frac{n}{n+1}}$ (C) $\frac{2^{n-1}}{\frac{n+1}{n+1}}$ (D) $\frac{2^{n-1}}{n}$ (E) $\frac{n}{2^{n+1}}$ Solution: (A) $: (1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2} \cdot x^{2} + \dots + {}^{n}C_{n} \cdot x^{n}$ Take x = 1 $(1+1)^{n} = {}^{n}C_{0} + {}^{n}C_{1} \cdot (1) + {}^{n}C_{2} \cdot (1)^{2} + \dots + {}^{n}C_{0} \cdot (1)^{n}$ $2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$ Now, arithmetic mean $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{N}, \text{ where } N = (n+1)$ $\Rightarrow \bar{X} = \frac{{}^{n}C_0 + {}^{n}C_1 + {}^{n}C_2 + \dots + {}^{n}C_n}{n+1}$ $\Rightarrow \bar{X} = \frac{2^n}{n+1}$

108. The variance of first 20 natural numbers is

(A) $\frac{399}{2}$ (B) $\frac{379}{12}$ (C) $\frac{133}{2}$ (D) $\frac{133}{4}$ (E) $\frac{169}{2}$

Solution: (D) Since, variance of first *n* natural number is $(S.D.)^2 = \frac{n^2 - 1}{12}$ \therefore Variance of first 20 natural number is $(S.D.)^2 = \frac{(20)^2 - 1}{12}$ $= \frac{400 - 1}{12}$ $= \frac{399}{12} = \frac{133}{4}$

109. If S is a set with 10 elements and $A = \{(x, y): x, y \in S, x \neq y\}$, then the number of elements in A is

(A) 100 (B) 90

(C) 80

(D) 150

(E) 45

Solution: (B)

Total numbers of elements in the set A = The selection of two distinct elements from given 10 elements.

 $\Rightarrow n(A) = {}^{10}C_1 \times {}^{9}C_1 = 10 \times 9 = 90$

110. A coin is tossed and a die is rolled. The probability that the coin shows head and the die shows 3 is

(A) $\frac{1}{6}$ (B) $\frac{1}{12}$ (C) $\frac{1}{9}$ (D) $\frac{11}{12}$ (E) $\frac{1}{11}$ (E) $\frac{1}{11}$ Solution: (B) $P(E_1) = \frac{1}{2}$ and $P(E_2) = \frac{1}{6}$ So, required probability $= \left(\frac{1}{2}\right) \left(\frac{1}{6}\right) = \frac{1}{12}$

111. If $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix}$, then the sum of all the diagonal entries of A^{-1} is (A) 2 **(B)** 3 (C) −3 (D) -4 (E) 4 Solution: (E) $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ $\Rightarrow |A| = 0(2-3) - 1(1-9) + 2(1-6) = 8 - 10 = -2$ $\therefore C_{11} = (2 - 3) = -1, C_{12} = -(1 - 9) = 8$ $C_{13} = (1 - 6) = -5, C_{21} = -(1 - 2) = 1$ $C_{22} = (0 - 6) = -6, C_{23} = -(0 - 3) = -3$ $C_{31} = (3 - 4) = -1, C_{32} = -(0 - 2) = 2$ $C_{31} = (3-4) = -1, C_{32} = -(0-1) = -1$ $\therefore adj|A| = \begin{bmatrix} -1 & 8 & -5\\ 1 & -6 & 3\\ -1 & 2 & -1 \end{bmatrix}$ $A^{-1} = \frac{adj[A]}{|A|} = \frac{\begin{bmatrix} -1 & 8 & -5\\ 1 & -6 & 3\\ -1 & 2 & -1 \end{bmatrix}}{\begin{bmatrix} -1 & 8 & -5\\ 1 & -6 & 3\\ -1 & 2 & -1 \end{bmatrix}}$ $A^{-1} = \begin{bmatrix} \frac{1}{2} & 4 & \frac{5}{2} \\ -\frac{1}{2} & 3 & -\frac{3}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{bmatrix}$ \therefore Sum of all diagonal entries of A^{-1} $=\frac{1}{2}+3+\frac{1}{2}=4$ 112. Let $f(x) = \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}$. If x = -9 is a root of f(x) = 0, then the other roots are (A) 2 and 7 (B) 3 and 6 (C) 7 and 3

(D) 6 and 2 (E) 6 and 7 Solution: (A) Given, $f(x) = \begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}$ |x+9 + x+9 + x+9|2 7 2 = х 6 х $\begin{bmatrix} \text{applying } R_1 \to R_1 + R_2 + R_3 \end{bmatrix}$ $= (x+9) \begin{vmatrix} 1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}$ $= (x + 9) \begin{vmatrix} 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}$ = $(x + 9) \begin{vmatrix} 2 & x & 2 \\ 7 & 6 & x \end{vmatrix}$ [applying $C_1 \rightarrow C_1 - C_2$ and $C_2 \rightarrow C_2 - C_3$] = (x + 9)[(2 - x)(6 - x) - (x - 2)]= (x + 9)(x - 2)[x - 6 - 1]f(x) = (x + 9) (x - 2)(x - 7)at f(x) = 0(x+9)(x-2)(x-7) = 0 $\Rightarrow x = -9, 2, 7$ Hence, other roots are 2 and 7. 113. If $\begin{bmatrix} 1 \times 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$, then x can be (A) -1 **(B)** 2 (C) 14 (D) −14 (E) 0 Solution: (D) Given that, $[1 \times 1] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ $\begin{bmatrix} 1+2x+15\\3+5x+3 \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix} = 0$ \Rightarrow $\begin{bmatrix} 2 + x + 2 \\ 2x + 16 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$ |2| = 05x + 6 \Rightarrow $\begin{bmatrix} x+4 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$ $\Rightarrow 2x + 16 + 2(5x + 6) + x(x + 4) = 0$ $\Rightarrow 2x + 16 + 10x + 12 + x^2 + 4x = 0$ $\Rightarrow x^2 + 16x + 28 = 0$

 $\Rightarrow x^2 + 2x + 14x + 28 = 0$ $\Rightarrow x(x+2) + 14(x+2) = 0$ $\Rightarrow (x+2)(x+14) = 0$ $\Rightarrow x = -14$ 114. If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then x =(A) 2 (B) $\frac{1}{2}$ (C) 1 (D) 3 (E) 0 Solution: (B) We have, $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ $A^{-1} = \frac{1}{2x^2} \begin{bmatrix} x & 0 \\ -x & 2x \end{bmatrix}$ $\left\{ \because A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right\}$ $\Rightarrow A^{-1} = \begin{bmatrix} \frac{1}{2x} & 0\\ -\frac{1}{2x} & \frac{1}{x} \end{bmatrix}$ Now, it is given that $A^{-1} = \begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \frac{1}{2x} & 0\\ -\frac{1}{2x} & \frac{1}{2x} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -1 & 2 \end{bmatrix}$ $\therefore x = \frac{1}{2}$ 115. If $\begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} = ax^4 + bx^3 + cx^2 + dx + e$, then 5a + 4b + 3c + 2d + e is equal to (A) 11 (B) −11 (C) 12 (D) -12 (E) 13

Solution: (B)

Given that, $\begin{vmatrix} x & 2 & x \\ x^2 & x & 6 \\ x & x & 6 \end{vmatrix} = ax^4 + bx^3 + cx^2 + dx + e,$ $\Rightarrow x(6x - 6x) - 2(6x^2 - 6x) + x(x^3 - x^2)$ $=ax^{4}+bx^{3}+cx^{2}+dx+e$ $\Rightarrow -12x^{2} + 12x + x^{4} - x^{3} = ax^{4} = bx^{3} + cx^{2} + dx + e$ $\Rightarrow x^4 - x^3 - 12x^2 + 12x = ax^4 + bx^3 + cx^2 + dx + e$ On equating the coefficient of both sides, we get a = 1, b = -1, c = -12, d = 12, e = 0 $\therefore 5a + 4b + 3c + 2d + e = 5 \times 1 + 4 \times (-1) + 3(-12) + 2(12) + 0$ = 5 - 4 - 36 + 24= 29 + 40 = -11116. $\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} =$ (A) 1 (B) 0 (C) (1-a)(1-b)(1-c)(D) a + b + c(E) 2(a + b + c)Solution: (B) Given that, $\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = \begin{vmatrix} 1 & a & a+b+c \\ 1 & b & a+b+c \\ 1 & c & a+b+c \end{vmatrix}$ [applying $C_3 \rightarrow C_3 + C_2$] $= (a + b + c) \begin{vmatrix} 1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1 \end{vmatrix}$ = $(a + b + c) \times 0$ [:: C_1 and C_3 are equal] = 0.117. If $f(x) = \begin{vmatrix} 1 & 1 & 1 \\ 2x & x-1 & x \\ 3x(x-1) & (x-1)(x-2) & x(x-1) \end{vmatrix}$, then f(50) =(A) 0 **(B)** 2 (C) 4 (D) 1 (E) 3 Solution: (A) Given,

$$f(x) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2x & x-1 & x \\ 3x(x-1) & (x-1)(x-2) & x(x-1) \end{vmatrix}$$

$$= \begin{vmatrix} x+1 & -1 & x \\ 2(x+1)(x-1) & -2(x-1) & x(x-1) \end{vmatrix}$$
[applying $C_1 \rightarrow C_1 - C_2$ and $C_2 \rightarrow C_2 - C_3$]
$$= (x-1) \begin{vmatrix} (x+1) & -1 & x \\ 2(x+1) & -2 & x \end{vmatrix}$$

$$= (x-1)[-2(x+1)+2(x+1)]$$

$$\Rightarrow f(x) = 0$$

$$\therefore f(50) = 0$$
118. If $\Delta(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \end{vmatrix}$, then
$$\int_0^{\frac{\pi}{2}} \Delta(x) \, dx =$$
(A) $\frac{-1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) -1
(E) 0
Solution: (A)
Given,
$$\Delta(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \end{vmatrix}$$

$$= \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 0 & -\sin x & \sin x & 1 \end{vmatrix}$$
[applying $R_1 \rightarrow R_2 - (R_1 + R_3)$]
$$= \begin{vmatrix} 1 & \cos x & 1 \\ 0 & -\sin x & \sin x - 1 \\ \sin x & \sin x & 1 + \sin x \end{vmatrix}$$
[applying $C_3 \rightarrow C_3 + C_2$]
$$= 1(0 + \sin^2 x) + 1(\sin x - \sin x \cos x) + (1 + \sin x)(-\sin x - 0)$$

$$= \sin^2 x + \sin x - \sin x \cos x - \sin x - \sin^2 x$$

$$= -\sin x \cos x$$

$$\Delta x = -\frac{\sin 2x}{2}$$

$$= -\frac{1}{2} \left[-\frac{1}{2} \cos 2x \right]_{0}^{\frac{\pi}{2}}$$
$$= -\frac{1}{4} \left[\cos \pi - \cos 0 \right]$$
$$-\frac{1}{4} \left[-1 - 1 \right]$$
$$= -\frac{2}{4} = -\frac{1}{2}$$

119. The equation of the plane passing through the points (1, 2, 3), (-1, 4, 2) and (3, 1, 1) is

(A) 5x + y + 12z = 23(B) 5x + 6y + 2z = 23(C) 5x - 6y + 2z = 23(D) x + y + z = 13(E) 2x + 6y + 5z = 7

Solution: (B) Given that, $x_1 = 1, y_1 = 2, z_1 = 3$ $x_2 = -1, y_2 = 4, z_2 = 2$ and $x_3 = 3, y_3 = 1, z_3 = 1$ Equation of plane passing through these points is $|x-1 \ y-2 \ z-3|$ -1 = 0-2 2 -2 I 2 -1 $\Rightarrow (x-1)(-4-1) - (y-2)(y+2) + (z-3)(2-4) = 0$ $\Rightarrow (x-1)(-5) - (y-2)(6) + (z-3)(-2) = 0$ $\Rightarrow -5x + 5 - 6y + 12 - 2z + 6 = 0$ $\Rightarrow -5x - 6y - 2z + 23 = 0$ \Rightarrow 5x + 6y + 2z - 23 = 0 \Rightarrow 5x + 6y + 2z = 23

120. In an arithmetic progression, if the *k*th term is 5k + 1, then the sum of first 100 terms is

(A) 50(507)
(B) 51(506)
(C) 50(506)
(D) 51(507)
(E) 52(506)

Solution: (A) Let *a* be the first term of an *AP* and *d* is the common difference. \therefore $a_k = a + (n - 1)d$ Since, $a_k = 5k + 1$ a + (k - 1)d = 5(k - 1) + 6

⇒
$$a + (k - 1)d = 6 + (k - 1)6$$

Equating both sides, we get
 $a = 6$ and $d = 5$
∴ $S_{100} = \frac{n}{2}[2a + (n - 1)d]$
 $= \frac{100}{2}[2 \times 6 + 99 \times 5]$
 $= 50[12 + 495] = 50(507)$