Mathematics

Single correct answers type:

1. $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$ is equal to
(A) 0
(B) $-\pi$
(C) $\frac{3 \pi}{2}$
(D) $\frac{\pi}{2}$
(E) $\frac{\pi}{4}$

Solution: (E)
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x$
$\left[\because \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right]$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x$
On adding Equation (i) and (ii), we get
$\Rightarrow 2 I=\int_{\frac{0}{\pi}}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 d x \Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2} \Rightarrow I=\frac{\pi}{4}$
2. If (x, y) is equidistant from $(a+b, b-a)$ and ($a-b, a+b$), then
(A) $x+y=0$
(B) $b x-a y=0$
(C) $a x-b y=0$
(D) $b x+a y=0$
(E) $a x+b y=0$

Solution: (B)
Let $P(x, y), A(a+b, b-a), B(a-b, a+b)$
Now, according to the question,
$P A=P B$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow P A^{2}=P B^{2}$
$\Rightarrow(x-(a+b))^{2}+(y-(b-a))^{2}$
$=(x-(a-b))^{2}+(y-(a+b))^{2}$
$\Rightarrow x^{2}+(a+b)^{2}-2 x(a+b)+y^{2}+(b-a)^{2}-2 y(b-a)$
$=x^{2}+(a-b)^{2}-2 x(a-b)+y^{2}+(a+b)^{2}-2 y(a+b)$
$\Rightarrow 2 x(a-b)-2 x(a+b)+2 y(a+b)-2 y(b-a)=0$
$\Rightarrow 2 x(a-b-a-b)+2 y(a+b-b+a)=0$
$\Rightarrow 2 x(-2 b)+2 y(2 a)=0$
$\Rightarrow-4 x b+4 y a=0$
$\Rightarrow b x-a y=0$
3. If the points $(1,0),(0,1)$ and $(x, 8)$ are collinear, then the value of x is equal to
(A) 5
(B) -6
(C) 6
(D) 7
(E) -7

Solution: (E)
Let $A(1,0), B(0,1)$ and $C(x, 8)$
Since, A, B and C are collinear, then slope of $A B=$ Slope of $B C$
$\Rightarrow \frac{1-0}{0-1}=\frac{8-1}{x-0}$
$\Rightarrow-1=\frac{7}{x}$
$\Rightarrow \quad x=-7$
4. The minimum value of the function $\max \left(x, x^{2}\right)$ is equal to
(A) 0
(B) 1
(C) 2
(D) $\frac{1}{2}$
(E) $\frac{3}{2}$

Solution: (A)
Let $f(x)=\max \left\{x, x^{2}\right\}$

\therefore Minimum value of $f(x)=0$.
5. Let $f(x+y)=f(x) f(y)$ for all x and y. If $f(0)=1, f(3)=3$ and $f^{\prime}(0)=11$, then $f^{\prime}(3)$ is equal to
(A) 11
(B) 22
(C) 33
(D) 44
(E) 55

Solution: (C)
We have,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(3) f(h)-f(3+0)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(3) f(h)-f(3) f(0)}{h}$
$=f(3) \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=f(3) \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=f(3) f^{\prime}(0)$
$=3 \times 11$
$=33$
6. If $f(9)=f^{\prime}(9)=0$, then $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to
(A) 0
(B) $f(0)$
(C) $f^{\prime}(3)$
(D) $f(9)$
(E) 1

Solution: (A)
$\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\left[\frac{0}{0}\right.$ form $]$
$=\lim _{x \rightarrow 9} \frac{\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}}{\frac{1}{2 \sqrt{x}}}$
$=\lim _{x \rightarrow 9} \frac{\sqrt{x} f^{\prime}(x)}{\sqrt{f(x)}}$
$=\frac{\sqrt{9} f^{\prime}(a)}{\sqrt{f(a)}}$
$=\frac{3 \times 0}{3}=0$
7. The value of $\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$ is
(A) $\sqrt{2} \sin ^{2} x$
(B) $\sqrt{2} \sin x$
(C) $\sqrt{2} \cos ^{2} x$
(D) $\sqrt{3} \cos x$
(E) $\sqrt{2} \cos x$

Solution: (E)
We have, $\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$=\cos \frac{\pi}{4} \cos x-\sin \frac{\pi}{4} \sin x+\cos \frac{\pi}{4} \cos x+\sin \frac{\pi}{4} \sin x$
$=2 \cos \frac{\pi}{4} \cos x$
$=2 \times \frac{1}{\sqrt{2}} \cos x$
$=\sqrt{2} \cos x$
8. Area of the triangle with vertices $(-2,2),(1,5)$ and $(6,-1)$ is
(A) 15
(B) $\frac{3}{5}$
(C) $\frac{29}{2}$
(D) $\frac{33}{2}$
(E) $\frac{35}{2}$

Solution: (D)
Area of triangle having vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by
Area $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
\therefore Required area $=\frac{1}{2}\left|\begin{array}{ccc}-2 & 2 & 1 \\ 1 & 5 & 1 \\ 6 & -1 & 1\end{array}\right|$
$=\frac{1}{2}[-2(5+1)-2(1-6)+1(-1-30)]$
$=\frac{1}{2}[-12+10-31]$
$=\frac{-33}{2}$
$\therefore \quad$ Area $=\frac{33}{2}$ sq units
9. The equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(1,0)$ and $(-4,1)$ is
(A) $5 x+y+10=0$
(B) $5 x-y+20=0$
(C) $5 x-y-10=0$
(D) $5 x+y+20=0$
(E) $5 y-x-10=0$

Solution: (B)
E slope of the line passing through $(1,0)$ and $(-4,1)=\frac{1-0}{-4-1}=\frac{-1}{5}$
\therefore Slope of line perpendicular to the above line
$=\frac{-1}{\left(-\frac{1}{5}\right)}=5$
\therefore Equation of required line is given by
$y-5=5(x-(-3))$
$\Rightarrow y-5=5(x+3)$
$\Rightarrow y-5=5 x+15$
$\Rightarrow 5 x-y+20=0$
10. The coefficient of x^{5} in the expansion of $\left(1+x^{2}\right)^{5}(1+x)^{4}$ is
(A) 30
(B) 60
(C) 40
(D) 10
(E) 45

Solution: (B)
We have,
$\left(1+x^{2}\right)^{5}={ }^{5} C_{0}\left(x^{2}\right)^{0}+{ }^{5} C_{1}\left(x^{2}\right)^{1}+{ }^{5} C_{2}\left(x^{2}\right)^{2}+{ }^{5} C_{3}\left(x^{2}\right)^{3}+{ }^{5} C_{4}\left(x^{2}\right)^{4}+{ }^{5} C_{5}\left(x^{2}\right)^{5}$
$=1+5 x^{2}+10 x^{4}+10 x^{6}+5 x^{8}+x^{10}(1+x)^{4}={ }^{4} C_{0} x^{0}+{ }^{4} C_{1} x^{1}+{ }^{4} C_{2} x^{2}+{ }^{4} C_{3} x^{3}+{ }^{4} C_{4} x^{4}$
$=1+4 x+6 x^{2}+4 x^{3}+x^{4}$
\therefore Coefficient of x^{5} in the product of
$\left(1+x^{2}\right)^{5}(1+x)^{4}$
$=\left(5 x^{2}\right) \cdot\left(4 x^{3}\right)+\left(10 x^{4}\right) \cdot(4 x)$
$=20 x^{5}+40 x^{5}$
$=60 x^{5}$
11. The coefficient of x^{4} in the expansion of $(1-2 x)^{5}$ is equal to
(A) 40
(B) 320
(C) -320
(D) -32
(E) 80

Solution: (E)
General term of $(1-2 x)^{5}$ is given by
$T_{r+1}={ }^{5} C_{r}(-2 x)^{r}$
$={ }^{5} C_{r}(-2)^{r} x^{r}$
For coefficient of x^{4}, power of $x=4$
$\therefore \quad r=4$
\therefore Coefficient of $x^{4}={ }^{5} C_{4}(-2)^{4}$
$=5 \times 16=80$
12. The equation $5 x^{2}+y^{2}+y=8$ represents
(A) An ellipse
(B) A parabola
(C) A hyperbola
(D) A Circle
(E) A straight line

Solution: (A)
We have,
$5 x^{2}+y^{2}+y=8$
$\Rightarrow 5 x^{2}+\left(y+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}=8$
$\Rightarrow 5 x^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{33}{8}$
$\Rightarrow \frac{\frac{5 x^{2}}{33}}{8}+\frac{\frac{\left(y+\frac{1}{2}\right)^{2}}{33}}{8}=1$
$\Rightarrow \frac{x^{2}}{\left(\frac{33}{40}\right)}+\frac{\left(y+\frac{1}{2}\right)^{2}}{\left(\frac{33}{8}\right)}=1$
Which is an equation of ellipse.
13. The centre of the ellipse $4 x^{2}+y^{2}-8 x+4 y-8=0$ is
(A) $(0,2)$
(B) $(2,-1)$
(C) $(2,1)$
(D) $(1,2)$
(E) $(1,-2)$

Solution: (E)
We have,
$4 x^{2}+y^{2}-8 x+4 y-8=0$
$\Rightarrow\left(4 x^{2}-8 x\right)+\left(y^{2}+4 y\right)-8=0$
$\Rightarrow\left(4 x^{2}-2 x\right)+\left(y^{2}+4 y\right)-8=0$
$\Rightarrow 4\left[(x-1)^{2}-1\right]+\left[(y+2)^{2}-4\right]-8=0$
$\Rightarrow 4(x-1)^{2}-4+(y+2)^{2}-4-8=0$
$\Rightarrow 4(x-1)^{2}+(y+2)^{2}=16$
$\Rightarrow \frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1$
\therefore Centre $=(1,-2)$
14. The area bounded by the curves $y=-x^{2}+3$ and $y=0$ is
(A) $\sqrt{3}+1$
(B) $\sqrt{3}$
(C) $4 \sqrt{3}$
(D) $5 \sqrt{3}$
(E) $6 \sqrt{3}$

Solution: (C)
We have,
$y=-x^{2}+3$
$\Rightarrow x^{2}=-(y-3)$
The above curve intersect X-axis at the points
Where $y=0$
$\therefore x^{2}=3$
$\Rightarrow x= \pm \sqrt{3}$

\therefore Point of intersection with X-axis are $(\pm \sqrt{3}, 0)$
\therefore Required area $=2 \int_{0}^{\sqrt{3}} y d x$
$=2 \int_{0}^{\sqrt{3}}\left(-x^{2}+3\right) d x$
$=2\left[\frac{-x^{2}}{3}+3 x\right]_{0}^{\sqrt{3}}$
$=2\left[\frac{-3 \sqrt{3}}{3}+3 \sqrt{3}\right]$
$=2[-\sqrt{3}+3 \sqrt{3}]$
$=4 \sqrt{3}$ sq units
15. The order of the differential equation
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{5}=0$ is
(A) 3
(B) 4
(C) 1
(D) 5
(E) 6

Solution: (A)

We have,
$\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{5}=0$
Since, the highest order derivative is $\frac{d^{3} y}{d x^{3}}$
\therefore Order of the given differential equation is 3 .
16. If $f(x)=\sqrt{2 x}+\frac{4}{\sqrt{2 x}}$, then $f^{\prime}(2)$ is equal to
(A) 0
(B) -1
(C) 1
(D) 2
(E) -2

Solution: (A)
We have,
$f(x)=\sqrt{2 x}+\frac{4}{\sqrt{2 x}}=\sqrt{2 x}+4(2 x)^{\frac{1}{2}}$
$\Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{2 x}}-2+4\left[-\frac{1}{2}(2 x)^{-\frac{3}{2}}(2)\right]$
$=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{4}{(2 x)^{\frac{3}{2}}}$
$=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{4}{2 \sqrt{2} x^{\frac{3}{2}}}$
$=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{\sqrt{2}}{x \sqrt{x}}$
$\therefore f^{\prime}(2)=\frac{1}{\sqrt{2} \sqrt{2}}-\frac{\sqrt{2}}{2 \sqrt{2}}$
$=\frac{1}{2}-\frac{1}{2}$
$=0$
17. The area of the circle $x^{2}-2 x+y^{2}-10 y+k=0$ is 25π. The value of k is equal to
(A) -1
(B) 1
(C) 0
(D) 2
(E) 3

Solution: (B)
We have,
$x^{2}-2 x+y^{2}-10 y+k=0$
\therefore Radius $=\sqrt{g^{2}+f^{2}-c}$
$=\sqrt{(1)^{2}+(5)^{2}-k}$
$=\sqrt{1+25-k}$
$=\sqrt{26-k}$
\because Area of circle $=\pi(\text { Radius })^{2}$
$\therefore \quad 25 \pi=\pi(\sqrt{26-k})^{2}$
$\Rightarrow 25 \pi=\pi(26-k)$
$\Rightarrow 25=26-k$
$\Rightarrow k=1$
18. $\int_{2016}^{2017} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4033-x}} d x$ is equal to
(A) $\frac{1}{4}$
(B) $\frac{3}{2}$
(C) $\frac{2017}{2}$
(D) $\frac{1}{2}$
(E) 508

Solution: (D)
Let $I=\int_{2016}^{2017} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{4033-x}} d x$
$\therefore I=\int_{2016}^{2017} \frac{\sqrt{4033-x}}{\sqrt{4033-x}+\sqrt{4033-(4033-x)}} d x$
$\left[\because \int_{a}^{b} f(x) d x=\int_{b}^{a} f(a+b-x) d x\right]$
$\Rightarrow I=\int_{2016}^{2017} \frac{\sqrt{4033-x}}{\sqrt{4033-x}+\sqrt{x}} d x$
On adding Equations (i) and (ii), we get
$2 I=\int_{2016}^{2017} d x$
$\Rightarrow \quad 2 I=[x]_{2016}^{2017}$
$\Rightarrow 2 I=1$
$\Rightarrow I=\frac{1}{2}$
19. The solution of $d y / d x+y \tan x=\sec x, y(0)=0$ is
(A) $y \sec x=\tan x$
(B) $y \tan x=\sec x$
(C) $\tan x=y \tan x$
(D) $x \sec x=\tan y$
(E) $y \cot x=\sec x$

Solution: (A)
We have,
$\frac{d y}{d x}+y \tan x=\sec x$
Which is a linear differential equation.
\therefore I.F $=e^{\int \tan x d x}=e^{\log \sec x}=\sec x$
\therefore The solution is given by
$y \cdot \sec x=\int \sec x \cdot \sec x d x+C$
$y \sec x=\tan x+C$
Now, $y=0$, when $x=0$,
$\therefore \quad 0=0+c$ [From equation (i)]
$\Rightarrow \quad c=0$
Putting $c=0$ in Equation (i), we get
$y \sec x=\tan x$
20. If the vectors $2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}, 2 \hat{\imath}+\lambda \hat{\jmath}+6 \hat{k}$ and $2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$ are coplanar, then the value of λ is
(A) -10
(B) 1
(C) 0
(D) 10
(E) 2

Solution: (E)
Since, the vectors $2 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}, 2 \hat{\imath}+\lambda \hat{\jmath}+6 \hat{k}$ and $2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$ are coplanar
$\therefore\left|\begin{array}{ccc}2 & 2 & 6 \\ 2 & \lambda & 6 \\ 2 & -3 & 1\end{array}\right|=0$
$\Rightarrow 2(\lambda+18)-2(2-12)+6(-6-2 \lambda)=0$
$\Rightarrow 2 \lambda+36+20-36-12 \lambda=0$
$\Rightarrow-10 \lambda+20=0$
$\Rightarrow \lambda=2$
21. The distance between $(2,1,0)$ and $2 x+y+2 z+5=0$ is
(A) 10
(B) $10 / 3$
(C) $10 / 9$
(D) 5
(E) 1

Solution: (B)
The distance of a point $\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $a x+b y+c z+d=0$ is given by $=\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$
\therefore Distance of the point $(2,1,0)$ from the plane $2 x+y+2 z+5=0$ is equal to
$=\left|\frac{2 \times 2+1 \times 1+2 \times 0+5}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}\right|=\left|\frac{4+1+5}{\sqrt{4+1+4}}\right|=\frac{10}{3}$
22. The equation of the hyperbola with vertices $(0, \pm 15)$ and foci $(0, \pm 20)$ is
(A) $\frac{x^{2}}{175}-\frac{y^{2}}{225}=1$
(B) $\frac{x^{2}}{625}-\frac{y^{2}}{125}=1$
(C) $\frac{y^{2}}{225}-\frac{x^{2}}{125}=1$
(D) $\frac{y^{2}}{65}-\frac{x^{2}}{65}=1$
(E) $\frac{y^{2}}{225}-\frac{x^{2}}{175}=1$

Solution: (E)
We have,
Vertices and foci of hyperbola at $(0, \pm 15)$ and $(0, \pm 20)$
Since, both foci and vertices lies on Y-axis, then equation of hyperbola will be
$\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
Now, vertices $=(0, \pm b)$
$\therefore \quad b=15$
Again, foci $=(0, \pm b e)$
$\therefore \quad b e=20$
$\Rightarrow e=\frac{20}{15}=\frac{4}{3}$
$\Rightarrow \sqrt{1+\frac{a^{2}}{b^{2}}=\frac{4}{3}} \quad\left[\because e=\sqrt{1+\frac{a^{2}}{b^{2}}}\right]$
$\Rightarrow 1+\frac{a^{2}}{b^{2}}=\frac{16}{9}$
$\Rightarrow \quad \frac{a^{2}}{b^{2}}=\frac{7}{9}$
$\Rightarrow \quad a^{2}=\frac{7}{9} \times b^{2}=\frac{7}{9} \times 225$
$\Rightarrow \quad a=\frac{\sqrt{7}}{3} \times 15=5 \sqrt{7}$
\therefore Equation of hyperbola is
$\frac{y^{2}}{225}-\frac{x^{2}}{175}=1$
23. The value of $\frac{15^{3}+6^{3}+3.6 \cdot 15.21}{1+4(6)+6(36)+4(216)+1296}$ is equal to
(A) $29 / 7$
(B) $7 / 19$
(C) $6 / 17$
(D) $21 / 19$
(E) $27 / 7$

Solution: (E)
We have, $\frac{15^{3}+6^{3}+3 \cdot 6 \cdot 15 \cdot 21}{1+4(6)+6(36)+4(216)+1296}$
$=\frac{(15)^{3}+(6)^{2}+3 \times 6 \times 15(6+15)}{{ }^{4} C_{0}(6)^{0}+{ }^{4} C_{1}(6)^{1}+{ }^{4} C_{2}(6)^{2}+{ }^{4} C_{3}(6)^{3}+{ }^{4} C_{4}(6)^{4}}$
$=\frac{(15+6)^{3}}{(1+6)^{4}}=\frac{(21)^{3}}{(7)^{4}}$
$=\frac{21 \times 21 \times 21}{7 \times 7 \times 7 \times 7}=\frac{27}{7}$
24. The equation of the plane that passes through the points $(1,0,2),(-1,1,2),(5,0,3)$ is
(A) $x+2 y-4 z+7=0$
(B) $x+2 y-3 z+7=0$
(C) $x-2 y+4 z+7=0$
(D) $2 y-4 z-7+x=0$
(E) $x+2 y+3 z+7=0$

Solution: (A)
Equation of the plane passing through $(1,0,2),(-1,1,2),(5,0,3)$ is given by
$\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-1 & y-0 & z-2 \\ -1-1 & 1-0 & 2-2 \\ 5-1 & 0-0 & 3-2\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}x-1 & y & z-2 \\ -2 & 1 & 0 \\ 4 & 0 & 1\end{array}\right|=0$
$\Rightarrow x+2 y-4 z+7=0$
25. The vertex of the parabola $y^{2}-4 y-x+3=0$ is
(A) $(-1,3)$
(B) $(-1,2)$
(C) $(2,-1)$
(D) $(3,-1)$
(E) $(1,2)$

Solution: (B)
We have,
$y^{2}-4 y-x+3=0$
$\Rightarrow(y-2)^{2}-4-x+3=0$
$\Rightarrow(y-2)^{2}=(x+1)$
\therefore Vertex of the parabola $=(-1,2)$
26. If a, b, c are vectors such that $a+b+c=0$ and $|a|=7,|b|=5,|c|=3$, then the angle between c and b is
(A) $\pi / 3$
(B) $\pi / 6$
(C) $\pi / 4$
(D) π
(E) 0

Solution: (A)
We have,
$a+b+c=0$
$\Rightarrow b+c=-a$
$\Rightarrow|b+c|=|-a|$
$\Rightarrow|b+c|=|a|$
$\Rightarrow|b+c|^{2}=|a|^{2}$
$\Rightarrow \quad(b+c) \cdot(b+c)=|a|^{2}$
$\Rightarrow|b|^{2}+|c|^{2}+2|b||c| \cos \theta=|a|^{2}$
$\Rightarrow(5)^{2}+(3)^{2}+2 \times 5 \times 3 \cos \theta=(7)^{2}$
$\Rightarrow 25+9+30 \cos \theta=49$
$\Rightarrow 30 \cos \theta=15$
$\Rightarrow \cos \theta=\frac{1}{2}$
$\Rightarrow \theta=60^{\circ}$ or $\pi / 3$
\therefore Angle between b and c is $\pi / 3$.
27. Let $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$, where $a>0$. The minimum of f is attained at a point q and the maximum is attained at a point p. If $p^{3}=q$, then a is equal to
(A) 1
(B) 3
(C) 2
(D) $\sqrt{2}$
(E) $\frac{1}{2}$

Solution: (A)
$f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$
$f^{\prime}(x)=6 x^{2}-18 a x+12 a^{2}$
For maximum or minimum, $f^{\prime}(x)=0$
$\Rightarrow 6 x^{2}-18 a x+12 a^{2}=0$
$x=\frac{18 a \pm \sqrt{324 a^{2}-288 a^{2}}}{2 \times 6}$
$=\frac{18 a \pm \sqrt{36 a^{2}-288 a^{2}}}{2 \times 6}$
$=\frac{18 a \pm \sqrt{36 a^{2}}}{12}=\frac{18 a \pm 6 a}{12}=2 a, a$
Now, $f^{\prime \prime}(x)=12 x-18 a$
At $x=2 a$,
$f^{\prime \prime}(x)=24 a-18 a$
$=6 a>0$, maxima
$\therefore \quad p=f(2 a)=2 \times 8 a^{3}-36 a^{3}+24 a^{3}+1=4 a^{3}+1$
At $x=a$,
$f^{\prime \prime}(x)=12 \times a-18 a$
$=-6 a<a$, minima
$\therefore \quad q=f(a)$
$=2 a^{3}-9 a^{3}+12 a^{3}+1=5 a^{3}+1$
Also given $p^{3}=q$
$\therefore\left(4 a^{3}+1\right)^{3}=\left(5 a^{3}+1\right)$
$\Rightarrow a=0$, but $a>0$ (given)
28. For all rest numbers x and y, it is known as the real valued function f satisfies $f(x)+f(y)=$ $f(x+y)$. If $f(1)=7$, then $\sum_{r=1}^{100} f(r)$ is equal to
(A) $7 \times 51 \times 102$
(B) $6 \times 50 \times 102$
(C) $7 \times 50 \times 102$
(D) $6 \times 25 \times 102$
(E) $7 \times 50 \times 101$

Solution: (E)
We have,
$f(x+y)=f(x)+f(y)$
Put, $x=y=1$ in Equation (i),
We get, $f(2)=f(1)+f(1)=2 f(1)=2 \times 7$
Again, put $x=1, y=2$ in Equation (i), we get
$f(3)=f(1)+f(2)=7+2 \times 7=3 \times 7$
$\therefore f(n)=n \times 7$
Now, $\sum_{r=1}^{100} f(r)=f(1)+f(2)+f(3)+\cdots+f(100)$
$=7+2 \times 7+3 \times 7+\cdots+100 \times 7$
$=7[1+2+3+\cdots+100]$
$=7 \times \frac{100(100+1)}{2}\left[\because \Sigma n=\frac{n(n+1)}{2}\right]$
$=7 \times 50 \times 101$
29. The eccentricity of the ellipse $\frac{(x-1)^{2}}{2}+\left(y+\frac{3}{4}\right)^{2}=\frac{1}{16}$ is
(A) $1 / \sqrt{2}$
(B) $1 / 2 \sqrt{2}$
(C) $1 / 2$
(D) $1 / 4$
(E) $1 / 4 / \sqrt{2}$

Solution: (A)
We have,
$\frac{(x-1)^{2}}{2}+\left(y+\frac{3}{4}\right)^{2}=\frac{1}{16}$
$\Rightarrow 8(x-1)^{2}+16\left(y+\frac{3}{4}\right)^{2}=1$
$\Rightarrow \frac{(x-1)^{2}}{\frac{1}{8}}+\frac{\left(y+\frac{3}{4}\right)^{2}}{\frac{1}{16}}=1$
$\therefore \quad a^{2}=\frac{1}{8}$ and $b^{2}=\frac{1}{16}$
$\Rightarrow \quad a=\frac{1}{2 \sqrt{2}}$ and $b=\frac{1}{4}$
$\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}} \quad[\because a>b]$
$=\sqrt{1-\frac{\frac{1}{16}}{\frac{1}{8}}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
30. $\int_{-1}^{1} \max \left\{x, x^{3}\right\} d x$ is equal to
(A) $3 / 4$
(B) $1 / 4$
(C) $1 / 2$
(D) 1
(E) 0

Solution: (B)
Let $I=\int_{-1}^{1} \max \left\{x, x^{3}\right\} d x$
$=\int_{-1}^{0} \max \left\{x, x^{3}\right\} d x+\int_{0}^{1} \max \left\{x, x^{3}\right\} d x$
$=\int_{-1}^{0} x^{3} d x+\int_{0}^{1} x d x$
$=\left[\frac{x^{4}}{4}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}$
$=\left[0-\left(\frac{1}{4}\right)\right]+\left[\frac{1}{2}-0\right]$
$=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}$
31. If $x \in\left[0, \frac{\pi}{2}\right], y \in\left[0, \frac{\pi}{2}\right]$ and $\sin x+\cos y=2$, then the value of $x+y$ is equal to
(A) 2π
(B) π
(C) $\pi / 4$
(D) $\pi / 2$
(E) 0

Solution: (D)
We have,
$\sin x+\cos y=2$
Since, $x \in\left[0, \frac{\pi}{2}\right]$
And $y \in\left[0, \frac{\pi}{2}\right]$
$\therefore \sin x=1$ and $\cos y=1$
$\Rightarrow x=\frac{\pi}{2}$ and $y=0$
$\therefore x+y=\frac{\pi}{2}+0=\frac{\pi}{2}$
32. Let $a, a+r$ and $a+2 r$ be positive real number such that their product is 64 . Then the minimum value of $a+2 r$ is equal to
(A) 4
(B) 3
(C) 2
(D) $1 / 2$
(E) 1

Solution: (A)
We know $A M \geq G M$
$\frac{a+(a+r)+(a+2 r)}{3} \geq(a(a+r)(a+2 r))^{\frac{1}{3}}$
$\Rightarrow \frac{3(a+r)}{3} \geq(64)^{\frac{1}{3}}$
$\Rightarrow(a+r) \geq 4$
Also, $64=a(a+r)(a+2 r)$
$\Rightarrow 64 \geq(4-r) \times 4(r+4)$
$\Rightarrow 16 \geq 16-r^{2}$
$\Rightarrow r^{2} \leq 0$
$\therefore r=0$
Now, $a+2 r=4+0=4$
33. The sum $S=\frac{1}{9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{7!3!}+\frac{1}{9!}$ is equal to
(A) $2^{10} / 8$!
(B) $2^{9} / 10$!
(C) $2^{7} / 10$!
(D) $2^{6} / 10$!
(E) $2^{5} / 8$!

Solution: (B)
Let $S=\frac{1}{9!}+\frac{1}{3!7!}+\frac{1}{5!5!}+\frac{1}{7!3!}+\frac{1}{9!}$
$=\frac{1}{10!}\left[\frac{10!}{9!}+\frac{10!}{3!7!}+\frac{10!}{5!5!}+\frac{10!}{7!3!}+\frac{10!}{9!}\right]$
$=\frac{1}{10!}\left[{ }^{10} C_{1}+{ }^{10} C_{3}+{ }^{10} C_{5}+{ }^{10} C_{7}+{ }^{10} C_{9}\right]$
$=\frac{1}{10!}\left(2^{10-1}\right)$
$\left[\because C_{1}+C_{3}+C_{5}+\cdots 2^{n-1}\right]$
$=\frac{2^{9}}{10!}$
34. If $f(x)=\left|\begin{array}{ccc}x & x^{2} & x^{3} \\ 1 & 2 x & 3 x^{2} \\ 0 & 2 & 6 x\end{array}\right|$, then $f^{\prime}(x)$ is equal to
(A) $x^{3}+6 x^{2}$
(B) $6 x^{3}$
(C) $3 x$
(D) $6 x^{2}$
(E) 0

Solution: (D)
We have,
$f(x)=\left|\begin{array}{ccc}x & x^{2} & x^{3} \\ 1 & 2 x & 3 x^{2} \\ 0 & 2 & 6 x\end{array}\right|$
On taking x from R_{1}, we get
$=x\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & 2 x & 3 x^{2} \\ 0 & 2 & 6 x\end{array}\right|$
On taking x common from C_{3}, we get
$=x^{2}\left|\begin{array}{ccc}1 & x & x \\ 1 & 2 x & 3 x \\ 0 & 2 & 6\end{array}\right|$
On applying $R_{2} \rightarrow R_{2}-R_{1}$, we get
$=x^{2}\left|\begin{array}{ccc}1 & x & x \\ 0 & x & 2 x \\ 0 & 2 & 6\end{array}\right|=x^{2} \cdot 1(6 x-4 x)$
[On expanding along C_{1}]
$=x^{2}(2 x)=2 x^{3}$
$\therefore f^{\prime}(x)=6 x^{2}$
35. $\int \frac{x^{2}}{1+\left(x^{3}\right)^{2}} d x$ is equal to
(A) $\tan ^{-1} x^{2}+C$
(B) $2 / 3 \tan ^{-1} x^{3}+C$
(C) $1 / 3 \tan ^{-1}\left(x^{3}\right)+C$
(D) $1 / 2 \tan ^{-1} x^{2}+C$
(E) $\tan ^{-1} x^{3}+C$

Solution: (C)
Let $I=\int \frac{x^{2}}{1+\left(x^{3}\right)^{2}} d x$
Put $x^{3}=t$
$\therefore 3 x^{2} d x=d t$
$\therefore I=\frac{1}{3} \int \frac{d t}{1+t^{2}} \frac{1}{3} \tan ^{-1} t+C$
$=\frac{1}{3} \tan ^{-1}\left(x^{3}\right)+C$
36. Let $f_{n}(x)$ be the nth derivative of $f(x)$. The least value of n so that $f_{n}=f_{n+1}$, where $f(x)=x^{2}+$ e^{x} is
(A) 4
(B) 5
(C) 2
(D) 3
(E) 6

Solution: (D)
We have,
$f(x)=x^{2}+e^{x}$
$\Rightarrow f_{1}(x)=2 x+e^{x}$
$\Rightarrow f_{2}(x)=2+e^{x}$
$\Rightarrow f_{3}(x)=e^{x} \Rightarrow f_{4}(x)=e^{x}$
Since, $f_{3}(x)=f_{4}(x)$
\therefore Last value of n is 3 .
37. $\sin 765^{\circ}$ is equal to
(A) 1
(B) 0
(C) $\sqrt{3} / 2$
(D) $1 / 2$
(E) $1 / \sqrt{2}$

Solution: (E)
$\sin 765^{\circ}$
$=\sin \left(720^{\circ}+45^{\circ}\right)=\sin 45^{\circ}$
$=\frac{1}{\sqrt{2}}$
38. The distance of the point $(3,-5)$ from the line $3 x-4 y-26=0$ is
(A) $3 / 7$
(B) $2 / 5$
(C) $7 / 5$
(D) $3 / 5$
(E) 1

Solution: (D)
Distance of a point $\left(x_{1}, y_{1}\right)$ from the line $A x+B y+C=0$ is given by
$=\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|$
\therefore Distance of the point $(3,-5)$ from the line $3 x-4 y-26=0$ is equal to
$=\left|\frac{3 \times 3-4 \times(-5)-26}{\sqrt{(3)^{2}+(-4)^{2}}}\right|$
$=\left|\frac{9+20-26}{\sqrt{9+16}}\right|$
$=\left|\frac{3}{5}\right|=\frac{3}{5}$ unit
39. The difference between the maximum and minimum value of the function $f(x)=\int_{0}^{x}\left(t^{2}+t+1\right) d t$ on $[2,3]$ is
(A) $39 / 6$
(B) $49 / 6$
(C) $59 / 6$
(D) $69 / 6$
(E) $79 / 6$

Solution: (C)
Given $f(x)=\int_{0}^{x}\left(t^{2}+t+1\right) d t$
$f^{\prime}(x)=\left(x^{2}+x+1\right) \times 1-0$
$=x^{2}+x+1$
For $x \in[2,3)$
$f^{\prime}(x)>0$
\therefore Minimum is at $x=2$ and maximum is at $x=3$.

Now, minimum value $=\int_{0}^{x}\left(t^{2}+t+1\right) d t$
$=\left[\frac{t^{3}}{3}+\frac{t^{2}}{2}+t\right]_{0}^{2}$
$=\frac{8}{3}+\frac{4}{2}+2$
$=\frac{8}{3}+4=\frac{20}{3}$
And maximum value $=\int_{0}^{3}\left(t^{2}+t+1\right) d t$
$=\left[\frac{t^{3}}{3}+\frac{t^{2}}{2}+t\right]_{0}^{3}$
$=\frac{9}{2}+12=\frac{33}{2}$
\therefore Difference between maximum and minimum value $=\frac{33}{2}-\frac{20}{3}=\frac{99-40}{6}=\frac{59}{6}$
40. If a and b are the non-zero distinct roots of $x^{2}+a x+b=0$, then the minimum value of $x^{2}+a x+b$ is
(A) $2 / 3$
(B) $9 / 4$
(C) $-9 / 4$
(D) $-2 / 3$
(E) 1

Solution: (C)
Given, $x^{2}+a x+b=0$
For distinct now zero roots
D>0
$\Rightarrow a^{2}-4 b>0$
Now, $x^{2}+a x+b$
$=\left(x+\frac{a}{2}\right)^{2}+\left(b-\frac{a^{2}}{4}\right)$
$=\left(x+\frac{a}{2}\right)^{2}-\left(a^{2}-\frac{4 b}{4}\right)$
We know, sum of roots $a+b=-a$
$\Rightarrow 2 a+b=0$
Product of roots $a \times b=b$
$\Rightarrow b(a-1)=0$
$\Rightarrow \quad a=1, b \neq 0$
From Equation (i),
$2 a+b=0$
$2(1)+b=0$
$b=-2$
Now, $\left(x+\frac{a}{2}\right)^{2}-\left(\frac{1^{2}+4 \times 2}{4}\right)$
$=\left(x+\frac{a}{2}\right)^{2}-\frac{9}{4}$
\therefore Maximum value $=-\frac{9}{4}$
41. If the straight line $y=4 x+c$ touches the ellipse $\frac{x^{2}}{4}+y^{2}=1$, then c is equal to
(A) 0
(B) $\pm \sqrt{65}$
(C) $\pm \sqrt{62}$
(D) $\pm \sqrt{2}$
(E) ± 13

Solution: (B)
We have,
$y=4 x+c$
And $\frac{x^{2}}{4}+y^{2}=1$
Put value of y from Equations (i) into (ii), we get
$\frac{x^{2}}{4}+(4 x+c)^{2}=1$
$\Rightarrow x^{2}+4(4 x+c)^{2}=4$
$\Rightarrow x^{2}+4\left(16 x^{2}+8 c x+c^{2}\right)=4$
$\Rightarrow x^{2}+64 x^{2}+32 c x+4 c^{2}=4$
$\Rightarrow 65 x^{2}+32 c x+4\left(c^{2}-1\right)=0$
Since, given line is a tangent to the ellipse.
\therefore Discriminant $=0$
$\Rightarrow(32 c)^{2}-4 \times 65 \times 4\left(c^{2}-1\right)=0$
$\Rightarrow 1024 c^{2}-1040\left(c^{2}-1\right)=0$
$\Rightarrow 1024 c^{2}-1040 c^{2}+1040=0$
$\Rightarrow 16 c^{2}=1040$
$\Rightarrow c^{2}=65$
$\Rightarrow c= \pm \sqrt{65}$
42. The equations $\lambda x-y=2,2 x-3 y=-\lambda$ and $3 x-2 y=-1$ are consistent for
(A) $\lambda=-4$
(B) $\lambda=1,4$
(C) $\lambda=1,-4$
(D) $\lambda=-1,4$
(E) $\lambda=-1$

Solution: (D)
In a consistent, the intersection point of two lines, satisfy the third line.
Consider $\lambda=-1$, then given equation become
$-x-y=2$
$2 x-3 y=1$
$\Rightarrow x=-1, y=-1$
Third equation is $3 x-2 y=-1$
Put $x=-1, y=-1$
$\therefore-3+2=-1$
$\Rightarrow-1=-1$, true
Consider $\lambda=4$, then given equation become
$4 x-y=2$
$2 x-3 y=-4$
$\Rightarrow y=2, x=1$
Third equation is $3 x-2 y=-1$
Put $y=2, x=1$
$\therefore \quad 3-4=-1$
$\Rightarrow-1=-1$, true
43. The set $\{(x, y):|x|+|y|=1\}$ in the $x y$-plane represents
(A) A square
(B) A circle
(C) An ellipse
(D) A rectangle which is not a square
(E) A rhombus which is not a square

Solution: (A)
We have,
$|x|+|y|=1=\left\{\begin{array}{cc}x+y=1, & x, y \in \mathrm{I} \text { quadran } \\ -x+y=1, & x, y \in \mathrm{II} \text { quadrant } \\ -x-y=1, & x, y \in \mathrm{III} \text { quadrant } \\ x-y=1, & x, y \in \mathrm{IV} \text { quadrant }\end{array}\right.$

Clearly, $A B C D$ is a square.
44. The value of $\cos \left(\tan ^{-1}\left(\frac{3}{4}\right)\right)$ is
(A) $\frac{4}{5}$
(B) $\frac{3}{5}$
(C) $\frac{3}{4}$
(D) $\frac{2}{5}$
(E) 0

Solution: (A)
We have,
$\cos \left(\tan ^{-1} \frac{3}{4}\right)$
$=\cos \left(\cos ^{-1} \frac{1}{\sqrt{1+\left(\frac{3}{4}\right)^{2}}}\right)$
$\left[\because \tan ^{-1} x=\cos ^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right]$
$=\cos \cos ^{-1} \frac{4}{5}$
$=\frac{4}{5} \quad\left[\because \cos \cos ^{-1} x=x\right.$
45. Let $A(6,-1) B(1,3)$ and $C(x, 8)$ be three points such that $A B=B C$. The values of x are
(A) 3,5
(B) $-3,5$
(C) $3,-5$
(D) 4,5
(E) $-3,-5$

Solution: (B)
We have, $A(6,-1), B(1,3), C(x, 8)$
Also, $A B=B C$
$\Rightarrow A B^{2}=B C^{2}$
$\Rightarrow(1-6)^{2}+(3+1)^{2}=(x-1)^{2}+(8-3)^{2}$
$\Rightarrow 25+16=(x-1)^{2}+25$
$\Rightarrow(x-1)^{2}=16$
$\Rightarrow x-1= \pm 4$
$\Rightarrow x=1 \pm 4$
$\Rightarrow x=5,-3$
46. In an experiment with 15 observations on x, the following results were available $\Sigma x^{2}=2830, \Sigma x=$ 170 On observation that was 20 , was found to be wrong and was replaced by the correct value 30 . Then, the corrected variance is
(A) 9.3
(B) 8.3
(C) 188.6
(D) 177.3
(E) 78

Solution: (E)
We have $N=15$, Incorrect $\Sigma x_{1}^{2} i=2830$, Incorrect $\Sigma x_{i}=170$
\therefore Correct $\sum x_{i}=\operatorname{Incorrect} \sum x_{i}-20+30=170+10=180$
\therefore Correct mean $=\bar{x}=\frac{\Sigma x_{i}}{N}$ (correct)
$=\frac{180}{15}$
$=12$
Also, correct $\Sigma_{1}^{2}=\operatorname{Incorrect} \Sigma_{1}^{2}-(20)^{2}+(30)^{2}$
$=2830-400+900$
$=2830+500$
$=3330$
\therefore Correct variance $=\frac{\Sigma_{1}^{2}(\text { correct })}{N}-(\bar{x})^{2}$
$=\frac{330}{15}-(12)^{2}$
$=222-144$
$=78$
47. The angle between the pair of lines $\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$ is
(A) $\cos ^{-1}\left(\frac{21}{9 \sqrt{38}}\right)$
(B) $\cos ^{-1}\left(\frac{23}{9 \sqrt{38}}\right)$
(C) $\cos ^{-1}\left(\frac{24}{9 \sqrt{38}}\right)$
(D) $\cos ^{-1}\left(\frac{25}{9 \sqrt{38}}\right)$
(E) $\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)$

Solution: (E)
Given lines are
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
$d r^{\prime}$ of above lines are $<2,5,-3>$ and $<-1,8,4>$ respectively.
$\therefore \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$
$=\frac{(2)(-1)+(5)(8)+(-3)(4)}{\sqrt{(2)^{2}+(5)^{2}+(-3)^{2}} \sqrt{(-1)^{2}+(8)^{2}+(4)^{2}}}$
$=\frac{-2+40-12}{\sqrt{4+25+9} \sqrt{1+64+16}}$
$=\frac{26}{\sqrt{38} \sqrt{81}}$
$=\frac{26}{9 \sqrt{38}}$
$\therefore \quad \theta=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)$
48. Let \vec{a} be a unit vector. If $(x-\vec{a}) \cdot(x+\vec{a})=12$, then the magnitude of x is
(A) $\sqrt{8}$
(B) $\sqrt{9}$
(C) $\sqrt{10}$
(D) $\sqrt{13}$
(E) $\sqrt{12}$

Solution: (D)
We have,
$|\vec{a}|=1$
Now, $(x-\vec{a}) \cdot(x+\vec{a})=12$
$\Rightarrow x \cdot x+x \cdot \vec{a}-\vec{a} \cdot x-\vec{a} \cdot \vec{a}=12$
$\left.\Rightarrow|x|^{2}-|\vec{a}|^{2}=12\right]$
$\Rightarrow|x|^{2}-1=12$
$\Rightarrow|x|^{2}=13$
$\Rightarrow|x|=\sqrt{13}$
49. The area of triangular region whose sides are $y=2 x+1, y=3 x+1$ and $x=4$ is
(A) 5
(B) 6
(C) 7
(D) 8
(E) 9

Solution: (D)
We have,
$y=2 x+1, y=3 x+1, x=4$
Intersecting points of above lines are $(0,1),(4,9),(4,13)$
\therefore Area of triangle
$=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{1} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}0 & 1 & 1 \\ 4 & 9 & 1 \\ 4 & 13 & 1\end{array}\right|$
$=\frac{1}{2}[0(9-13)-1(4-4)+1(52-36)]$
$=\frac{1}{2} \times 16=8$
50. If ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$, then the value of r is
(A) 9
(B) 3
(C) 4
(D) 5
(E) 6

Solution: (B)
We have
${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$
$\therefore \frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{36}{84}$
$\Rightarrow \frac{\frac{n!}{(n-r+1)!(r-1)!}}{\frac{n!}{(n-r)!r!}}=\frac{3}{7}$
$\Rightarrow \frac{r}{n-r+1}=\frac{3}{7}$
$\Rightarrow 7 r=3 n-3 r+3$
$\Rightarrow 10 r=3 n+3$
Again,
$\frac{{ }^{n} C_{r}}{{ }^{n} C_{r+1}}=\frac{84}{126}$
$\Rightarrow \frac{\frac{n!}{(n-r)!r!}}{\frac{n!}{(n-r-1)!(r+1)!}}=\frac{2}{3}$
$\Rightarrow \frac{r+1}{n-r}=\frac{2}{3}$
$\Rightarrow 3 r+3=2 n-2 r$
$\Rightarrow 5 r=2 n-3$
On solving Equations (i) and (ii), we get
$n=9, r=3$
51. Let $f(x+y)=f(x) f(y)$ and $f(x)=1+\sin (3 x) g(x)$, where g is differentiable. The $f^{\prime}(x)$ is equal to
(A) $3 f(x)$
(B) $g(0)$
(C) $f(x) g(0)$
(D) $3 g(x)$
(E) $3 f(x) g(0)$

Solution: (C)
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h}$
$=f(x) \lim _{h \rightarrow 0}\left(\frac{1+\sin 3 h(g(h))-1}{h}\right)$
$=f(x) \lim _{h \rightarrow 0} \frac{\sin 3 h}{3 h} \lim _{h \rightarrow 0} g(h)$
$=f(x) \times 1 \times g(0)=f(x) g(0)$
52. The roots of the equation
$\left|\begin{array}{ccc}x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$ are
(A) 1,2
(B) $-1,2$
(C) $-1,-2$
(D) $1,-2$
(E) 1,1

Solution: (B)
We have,
$\left|\begin{array}{ccc}x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$
On applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get
$\begin{array}{lll}x+1 & 1 & 1\end{array}$
$\left|\begin{array}{ccc}x+1 & x-1 & 1 \\ x+1 & 1 & x-1\end{array}\right|=0$
On taking $(x+1)$ common from C_{1}, we get
$(x+1)\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1\end{array}\right|=0$
On applying, $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$, we get
$\Rightarrow \quad(x+1)\left|\begin{array}{ccc}0 & 2-x & 0 \\ 0 & x-2 & 2-x \\ 1 & 1 & x-1\end{array}\right|=0$
$\Rightarrow \quad(x+1) \cdot 1\left[(2-x)^{2}-0\right]=0$
$\Rightarrow(x+1)(2-x)^{2}=0$
$\Rightarrow \quad x=-1,2$
53. If the 7 th and 8 th term of the binomial expansion $(2 a-3 b)^{n}$ are equal, then $\frac{2 a+3 b}{2 a-3 b}$ is equal to
(A) $\frac{13-n}{n+1}$
(B) $\frac{n+1}{13-n}$
(C) $\frac{6-n}{13-n}$
(D) $\frac{n-1}{13-n}$
(E) $\frac{2 n-1}{13-n}$

Solution: (A)
We have, $(2 a-3 b)^{n}$
$\Rightarrow{ }^{n} C_{6}(2 a)^{n-6}(-3 b)^{6}={ }^{n} C_{7}(2 a)^{n-7}(-3 b)^{7}$
$\Rightarrow{ }^{n} C_{6}(2 a)={ }^{n} C_{7}(-3 b)$
$\Rightarrow \frac{2 a}{3 b}=-\frac{{ }^{n} C_{7}}{{ }^{n} C_{6}}$
$\Rightarrow \frac{2 a}{3 b}=-\frac{\frac{n!}{(n-7)!7!}}{\frac{n!}{(n-6)!6!}}$
$\Rightarrow \frac{2 a}{3 b}=-\frac{n-6}{7}$
$\Rightarrow \frac{2 a}{3 b}=\frac{6-n}{7}$
On applying componendo and dividend, we get
$\frac{2 a+3 b}{2 a-3 b}=\frac{6-n+7}{6-n-7}$
$=\frac{13-n}{-(n+1)}$
$=-\left[\frac{13-n}{n+1}\right]$
54. Standard deviation of first n odd natural numbers is
(A) \sqrt{n}
(B) $\sqrt{\frac{(n+2)(n+1)}{3}}$
(C) $\sqrt{\frac{n^{2}-1}{3}}$
(D) n
(E) $2 n$

Solution: (C)
Standard deviation, $\sigma=\sqrt{\frac{\Sigma x_{i}^{2}}{N}-(\bar{x})^{2}}$
$\therefore \bar{x}=\frac{\Sigma x_{i}}{N}$
$=\frac{1+3+5+\cdots(2 n-1)}{n}$
$=\frac{\frac{n}{2}[1+2 n-1]}{n}$
$=\frac{n^{2}}{n}=n$
Again, $\Sigma x_{i}^{2}=1^{2}+3^{2}+5^{2}+\cdots(2 n-1)^{2}$
$=\Sigma(2 n-1)^{2}$
$=\Sigma\left(4 n^{2}-4 n+1\right)$
$=4 \Sigma n^{2}-4 \Sigma n+\Sigma 1$
$=\frac{4 n(n+1)(2 n+1)}{6}-\frac{4 n(n+1)}{2}+n$
$\left.=n\left[\frac{2}{3}(n+1) 2 n+1\right)-2(n+1)+1\right]$
$=\frac{n}{3}\left[2\left(2 n^{2}+3 n+1\right)-6(n+1)+3\right]$
$=\frac{n}{3}\left[4 n^{2}+6 n+2-6 n-6+3\right]$
$=\frac{n}{3}\left[4 n^{2}-1\right]$
$\therefore \sigma=\sqrt{\frac{n\left(4 n^{2}-1\right)}{3 n}-n^{2}}$
$=\sqrt{\frac{4 n^{2}-1}{3}-n^{2}}$
$=\sqrt{\frac{4 n^{2}-1-3 n^{2}}{3}}$
$=\sqrt{\frac{n^{2}-1}{3}}$
55. Let $S=\{1,2,3, \ldots .10\}$. The number of subsets of S containing only odd numbers is (A) 15
(B) 31
(C) 63
(D) 7
(E) 5

Solution: (B)
Given set is $\{1,2,3, \ldots 10\}$

The odd numbers in the given set are $1,3,5,7,9$.
\therefore The number of subsets of 5 containing only number $=2^{5}-1$
$=32-1=31$
56. The area of the parallelogram with vertices $(0,0),(7,2),(5,9)$ and $(12,11)$ is
(A) 50
(B) 54
(C) 51
(D) 52
(E) 53

Solution: (E)
Let $A(0,0), B(7,2), C(5,9), D(12,11)$
\therefore Area of $\triangle A B C=\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ 7 & 2 & 1 \\ 5 & 9 & 1\end{array}\right|$
$=\frac{1}{2} \cdot 1(63-10)=\frac{53}{2}$ sq unit
\therefore Area of $\triangle A C D=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ 5 & 9 & 1 \\ 12 & 11 & 1\end{array}\right|$
$=\frac{1}{2} \cdot 1(55-108)$
$=\frac{53}{2}$ sq unit
\therefore Area of parallelogram $A B C D$
$=$ Area of $\triangle A B C+$ Area of $\triangle A C D$
$=\frac{53}{2}+\frac{53}{2}$
$=53$ sq unit
57. $\left|\begin{array}{llc}1 & 1 & 1 \\ p & q & r \\ p & q & r+1\end{array}\right|$ is equal to
(A) $q-p$
(B) $q+p$
(C) q
(D) p
(E) 0

Solution: (A)
We have,
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ p & q & r \\ p & q & r+1\end{array}\right|$
On applying, $C_{1} \rightarrow C_{1}-C_{2}, C_{2} \rightarrow C_{3}$, we get
$=\left|\begin{array}{ccc}0 & 0 & 1 \\ p-q & q-r & r \\ p-q & q-r-1 & r+1\end{array}\right|$
On taking common $(p-q)$ from C_{1}, we get

$$
\begin{aligned}
& =(p-q)\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 & q-r & r \\
1 & q-r-1 & r+1
\end{array}\right| \\
& =(p-q) \cdot 1[q-r-1-q+r] \\
& =q-p
\end{aligned}
$$

58. Let $A=\left[\begin{array}{ll}5 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}20 & 5 \\ -1 & 0\end{array}\right]$. If $4 A+5 B-C=0$, then C is
(A) $\left[\begin{array}{cc}5 & 25 \\ -1 & 0\end{array}\right]$
(B) $\left[\begin{array}{cc}20 & 5 \\ -1 & 0\end{array}\right]$
(C) $\left[\begin{array}{ll}5 & -1 \\ 0 & 25\end{array}\right]$
(D) $\left[\begin{array}{cc}5 & 25 \\ -1 & 5\end{array}\right]$
(E) $\left[\begin{array}{ll}0 & 5 \\ 5 & 25\end{array}\right]$

Solution: (B)
We have,
$A=\left[\begin{array}{ll}5 & 0 \\ 1 & 0\end{array}\right] B=\left[\begin{array}{ll}20 & 5 \\ -1 & 0\end{array}\right]$
Now,
$4 A+5 B-C=0$
$\Rightarrow C=4 A+5 B$
$=4\left[\begin{array}{ll}5 & 0 \\ 1 & 0\end{array}\right]+5\left[\begin{array}{cc}20 & 5 \\ -1 & 0\end{array}\right]$
$=\left[\begin{array}{cc}20 & 0 \\ 4 & 0\end{array}\right]+\left[\begin{array}{cc}100 & 25 \\ -5 & 0\end{array}\right]$
$=\left[\begin{array}{cc}120 & 25 \\ -1 & 0\end{array}\right]$
59. If $U=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$, then U^{-1} is
(A) U^{T}
(B) U
(C) I
(D) 0
(E) U^{2}

Solution: (A)
We have,
$U=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
$\therefore \quad U^{-1}=\frac{1}{|U|}\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
$\left[\because\right.$ If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\left.A^{-1}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\right]$
$=\frac{1}{1}\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
Again, $U^{T}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$
$\therefore \quad U^{-1}=U^{T}$
60. If $A=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$, then A^{-1} is
(A) A^{T}
(B) A^{2}
(C) A
(D) I
(E) 0

Solution: (A)
We have,
$A=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$
$\therefore|A|=-(-1)[(1)(-1)-0]=-1$
Now, cofactors are
$C_{11}=0, C_{12}=1, C_{13}=0$
$C_{21}=-1, C_{22}=0, C_{23}=0$
$C_{31}=0, C_{32}=0, C_{33}=1$
$\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$=\frac{1}{-1}\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]^{T}$
$=-\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]$
$=A^{T}$
61. If $\left(\begin{array}{cc}x+y & x-y \\ 2 x+z & x+z\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$, then the values of x, y and z are respectively
(A) $0,0,1$
(B) $1,1,0$
(C) $-1,0,0$
(D) $0,0,0$
(E) $1,1,1$

Solution: (A)
We have
$\left[\begin{array}{cc}x+y & x-y \\ 2 x+z & x+z\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
$\Rightarrow x+y=0, x-y=0,2 x+z=1, x+z=1$
On solving above equations, we get
$x=y=0, z=1$
62. $\left(\begin{array}{lll}7 & 1 & 5 \\ 8 & 0 & 0\end{array}\right)\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+5\binom{1}{0}$ is equal to
(A) $\binom{16}{27}$
(B) $\binom{27}{16}$
(C) $\binom{15}{16}$
(D) $\binom{16}{15}$
(E) $\binom{16}{16}$

Solution: (B)
We have,
$\left[\begin{array}{lll}7 & 1 & 5 \\ 8 & 0 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]+5\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$=\left[\begin{array}{l}7 \times 2+1 \times 3+5 \times 1 \\ 8 \times 2+0 \times 3+0 \times 1\end{array}\right]+\left[\begin{array}{l}5 \\ 0\end{array}\right]$
$=\left[\begin{array}{l}22 \\ 16\end{array}\right]+\left[\begin{array}{l}5 \\ 0\end{array}\right]=\left[\begin{array}{l}27 \\ 16\end{array}\right]$
63. If $\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5 \\ 1 & 4 & a\end{array}\right)$ is singular, then the value of a is
(A) $a=-6$
(B) $a=5$
(C) $a=-5$
(D) $a=6$
(E) $a=0$

Solution: (D)
Let $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5 \\ 1 & 4 & a\end{array}\right]$

Since, A is a singular matrix.
$\therefore|A|=0$
$\Rightarrow\left|\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 5 \\ 1 & 4 & a\end{array}\right|=0$
$\Rightarrow 1[3 a-20]-2[a-5]+4[4-3]=0$
$\Rightarrow 3 a-20-2 a+10+4=0$
$\Rightarrow a-6=0$
$\Rightarrow a=6$
64. If $\left(\begin{array}{ccc}1 & 2 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, then (x, y, z) is equal to
(A) $(1,6,6)$
(B) $(1,-6,1)$
(C) $(1,1,6)$
(D) $(6,-1,1)$
(E) $(-1,6,1)$

Solution: (D)
We have,
$\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{c}x+2 y-3 z \\ 4 y+5 z \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow x+2 y-3 z=1,4 y+5 z=1, z=1$
On solving above equations, we get
$x=6, y=-1, z=1$
65. If $A=\left(\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right)$, then
(A) $A^{2}-2 A+2 l=0$
(B) $A^{2}-3 A+2 l=0$
(C) $A^{2}-5 A+2 l=0$
(D) $2 A^{2}-A+l=0$
(E) $A^{2}+3 A+2 l=0$

Solution: (B)
We have,
$A=\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]$
$\therefore \quad A^{2}=A \cdot A=\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]=\left[\begin{array}{cc}1 & 15 \\ 0 & 4\end{array}\right]$
$\therefore A^{2}-3 A+2 I=\left[\begin{array}{cc}1 & 15 \\ 0 & 4\end{array}\right]-3\left[\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right]+2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow A^{2}-3 A+2 I=0$
66. If $\left(\begin{array}{cc}2 x+y & x+y \\ p-q & p+q\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$, then (x, y, p, q) equals
(A) $0,1,0,0$
(B) $0,-1,0,0$
(C) $1,0,0,0$
(D) $0,1,0,1$
(E) $1,0,1,0$

Solution: (A)
We have,
$\left[\begin{array}{cc}2 x+y & x+y \\ p-q & p+q\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
$\therefore 2 x+y=1$
$x+y=1$
$p-q=0$
$p+q=0$
On solving Equations (i) and (ii), we get
$x=0, y=1$
And on solving Equations (iii) and (iv), we get
$p=q=0$
67. The value of $|\sqrt{4+2 \sqrt{3}}|-|\sqrt{4-2 \sqrt{3}}|$ is
(A) 1
(B) 2
(C) 4
(D) 3
(E) 5

Solution: (B)
We have,
$|\sqrt{4+2 \sqrt{3}}|-|\sqrt{4-2 \sqrt{3}}|$
$=|\sqrt{3+1+2 \sqrt{3}}|-|\sqrt{3+1-2 \sqrt{3}}|$
$=\left|\sqrt{(\sqrt{3})^{2}+(1)^{2}+2 \cdot \sqrt{3} \cdot 1}\right|-\left|\sqrt{(\sqrt{3})^{2}+(1)^{2}-2 \cdot \sqrt{3} \cdot 1}\right|$
$=\left|\sqrt{(\sqrt{3}+1)^{2}}\right|-\left|\sqrt{(\sqrt{3})-1)^{2}}\right|$
$=|\sqrt{3}+1|-|\sqrt{3}-1|$
$=(\sqrt{3}+1)-(\sqrt{3}-1)=2$
68. The value of $8^{2 / 3}-16^{1 / 4}-9^{1 / 2}$ is
(A) -1
(B) -2
(C) -3
(D) -4
(E) -5

Solution: (A)
We have,
$8^{\frac{2}{3}}-16^{\frac{1}{4}}-9^{\frac{1}{2}}$
$=\left(2^{3}\right)^{\frac{2}{3}}-\left(2^{4}\right)^{\frac{1}{4}}-\left(3^{2}\right)^{\frac{1}{2}}$
$=2^{2}-2^{1}-3^{1}$
$=4-2-3=-1$
69. Let $x=2$ be a root of $y=4 x^{2}-14 x+q=0$. Then y is equal to
(A) $(x-2)(4 x-6)$
(B) $(x-2)(4 x+6)$
(C) $(x-2)(-4 x-6)$
(D) $(x-2)(-4 x+6)$
(E) $(x-2)(4 x+3)$

Solution: (A)
We have
$y=4 x^{2}-14 x+q=0$
Since, $x=2$ is the root
$\therefore 4(2)^{2}-14(2)+q=0$
$\Rightarrow 16-28+q=0$
$\Rightarrow q=12$
$\therefore y=4 x^{2}-14 x+12$
$=4 x-8 x-6 x+12$
$=4 x(x-2)-6(x-2)$
$=(x-2)(4 x-6)$
70. If x_{1} and x_{2} are the roots of $3 x^{2}-2 x-6=0$, then $x_{1}^{2}+x_{2}^{2}$ is equal to
(A) $\frac{50}{9}$
(B) $\frac{40}{9}$
(C) $\frac{30}{9}$
(D) $\frac{20}{9}$
(E) $\frac{10}{9}$

Solution: (B)
We have,
$3 x^{2}-2 x-6=0$
Since, x_{1} and x_{2} are the roots of above equation
$\therefore \quad x_{1}+x_{2}=\frac{-(-2)}{3}=\frac{2}{3}$
And $x_{1} x_{2}=\frac{-6}{3}=-2$
Now,
$\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}+2 x_{1} x_{2}$
$\Rightarrow x_{1}^{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}$
$=\left(\frac{2}{3}\right)^{2}-2(-2)$
$=\frac{4}{9}+4=\frac{40}{9}$
71. Let x_{1} and x_{2} be the roots of the equations $x^{2}+p x-3=0$. If $x_{1}^{2}+x_{2}^{2}=10$, then the value of p is equal to
(A) -4 or 4
(B) -3 or 3
(C) -2 or 2
(D) -1 or 1
(E) 0

Solution: (C)
We have,
$x^{2}-p x-3=0$
Since, x_{1} and x_{2} are the roots of above equation.
$\therefore x_{1}+x_{2}=p$ and $x_{1} x_{2}=-3$
Now, we have
$x_{1}^{2}+x_{2}^{2}=10$
$\Rightarrow\left(x_{1}+x_{2}\right)^{2}-2 x_{1} x_{2}=10$
$\Rightarrow p^{2}+6=10$
$\Rightarrow p^{2}=4$
$\Rightarrow p= \pm 2$
72. If the product of roots of the equation $m x^{2}+6 x+(2 m-1)=0$ is -1 , then the value of m is
(A) $\frac{1}{3}$
(B) 1
(C) 3
(D) -1
(E) -3

Solution: (A)
We have,
$m x^{2}+6 x+(2 m-1)=0$
\therefore Product of roots $=\frac{2 m-1}{m}$
$\Rightarrow \frac{2 m-1}{m}=-1[\because$ product of roots $=-1]$
$\Rightarrow 2 m-1=-m$
$\Rightarrow 3 m=1$
$\Rightarrow m=\frac{1}{3}$
73. If $f(x)=\frac{1}{x^{2}+4 x+4}-\frac{4}{x^{4}+4 x^{3}+4 x^{2}}+\frac{4}{x^{3}+2 x^{2}}$, then $f\left(\frac{1}{2}\right)$ is equal to
(A) 1
(B) 2
(C) -1
(D) 3
(E) 4

Solution: (E)
We have,
$f(x)=\frac{1}{x^{2}+4 x+4}-\frac{4}{x^{4}+4 x^{3}+4 x^{2}}+\frac{4}{x^{3}+2 x^{2}}$
$=\frac{1}{(x+2)^{2}}-\frac{4}{x^{2}(x+2)^{2}}+\frac{4}{x^{2}(x+2)}$
$=\frac{x^{2}-4+4(x+2)}{(x+2)^{2} \cdot x^{2}}$
$=\frac{x^{2}-4+4 x+8}{(x+2)^{2} \cdot x^{2}}$
$=\frac{x^{2}+4 x+4}{(x+2)^{2} \cdot x^{2}}$
$=\frac{(x+2)^{2}}{(x+2)^{2} \cdot x^{2}}$
$=\frac{1}{x^{2}}$
$\therefore f(x)=\frac{1}{x^{2}}$
$\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{\left(\frac{1}{2}\right)^{2}}=4$
74. If x and y are the roots of the equation $x^{2}+b x+1=0$, then the value of $\frac{1}{x+b}+\frac{1}{y+b}$ is
(A) $\frac{1}{b}$
(B) b
(C) $\frac{1}{2 b}$
(D) $2 b$
(E) 1

Solution: (B)
We have, given that x, y are the roots of the equation $x^{2}+b x+1=0$
$\therefore x+y=-b$ and $x y=1$
Now, $\frac{1}{x+b}+\frac{1}{(y+b)}=\frac{y+b+x+b}{(x+b)(y+b)}$
$=\frac{(x+y)+2 b}{x y+b(x+y)+b^{2}}$
$=\frac{-b+2 b}{1+b(-b)+b^{2}}$
$=\frac{b}{1-b^{2}+b^{2}}=b$
75. The equations $x^{5}+a x+1=0$ and $x^{6}+a x^{2}+1=0$ have a common root. Then a is equal to (A) -4
(B) -2
(C) -3
(D) -1
(E) 0

Solution: (B)
We have,
$x^{5}+a x+1=0$
And $x^{6}+a x^{2}+1=0$
Or $x^{6}+a x^{2}+x=0$
And $x^{6}+a x^{2}+1=0$
\therefore Common root is given by
$\left(x^{6}+a x^{2}+x\right)-\left(x^{6}+a x^{2}+1\right)=0$
$\Rightarrow x=1$
$\therefore \quad x=1$ is the common root.
$\therefore(1)^{5}+a(1)+1=0$
$\Rightarrow a=-2$
76. The root $a x^{2}+x+1=0$, where $a \neq 0$, are in the ratio $1: 1$. Then a is equal to
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) 1
(E) 0

Solution: (A)
We have, $a x^{2}+x+1=0$
Since, roots are in the ratio $1: 1$, thus roots are equal
\therefore Discriminant $=0$
$\Rightarrow(1)^{2}-4(a)(1)=0$
$\Rightarrow 1-4 a=0$
$\Rightarrow a=\frac{1}{4}$
77. If $z^{2}+z+1=0$ where z is a complex number, then the value of $\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+$ $\left(z^{3}+\frac{1}{z^{3}}\right)^{2}$ equal
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8

Solution: (C)
We have,
$z^{2}+z+1=0$
$\Rightarrow z=\frac{-1 \pm \sqrt{1-4}}{2}$
$=\frac{-1 \pm \sqrt{3} i}{2}$
$\therefore \quad z=w$ or w^{2}
Let $z=w$, then
$\left(z+\frac{1}{2}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2}$
$=\left(\omega+\frac{1}{\omega}\right)^{2}+\left(\omega^{2}+\frac{1}{\omega^{2}}\right)^{2}+\left(\omega^{3}+\frac{1}{\omega^{3}}\right)^{2}$
$=\left(\omega+\omega^{2}\right)^{2}+\left(\omega^{2}+\omega\right)^{2}+\left(\omega^{3}+1\right)^{2} \quad\left[\because \omega^{3}=1\right]$
$=(-1)^{2}+(-1)^{2}+(1+1)^{2}\left[\because 1+\omega+\omega^{2}=0\right]$
$=1+1+4=6$
The value will be same when $z=\omega^{2}$.
78. Let $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-w^{2} & w^{2} \\ 1 & w & w^{4}\end{array}\right|$, where $w \neq 1$ is a complex number such that $w^{3}=1$. Then Δ equals
(A) $3 w+w^{2}$
(B) $3 w^{2}$
(C) $3(w=w)^{2}$
(D) $-3 w^{2}$
(E) $3 w^{2}+1$

Solution: (B)
We have,
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-w^{2} & w^{2} \\ 1 & w & w^{4}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w & w\end{array}\right|$
$\left[\because 1+w+w^{2}=0, w^{3}=1\right]$
$=1\left(w^{2}-w^{3}\right)-1\left(w-w^{2}\right)+1(w-w)$
$=w^{2}-1-w-w^{2}$
$=2 w^{2}-(1+w)$
$=2 w^{2}-\left(-w^{2}\right)$
$=3 w^{2}$
79. If $\left|\begin{array}{ccc}3 i & -9 i & 1 \\ 2 & 9 i & -1 \\ 10 & 9 & i\end{array}\right|=x+i y$, then
(A) $x=1, y=1$
(B) $x=0, y=1$
(C) $x=1, y=0$
(D) $x=0, y=0$
(E) $x=-1, y=0$

Solution: (D)
We have,
$\left|\begin{array}{ccc}3 i & -9 i & 1 \\ 2 & 9 i & -1 \\ 10 & 9 & i\end{array}\right|=x+i y$
$\Rightarrow\left|\begin{array}{ccc}3 i+2 & 0 & 0 \\ 2 & 9 i & -1 \\ 10 & 9 & i\end{array}\right|=x+i y\left[\because R_{1} \rightarrow R_{1}+R_{2}\right]$
$\Rightarrow(3 i+2)\left[9 i^{2}+9\right]=x+i y$
$\Rightarrow(3 i+2)(-9+9)=x+i y \quad\left[\because i^{2}=-1\right]$
$\Rightarrow 0=x+i y$
$\Rightarrow x=0, y=0$
80. If $z=\cos \left(\frac{\pi}{3}\right)-i \sin \left(\frac{\pi}{3}\right)$, then $z^{2}-z+1$ is equal to
(A) 0
(B) 1
(C) -1
(D) $\frac{\pi}{2}$
(E) π

Solution: (A)
We have
$z=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}$
$=\frac{1}{2}-\frac{i \sqrt{3}}{2}$
$=\frac{1-\sqrt{3} i}{2}$
$=-\left[\frac{-1+\sqrt{3} i}{2}\right]$
$=-w$

$$
\left[\because w=\frac{-1+\sqrt{3} i}{2}\right]
$$

Now, $z^{2}-z+1=(-w)^{2}-(-w)+1$
$=w^{2}+w+1$
$=0\left[\because 1+w+w^{2}=0\right]$
81. $\left(\frac{1+\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)}{1+\cos \left(\frac{\pi}{12}\right)-i \sin \left(\frac{\pi}{12}\right)}\right)^{72}$ is equal to
(A) 0
(B) -1
(C) 1
(D) $\frac{1}{2}$
(E) $\frac{-1}{2}$

Solution: (C)
Let $z=\left(\frac{1+\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}}{1+\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}}\right)^{72}$
$=\left(\frac{2 \cos ^{2} \frac{\pi}{24}+2 i \sin \frac{\pi}{24} \cos \frac{\pi}{24}}{2 \cos ^{2} \frac{\pi}{24}-2 i \sin \frac{\pi}{24} \cos \frac{\pi}{24}}\right)^{72}$
$=\left(\frac{\cos \frac{\pi}{24}+i \sin \frac{\pi}{24}}{\cos \frac{\pi}{24}-i \sin \frac{\pi}{24}}\right)^{72}$
$=\frac{\cos \frac{72 \pi}{24}+i \sin \frac{72 \pi}{24}}{\cos \frac{72 \pi}{24}-i \sin \frac{72 \pi}{24}}$
$\left[\because(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta\right]$
$=\frac{\cos 3 \pi+i \sin 3 \pi}{\cos 3 \pi-i \sin 3 \pi}$
$=\frac{-1+0}{-1-0}$
$=1$
82. If $A=\left|\begin{array}{lll}4 & k & k \\ 0 & k & k \\ 0 & 0 & k\end{array}\right|$ and $\operatorname{det}(A)=256$, then $|k|$ equals
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8

Solution: (E)
We have,
$A=\left[\begin{array}{lll}4 & k & k \\ 0 & k & k \\ 0 & 0 & k\end{array}\right]$
$\therefore \quad|A|=\left|\begin{array}{ccc}4 & k & k \\ 0 & k & k \\ 0 & 0 & k\end{array}\right|$
$\Rightarrow 256=4\left(k^{2}-0\right)$
$\Rightarrow 64=k^{2}$
$\Rightarrow k= \pm 8$
$\therefore|k|=8$
83. If $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, then $A^{n}+n I$ is equal to
(A) I
(B) $n A$
(C) $I+n A$
(D) $I-n A$
(E) $n A-I$

Solution: (C)
We have,
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$\therefore \quad A^{2}=A \cdot A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$A^{3}=A^{2} \cdot A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
$\therefore A^{n}=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
Now,
$A^{n}+n I=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]+n\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]+\left[\begin{array}{cc}n & 0 \\ 0 & n\end{array}\right]$
$=\left[\begin{array}{cc}1+n & 0 \\ n & 1+n\end{array}\right]$
Again, $I+n A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+n\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}n & 0 \\ n & n\end{array}\right]$
$=\left[\begin{array}{cc}1+n & 0 \\ n & 1+n\end{array}\right]$
$\therefore \quad A^{n}+n I=I+n A$
84. If $|z|=5$ and $w=\frac{z-5}{z+5}$, then the $\operatorname{Re}(w)$ is equal to
(A) 0
(B) $\frac{1}{25}$
(C) 25
(D) 1
(E) -1

Solution: (A)
Let $z=x+i y$
$\therefore \quad|z|=\sqrt{x^{2}+y^{2}}$
$\Rightarrow \sqrt{x^{2}+y^{2}}=5$
$\Rightarrow x^{2}+y^{2}=25$
Now, $w=\frac{z-5}{z+5}=\frac{x+i y-5}{x+i y+5}$
$=\frac{(x-5)+i y}{(x+5)+i y}$
$=\frac{(x-5)+i y}{(x+5)+i y} \times \frac{(x+5)-i y}{(x+5)-i y}$
$=\frac{x^{2}-25+i y(x+5)-y(x-5) i+y^{2}}{(x+5)^{2}+y^{2}}$
$=\frac{\left(x^{2}+y^{2}-25\right)+i[x y+5 y-x y+5 y]}{(x+5)^{2}+y^{2}}$
$=\frac{0+10 y i}{(x+5)^{2}+y^{2}}$
[\because from Equation (i)]
$=\frac{10 y}{(x+5)^{2}+y^{2}} i$
$\therefore \quad \operatorname{Re}(w)=0$
85. If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then A^{2017} is equal to
(A) $2^{2015} A$
(B) $2^{2016} A$
(C) $2^{2014} A$
(D) $2^{2017} A$
(E) $2^{2020} A$

Solution: (B)
We have,
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$\therefore \quad A^{2}=A \cdot A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]=2\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=2 A$
Again, $A^{3}=A^{2} \cdot A$
$=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$=\left[\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right]$
$=4\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=2^{2} \cdot A$
$\therefore A^{n}=2^{n-1} A$
$\therefore A^{2017}=2^{2016} A$
86. If $a=e^{i \theta}$, then $\frac{1+a}{1-a}$ is equal to
(A) $\cot \frac{\theta}{2}$
(B) $\tan \theta$
(C) $i \cot \frac{\theta}{2}$
(D) $i \tan \frac{\theta}{2}$
(E) $2 \tan \theta$

Solution: (C)
We have,
$a=e^{i \theta}$
$=\cos \theta+i \sin \theta$
Now, $\frac{1+a}{1-a}=\frac{1+(\cos \theta+i \sin \theta)}{1-(\cos \theta+i \sin \theta)}$
$=\frac{(1+\cos \theta)+i \sin \theta}{(1-\cos \theta)-i \sin \theta}$
$=\frac{2 \cos ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}-i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}$
$=\frac{2 \cos \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]}{2 \sin \frac{\theta}{2}\left[\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}\right]}$
$=\frac{\cot \frac{\theta}{2}\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]}{-i\left[\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right]}$
$=\frac{\cot \frac{\theta}{2}}{-i}$
$=i \cot \frac{\theta}{2}$
87. Three numbers x, y and z are in arithmetic progression. If $x+y+z=-3$ and $x y z=8$, then $x^{2}+y^{2}+z^{2}$ is equal to
(A) 9
(B) 10
(C) 21
(D) 20
(E) 1

Solution: (C)
Let $x=a-r, y=a, z=a+r$
Now, we have
$x+y+z=-3$
$\therefore a-r+a+a+r=-3$
$\Rightarrow 3 a=-3$
$\Rightarrow a=-1$
Again, $x y z=8$
$\therefore \quad(a-r)(a)(a+r)=8$
$\Rightarrow a\left(a^{2}-r^{2}\right)=8$
$\Rightarrow-1\left(1-r^{2}\right)=8$
$\Rightarrow-1+r^{2}=8$
$\Rightarrow r^{2}=9$
$\Rightarrow r= \pm 3$
$\therefore x, y, z$ are $-4,-1,2$ or $2,-1,-4$
$\therefore x^{2}+y^{2}+z^{2}=(-4)^{2}+(-1)^{2}+(2)^{2}$
$=16+1+4=21$
88. The 30th term of the arithmetic progression $10,7,4$ is
(A) -97
(B) -87
(C) -77
(D) -67
(E) -57

Solution: (C)
We have, 10, 7, 4
Which is an A.P.
$\therefore a=10, d=-3$
$\therefore a_{30}=a+29 d \quad\left[\because a_{n}=a+(n-1) d\right]$
$=10+29(-3)$
$=10-87$

$$
=-77
$$

89. The arithmetic mean of two numbers x and y is 3 and geometric mean is 1 . Then $x^{2}+y^{2}$ is equal to
(A) 30
(B) 31
(C) 32
(D) 33
(E) 34

Solution: (E)
We have,
$A M=3$ and $G M=1$
$\therefore \frac{x+y}{2}=3$ and $\sqrt{x y}=1$
$\Rightarrow x+y=6$ and $x y=1$
Now, $x^{2}+y^{2}=(x+y)^{2}-2 x y$
$=(6)^{2}-2(1)$
$=36-2=34$
90. The solution of $3^{2 x-1}=81^{1-x}$ is
(A) $\frac{2}{3}$
(B) $\frac{1}{6}$
(C) $\frac{7}{6}$
(D) $\frac{5}{6}$
(E) $\frac{1}{3}$

Solution: (D)
We have,
$3^{2 x-1}=81^{1-x}$
$\Rightarrow 3^{2 x-1}=\left(3^{4}\right)^{1-x}$
$\Rightarrow 3^{2 x-1}=3^{4-4 x}$
$\therefore 2 x-1=4-4 x$
$\Rightarrow 6 x=5$
$\Rightarrow x=\frac{5}{6}$
91. The sixth term in the sequence is $3,1, \frac{1}{3}, \ldots$ is
(A) $\frac{1}{27}$
(B) $\frac{1}{9}$
(C) $\frac{1}{81}$
(D) $\frac{1}{17}$
(E) $\frac{1}{7}$

Solution: (C)

We have,
$3,1, \frac{1}{3}, \ldots .$.
Which is a G. P. with
$a=3, r=\frac{1}{3}$
$\therefore a_{6}=a r^{5} \quad\left[\because a_{n}=a r^{n-1}\right]$
$\Rightarrow a_{6}=3\left(\frac{1}{3}\right)^{5}$
$=3 \times \frac{1}{3^{5}}$
$=\frac{1}{3^{4}}$
$=\frac{1}{81}$
92. Three numbers are in arithmetic progression. Their sum is 21 and the product of the first number and the third number is 45 . Then the product of these three number is
(A) 315
(B) 90
(C) 180
(D) 270
(E) 450

Solution: (A)
Let the numbers be $a-d, a, a+d$
$\therefore a+d+a+a-d=21$
$\Rightarrow 3 a=21$
$\Rightarrow a=7$
Again, $(a-d)(a+d)=45$
$\Rightarrow a^{2}-d^{2}=45$
$\Rightarrow(7)^{2}-d^{2}=45$
$\Rightarrow \quad 49-d^{2}=45$
$\Rightarrow d^{2}=4$
$\Rightarrow d= \pm 2$
\therefore Numbers are $5,7,9$ or $9,7,5$
\therefore Products of three numbers $=5 \times 7 \times 9$
$=315$
93. If $a+1,2 a+1,4 a-1$ are in arithmetic progression, then the value of a is
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Solution: (B)
We have,
$a+1,2 a+1 ; 4 a-1$ are in $A P$
$\therefore 2(2 a+1)=(4 a-1)+(a+1)$
[\because If a, b, c are in $A P$, then $2 b=a+c$]
$\Rightarrow 4 a+2=5 a$
$\Rightarrow a=2$
94. Two numbers x and y have arithmetic mean 9 and geometric mean 4. Then, x and y are the roots of
(A) $x^{2}-18 x-16=0$
(B) $x^{2}-18 x+16=0$
(C) $x^{2}+18 x-16=0$
(D) $x^{2}+18 x+16=0$
(E) $x^{2}-17 x+16=0$

Solution: (B)
We have,
$A M$ of $x, y=9$ and $G M$ of $x, y=4$
$\therefore \frac{x+y}{2}=9$ and $\sqrt{x y}=4$
$\Rightarrow x+y=18$ and $x y=16$
$\Rightarrow y=18-x$ and $x y=16$
$\therefore x(18-x)=16$
$\Rightarrow \quad 18 x-x^{2}=16$
$\Rightarrow x^{2}-18 x+16=0$
$\therefore x$ and y are the roots of the equation
$x^{2}-18 x+16=0$
95. Three unbiased coins are tossed. The probability of getting atleast 2 tails is
(A) $\frac{3}{4}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{1}{3}$
(E) $\frac{2}{3}$

Solution: (C)
Total numbers of outcomes when three coins are tossed $=2 \times 2 \times 2$
$=8$
$\therefore n(S)=8$
Let $E=$ Event getting at least 2 tails
$=\{T T H, T H T, T T H, T T T\}$
$\therefore n(E)=4$
\therefore Required probability $=P(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{4}{8}$
$=\frac{1}{2}$
96. A single letter is selected from the word TRICKS. The probability that it is either T or R is
(A) $\frac{1}{36}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{1}{3}$

Solution: (E)
Number of ways of selecting one letter from the word TRICKS $n(S)={ }^{6} C_{1}=6$
Let E be the event of selecting T or R
$\therefore E=\{T, R\}$
$\therefore n(E)=2$
\therefore Required probability $=p(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{2}{6}$
$=\frac{1}{3}$
97. From 4 red balls, 2 white balls and 4 black balls, four balls are selected. The probability of getting 2 red balls is
(A) $\frac{7}{21}$
(B) $\frac{8}{21}$
(C) $\frac{9}{21}$
(D) $\frac{10}{21}$
(E) $\frac{11}{21}$

Solution: (C)
We have, 4 red, 2 white and 4 black balls
\therefore Total balls $=4+2+4=10$
Number of ways of selecting 4 balls from 10 balls $={ }^{10} C_{4}$
$\therefore n(S)={ }^{10} C_{4}$
Let $E=$ Event getting 2 red balls
$\therefore n(E)={ }^{4} C_{2} \times{ }^{6} C_{2}$
\therefore Required probability $=p(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{{ }^{4} C_{2}={ }^{6} C_{2}}{{ }^{10} C_{4}}$
$=\frac{\frac{4 \times 3}{2 \times 1} \times \frac{6 \times 5}{2 \times 1}}{\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}}$
$=\frac{6 \times 15}{10 \times 3 \times 7}$
$=\frac{3}{7}$
$=\frac{9}{21}$
98. In a class, 60% of the students know lesson $I, 40 \%$ know lesson $I I$ and 20% know I and II. A student is selected of random. The probability that the student does not know lesson I and lesson $I I$ is
(A) 0
(B) $\frac{4}{5}$
(C) $\frac{3}{5}$
(D) $\frac{1}{5}$
(E) $\frac{2}{5}$

Solution: (D)
Let $E_{1}=$ Event that student know lesson I
$E_{2}=$ Event that student know lesson II
Now, according to the question,
$P\left(E_{1}\right)=0.60, P\left(E_{2}\right)=0.40$,
$P\left(E_{1} \cap E_{2}\right)=0.20$
\therefore Required probability $=P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)$
$=P\left(E_{1} \cup E_{2}\right)^{\prime}$
$=1-P\left(E_{1} \cup E_{2}\right)$
$=1-\left[P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)\right]$
$=1-[0.60+0.40-0.20]$
$=1-[0.80]$
$=0.20$
$=\frac{20}{100}$
$=\frac{1}{5}$
99. Two distinct numbers x and y are chosen from $1,2,3,4,5$. The probability that the arithmetic mean of x and y is an inter is
(A) 0
(B) $\frac{1}{5}$
(C) $\frac{3}{5}$
(D) $\frac{2}{5}$
(E) $\frac{4}{5}$

Solution: (D)
Let S : Event that two numbers are selected from 1, 2, 3, 4, 5
$\therefore n(S)={ }^{5} C_{2}=10$
E : Event that two numbers selected have integer mean.
$\therefore E=\{(1,3),(1,5),(2,4),(3,5)\}$
$\therefore n(E)=4$
\therefore Required probability $=P(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{4}{10}$
$=\frac{2}{5}$
100. The number of 3×3 matrices with entries -1 or +1 is
(A) 2^{-4}
(B) 2^{5}
(C) 2^{6}
(D) 2^{7}
(E) 2^{9}

Solution: (E)
In 3×3 matrix, total number of elements $=3 \times 3=9$
\therefore Total number of 3×3 matrices with entries either -1 or $1=2^{9}$
101. Let S be the set of all 2×2 symmetric matrices whose entries are either zero or one. A matrix X is chosen from S. The probability that the determinant of X is not zero is
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{1}{4}$
(E) $\frac{2}{9}$

Solution: (B)
$S=\{2 \times 2$ symmetric matrices whose entries are either zero or one $\}$
$=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$
$\therefore n(s)=8$
Let $x=\{$ matrix whose determinant is non-zero $\}$
$=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$
$\therefore \quad n(x)=4$
$\therefore \quad P(x)=\frac{n(x)}{n(s)}$
$=\frac{4}{8}=\frac{1}{2}$
102. The number of words that can be formed by using all the letters of the word PROBLEM only one is
(A) 5 !
(B) 6 !
(C) 7 !
(D) 8 !
(E) 9 !

Solution: (C)
The word 'PROBLEM' has 7 letters viz. P, R, O, B, L, E, M
\therefore Total number of words that can be formed by using all the letters only one $=$ Number of arranging the seven letters $=7$!
103. The number of diagonals in a hexagon is
(A) 8
(B) 9
(C) 10
(D) 11
(E) 12

Solution: (B)
The number of diagonals in a n-side polygon
$=\frac{n(n-3)}{2}$
\therefore Number of diagonals in a hexagon
$=\frac{6(6-3)}{2}$
$=9$
104.The sum of odd integers from 1 to 2001 is
(A) 1001^{2}
(B) 1000^{2}
(C) 1002^{2}
(D) 1003^{2}
(E) 999^{2}

Solution: (A)
The odd integers from 1 to 2001 are $1,3,5, \ldots ., 1999,2001$.
They forms an $A P$ with $a=1, d=2$ and $a_{n}=2001$.
$\therefore \quad a_{n}=a+(n-1) d$
$\Rightarrow 2001=1+(n-1) 2$
$\Rightarrow 2000=(n-1) 2$
$\Rightarrow n=1001$
$\therefore S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+2000]$
$=\frac{1001}{2} \times 2002$
$=1001 \times 1001$
$=(1001)^{2}$
105. Two balls are selected from two black and two red balls. The probability that the two balls will have no black balls is
(A) $\frac{1}{7}$
(B) $\frac{1}{5}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$
(E) $\frac{1}{6}$

Solution: (E)
We have, 2 black and 2 red balls.
$S=$ Selecting two balls
$\therefore n(S)={ }^{4} C_{2}$
$E=$ Event that two balls will have no black balls
$=$ Selecting 2 red balls
$\therefore n(E)={ }^{2} C_{2}$
\therefore Required probability $=P(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{{ }^{2} C_{2}}{{ }^{4} C_{2}}=\frac{1}{6}$
106. If $z-i^{9}+i^{19}$, then z is equal to
(A) $0+0 i$
(B) $1+0 i$
(C) $0+i$
(D) $1+2 i$
(E) $1+3 i$

Solution: (A)
We have
$z-i^{9}+i^{19}$,
$=\left(1^{4}\right)^{2} \cdot i+\left(i^{4}\right)^{4} \cdot i^{3}$
$=i+i^{3} \quad\left[\because i^{4}=1\right]$
$=i-i \quad\left[\because i^{3}=-i\right]$
$=0$
$=0+0 i$
107. The mean for the data $6,7,10,12,13,4,8,12$ is
(A) 9
(B) 8
(C) 7
(D) 6
(E) 5

Solution: (A)

We have,
$x_{i}=6,7,10,12,13,4,8,12$
\therefore Mean $=\frac{\text { Sum of all the observations }}{\text { Total number of observations }}$
$=\frac{6+7+10+12+13+4+8+12}{8}$
$=\frac{72}{8}=9$
108. The set of all real numbers satisfying the inequality $x-2<1$ is
(A) $(3, \infty)$
(B) $[3, \infty)$
(C) $[-3, \infty)$
(D) $(-\infty,-3)$
(E) $(-\infty, 3)$

Solution: (E)
We have,
$x-2<1$
$\Rightarrow x-2+2<1+2$
$\Rightarrow x<3$
$\therefore x \in(-\infty, 3)$
109. If $\frac{|x-3|}{x-3}>$, then
(A) $x \in(-3, \infty)$
(B) $x \in(3, \infty)$
(C) $x \in(2, \infty)$
(D) $x \in(1, \infty)$
(E) $x \in(-\infty, 3)$

Solution: (B)
We have
$\frac{|x-3|}{x-3}>0$
Now, $\frac{|x-3|}{x-3}=\left\{\begin{array}{cl}\frac{x-3}{x-3}=1, & x \geq 3 \\ \frac{-(x-3)}{x-3}=-1, & x<3\end{array}\right.$
$\therefore \quad \frac{|x-3|}{x-3}>0$ only holds when $x \in(3, \infty)$
110. The mode of the data $8,11,9,8,11,9,7,8,7,3,2$ is
(A) 11
(B) 9
(C) 8
(D) 3
(E) 7

Solution: (C)

We have,
Observation $=8,11,9,8,11,9,7,8,7,3,2$
Since, 8 is occurring highest time
\therefore Mode $=8$
111. If the mean of six numbers is 41 , then the sum of these numbers is
(A) 246
(B) 236
(C) 226
(D) 216
(E) 206

Solution: (A)
We know that,
$\bar{x}=\frac{\Sigma x_{i}}{N}$
$\Rightarrow \Sigma x_{i}=\bar{x} \times N=41 \times 6=246$
112. If $\int_{0}^{x} f(t) d t=x^{2}+e^{x}(x>0)$, then $f(1)$ is equal to
(A) $1+e$
(B) $2+e$
(C) $3+e$
(D) e
(E) 0

Solution: (B)
We have
$\int_{0}^{x} f(t) d t=x^{2}+e^{x}$
Using Leibnitz Rule,
$f(x)=2 x+e^{x}$
$\therefore f(1)=2+e$
113. $\int \frac{x+1}{x^{\frac{1}{2}}} d x=$
(A) $-x^{\frac{3}{2}}+x^{\frac{1}{2}}+C$
(B) $x^{\frac{1}{2}}$
(C) $x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C$
(D) $x^{\frac{3}{2}}+x^{\frac{1}{2}}+C$
(E) $x^{\frac{3}{2}}$

Solution: (A)
Let $I=\int \frac{x+1}{x^{\frac{1}{2}}} d x$
$=\int\left(x^{\frac{1}{2}}+\frac{1}{x^{\frac{1}{2}}}\right) d x$
$=\frac{2 x^{\frac{3}{2}}}{3}+2 \cdot x^{\frac{1}{2}}+C$
114. In a flight 50 people speak Hindi, 20 speak English and 10 speak both English and Hindi. The number of people who speak atleast one of the two languages is
(A) 40
(B) 50
(C) 20
(D) 80
(E) 60

Solution: (E)
Let $H=$ People who speak Hindi
$E=$ People who speak English
According to the questions,
$n(H)=50, n(E)=20, n(H \cap E)=10$
\therefore Number of people who speak atleast two language $=n(H \cup E)$
$=n(H)+n(E)-n(H \cap E)$
$=50+20-10=60$
115. If $f(x)=\frac{x+1}{x-1}$, then the value of $f(f(x))$ is equal to
(A) x
(B) 0
(C) $-x$
(D) 1
(E) 2

Solution: (A)
We have,
$f(x)=\frac{x+1}{x-1}$
$\therefore f(f(x))=f\left(\frac{x+1}{x-1}\right)$
$=\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}$
$=\frac{x+1+x-1}{x+1-x+1}$
$=\frac{2 x}{2}$
$=x$
116. Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?
(A) $\frac{3}{4}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{2}{3}$
(E) $\frac{1}{16}$

Solution: (A)
Total number of outcomes when two dice are thrown $=6 \times 6$
$\therefore n(S)=36$
Let $E=$ outcomes in which product of two number is even
$\{(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4$,
$5),(4,6),(5,2),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\therefore n(E)=27$
\therefore Required probability $=P(E)$
$=\frac{n(E)}{n(S)}$
$=\frac{27}{36}=\frac{3}{4}$
117. $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}$ is equal to
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{2}$
(C) 0
(D) Does not exist
(E) $\frac{1}{2 \sqrt{2}}$

Solution: (A)
We have,
$\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x}$
$=\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2-x}}{x} \times \frac{\sqrt{2+x}+\sqrt{2-x}}{\sqrt{2+x}+\sqrt{2-x}}$
$=\lim _{x \rightarrow 0} \frac{(2+x)-(2-x)}{x[\sqrt{2+x}+\sqrt{2-x}]}$
$=\lim _{x \rightarrow 0} \frac{2 x}{x \sqrt{2+x}+\sqrt{2-x}}$
$=\lim _{x \rightarrow 0} \frac{2}{\sqrt{2+x}+\sqrt{2-x}}$
$=\frac{2}{\sqrt{2+0}+\sqrt{2-0}}$
$=\frac{2}{2 \sqrt{2}}$
$=\frac{1}{\sqrt{2}}$
118. $\int \frac{d x}{e^{x}+e^{-x}+2}$ is equal to
(A) $\frac{1}{e^{x}+1}+C$
(B) $\frac{-1}{e^{x}+1}+C$
(C) $\frac{1}{1+e^{-x}}+C$
(D) $\frac{1}{e^{-x}-1}+C$
(E) $\frac{1}{e^{x}-1}+C$

Solution: (B)
Let $I=\int \frac{d x}{e^{x}+e^{-x}+2}$
$=\int \frac{e^{x}}{e^{2 x}+2 e^{x}+1} d x$
Put $e^{x}=t$
$\Rightarrow e^{x} d x=d t$
$\therefore \quad I=\int \frac{d t}{t^{2}+2 t+1}$
$=\int \frac{d t}{(t+1)^{2}}$
$=\frac{-1}{t+1}+C$
$=\frac{-1}{e^{x}+1}+C$
119. $\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)$ is equal to
(A) $\sec \theta$
(B) $2 \sec \theta$
(C) $\sec \frac{\theta}{2}$
(D) $\sin \theta$
(E) $\cos \theta$

Solution: (B)
We have,
$\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)+\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)$
$=\frac{\tan \frac{\pi}{4}+\tan \frac{\theta}{2}}{1-\tan \frac{\pi}{4} \tan \frac{\theta}{2}}+\frac{\tan \frac{\pi}{4}-\tan \frac{\theta}{2}}{1+\tan \frac{\pi}{4} \tan \frac{\theta}{2}}$
$=\frac{1+\tan \frac{\theta}{2}}{1-\tan \frac{\theta}{2}}+\frac{1-\tan \frac{\theta}{2}}{1+\tan \frac{\theta}{2}}$
$=\frac{\left(1+\tan \frac{\theta}{2}\right)^{2}+\left(1-\tan \frac{\theta}{2}\right)^{2}}{1-\tan ^{2} \frac{\theta}{2}}$
$=\frac{1+\tan ^{2} \frac{\theta}{2}+2 \tan \frac{\theta}{2}+1+\tan ^{2} \frac{\theta}{2}-2 \tan \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}$
$=2\left[\frac{1+\tan ^{2} \frac{\theta}{2}}{1-\tan ^{2} \frac{\theta}{2}}\right]$
$=\frac{2}{\cos \theta} \quad\left[\because \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right]$
$=2 \sec \theta$
120. $\int_{-1}^{0} \frac{d x}{x^{2}+x+2}$ is equal to
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) π
(D) 0
(E) $-\pi$

Solution: (A)
Let $I=\int_{-1}^{0} \frac{d x}{x^{2}+x+2}$
$=\int_{-1}^{0} \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+2-\frac{1}{4}}$
$=\int_{-1}^{0} \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}}$
$=\left[\frac{1}{\left(\frac{\sqrt{7}}{2}\right)} \tan ^{-1} \frac{x+\frac{1}{2}}{\frac{\sqrt{7}}{2}}\right]_{-1}^{0}$
$=\frac{2}{\sqrt{7}}\left[\tan ^{-1} \frac{2 x+1}{\sqrt{7}}\right]_{-1}^{0}$
$=\frac{2}{\sqrt{7}}\left[\tan ^{-1} \frac{1}{\sqrt{7}}-\tan ^{-1}\left(\frac{1}{\sqrt{7}}\right)\right]$
$=\frac{2}{\sqrt{7}}\left[\tan ^{-1} \frac{2}{\sqrt{7}}+\tan ^{-1} \frac{2}{\sqrt{7}}\right]$
$=\frac{4}{\sqrt{7}} \tan ^{-1} \frac{1}{\sqrt{7}}$

