2014

20 kmph. What is the average speed of the car?

SUBJECT: PHYSICS	A physical quantity of is found to depend
SESSION: MORNING	TIME: 10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION DO	OKLET DETAILS
VERSION CODE	SERIAL NUMBER
wector diantif	548417
	VERSION CODE

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

A physical quantity Q is found to depend on observables x, y and z, obeying relation The percentage error in the measurements of x, y and z are 1%, 2% and 4% respectively. What is percentage error in the quantity Q?

70 MINUTES (3) 11%

SO MINUTES . (4) 1%

2. Which of the following is not a vector quantity?

DESTION BOOKLET DETAILS

Weight (1)

Nuclear spin

SERIAL NUMBER

(3) Momentum (4) Potential energy

MENTION YOUR

3. A car moves from A to B with a speed of 30 kmph and from B to A with a speed of 20 kmph. What is the average speed of the car?

25 kmph

THE TIMING AND MARKS PR 24 kmph

- 50 kmph
- hqmx 10 kmph right hand side of this question

A body starts from rest and moves with constant acceleration for t s. It travels a distance x_1 in first half of time and x_2 in next half of time, then

- After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and
- check that this booklet does not $1/2 = x_1 = x_1$ and this booklet does not be $1/2 = x_2 = x_1 = x_1$. (1) replaced by a complete test booklet. Read each item and start answering on the OMR answer
 - (3) $x_2 = 3x_1$

(4) $x_2 = 4x_1$ which of managed as add a direct

Preserve the replica of the OMR answer sheet for a minimum period of OME year.

against the question number on the OMR answer sheet.

Space For Rough Work

Completely darkon / shade the relevant circle with a BLUE OR BLACK DVK BALL POUVT PEN

Correct Method of shading the circle on the OMR answer sheet is as shown below:

After the last bell is rong at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND

Turn Over

A person is driving a vehicle at uniform speed of 5 ms⁻¹ on a level curved track of radius 5. 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed? Take $g = 10 \text{ ms}^{-2}$.

Choose the correct statement.

- (1) A person will slip if $v^2 = 5 \text{ ms}^{-1}$ (2) A person will slip if $v^2 > 5 \text{ ms}^{-1}$
 - (3) A person will slip if $v^2 < 5 \text{ ms}^{-1}$ (4) A person will not slip if $v^2 > 10 \text{ ms}^{-1}$
- A stone is thrown vertically at a speed of 30 ms⁻¹ making an angle of 45° with the horizontal. What is the maximum height reached by the stone? Take $g = 10 \text{ ms}^{-2}$.

A 10 kg metal block is attached to a spring of spring constant 1000 Nm⁻¹. A block is

- displaced from equilibrium and released. The maximum and released of more and released of more and more and released. The maximum and released of more and released of the more
 - (3) 15 m

- (4) 10 m
- (3) 200 ms⁻² A force $\vec{F} = 5\hat{i} + 2\hat{j} - 5\hat{k}$ acts on a particle whose position vector is $\vec{r} = \hat{i} - 2\hat{j} + \hat{k}$. What is the torque about the origin? A metallic wire of 1 m length \hat{i} and \hat{i} \hat{j} \hat{i} \hat{j} \hat{i} \hat{j} \hat{i} \hat{j} \hat{i} \hat{j} \hat{i} \hat{i} \hat{i} \hat{j} \hat{i} \hat

(1) 10 ms

- (3) $8\hat{i} 10\hat{j} 8\hat{k}$ $\stackrel{1}{=}$ and 01 (2) (4) $10\hat{i} 10\hat{j} \hat{k}$ $\stackrel{1}{=}$ and 001 (1)
- What is a period of revolution of earth satellite? Ignore the height of satellite above the 8. surface of earth. 13. A train is approaching towards a platform with a speed of 10 ms-1 wl

Given: (1) The value of gravitational acceleration $g = 10 \text{ ms}^{-2}$.

- (2) Radius of earth $R_E = 6400$ km. Take $\pi = 3.14$. Decay new 10 % amortisis odd
- 85 minutes (1)

156 minutes

(3) 83.73 minutes

90 minutes

			res and road is	(2) detween ty	12 h	is driving a vehi coefficient of st	5 mi The	
	(3)	30 h	$g = 10 \text{ ms}^{-2}$.	(4) ed ? Take	48 h	ng the turn with	white taki	
					ent.	e correct stateme	Choose th	
10.						uired to get 70°		y ?
	Given sinl	k temperati	re = 27 °C	< 5 ms-1 (4)	slin if v2	A person will	(3)	
	(1)	1000 °C	arn morned an	(2)	90 °C		(0)	
the	(3)	270 °C	ms ⁻¹ making a	(4) speed of 30 a	727 °C	s thrown vertic	A stone i	.6.
						. What is the ma		
11.		from equil	ibrium position	by 10 cm and		nstant 1000 Nm The maximum	acceleration	
	(1)	10 ms ⁻²	10 m	(4)	100 ms	15 m 2	(3)	
		200 ms ⁻²		1 /	0.1 ms ⁻²		= 24	
SI JI						= 5i + 2j - 5k a shout the origin		. 1
12.			m length has a speed of transv			f a tension of 10		ied
	(1)	100 ms ⁻¹	$10\hat{i} - 10\hat{j} - \hat{k}$	(4) (2)	10 ms ⁻¹	$8\hat{1} - 10\hat{j} - 8\hat{k}$		
	(3)	200 ms ⁻¹		(4)	0.1 ms ⁻¹	1		
the	llite above	ght of sate	Ignore the hei	arth satellite?	ution of e	period of revol	What is a	.8
13.						ms ⁻¹ while blo rd by a stationa		
	the platfor	m? Given	speed of sound	$l = 340 \text{ ms}^{-1}.0$	$h R_B = 64$	Radius of eart	(2	
	(1)	330 Hz	156 minutes	(2)	350 Hz	85 minutes	(1)	
	(3)	340 Hz		(4)	360 Hz	83.73 minutes	(3)	
			Spac	e For Rough W	Vork			

5	(1)	$60\pi \text{ rad s}^{-2}$					ass 27 kg mo		
	(3)	$2\pi \text{ rad s}^{-2}$	0.5 ms ⁻¹	(2)	(4)	$40\pi \text{ rad s}^{-2}$	1 ms ⁻¹	(1)	
15.	A flow of	liquid is strea	mline if the		numbe	er is	2 ms ⁻¹	(3)	
	(1)	less than 100				greater than	1000		
	(3)			vpe of th			00 to 5000	A cycle ty	20.
			Adiabatic				Isothermal		
16.		30 cm long ipe resonates	a family of a set	CAN					nic
	(1)	Fifth harmon	nic		(2)	Fourth harr	nonic		
bo	11 (3) (3)	Third harmo	nic romin	concave	(4)	Second har	monic ai	An object	21.
							. What is foc	The state of the s	
17.	In anomal	ous expansion	of water, at	what te	mperat	ure, the dens	sity of water i	s maximum	1?
	(1)	4°C	7.5 cm	(8)	(2)	< 4 °C		(3)	
	(3)	>4 °C	mo c.,		(4)	10 °C			
18.	An aeropl	ane executes	a horizontal	loop at	a speed	of 720 km	oh with its wi	ngs banked	l at
	45°. What	is the radius	of the loop?	Take g	= 10 m	ns^{-2} .	0.1.0	(1)	
	(1)	4 km	20 D	(4)	(2)	4.5 km	15 D	(2)	
	(3)	7.2 km	0.02	(7)	(4)	2 km	dei	(0)	
			Space	e For R	ough W	ork			

14. A rotating wheel changes angular speed from 1800 rpm to 3000 rpm in 20 s. What is the

19.	with angu	lar velocity	oment of inertia about it y of 3 rad s ⁻¹ . Kinetic en moving with velocity v.	nergy	of this rotati	ng body is sam		-
	(1)	1 ms ⁻¹	(4) 40π rad s ⁻²	(2)	0.5 ms ⁻¹	2π rad s ⁻²	(3)	
	(3)	2 ms ⁻¹	ld number is	(4)	1.5 ms ⁻¹	liquid is stream	to woft A	15.
		000	(2) greater than I			less than 100	(1)	
20.	A cycle ty	re bursts s	uddenly. What is the typ	pe of th	is process	between 2009	(3)	
nic		ionics. Wh	lice ands produces harm Given speed of sound in		nd open at			
			(2) Fourth harmon			. Fifth harmon		
21.	real image	e. What is f	at 20 cm in front of a co cocal length of the conca	ave mi	ror?			
	(1)	15 cm	lemperature, the density	(2)	6.6 cm			
	(3)	10 cm	(2) <4°C	(4)	7.5 cm	4°C		
			(4) 10 °C			>4°C	(8)	
22.	A focal le	ngth of a le	ens is 10 cm. What is po	wer of	a lens in di	optre ?	An aerop	.81
	(1)	0.1 D				t is the radius o		
		15 D	(2) 4.5 km		20 D	4 km		
	(3)	13 D	(4) ' 2 km	(4)	20 D	7.2 km	(3)	
			Space For Ro	ough W	ork		· ·	

23.	A microscope is having objective of focal length 1 cm and eyepiece of focal length 6 cm.
]	f tube length is 30 cm and image is formed at the least distance of distinct vision, what is
1	he magnification produced by the microscope ? Take D = 25 cm.

(1) 6 (2) 150

(3) 25

(4) 125

A fringe width of a certain interference pattern is $\beta = 0.002$ cm. What is the distance of 5th 24. dark fringe from centre?

(1) 1×10^{-2} cm

(2) 11×10^{-2} cm

28. The maximum kinetic energy of the photoelectrons depends only on

 $10(3) \times 1.1 \times 10^{-2} \text{ cm}$ (4) $3.28 \times 10^{6} \text{ cm}$

Diameter of the objective of a telescope is 200 cm. What is the resolving power of a 25. (3) Lyman series telescope? Take wavelength of light = 5000 Å.

(2) 3.4 eV

(4) 4 eV

(2) $\lambda T = \frac{1}{2}$

 6.56×10^6 (1)

(2) 3.28×10^5 What is the energy of the electron revolutions lying in third orbit expresse

 1×10^{6}

(4) 3.28 × 10⁶

A polarized light of intensity I₀ is passed through another polarizer whose pass axis makes 26. an angle of 60° with the pass axis of the former. What is the intensity of emergent polarized light from second polarizer?

(1) $I = I_0$

(2) $I = I_0/6$

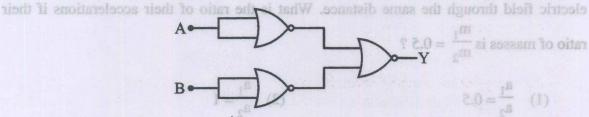
(3) $I = I_0/5$

(4) I₀/4

27. What is	the de Broglie v	vavelength o	f the ele	ctron accelera	ated through a poten	tial
difference	of 100 Volt?	at the least du e ? Take D =	icroscon	n and image is duced by the n	If the length is 30 cr	
(1)	12.27 Å		(2)		the regmification pro	
(3)	0.1227 Å	(2) 150	(4)	0.001227 Å	30 (2)	
		(4) 125			(3) 25	
28. The maxis	mum kinetic energ	gy of the photo	oelectrons	depends only	on	
I(I)nce of 5th	potential	n is $\beta = 0.002$	(2) namen	frequency	A fringe width of a ce	24.
(3)	incident angle		(4)	pressure	dark fringe from centu	
) ⁻² cm	(2) 11×10		m	(1) 1×10 ⁻² cr	
	the following specignetic wave?	ctral series of	hydrogen	atom is lying	in visible range of	
(1) gower of a (3)		200 cm. Wh	scope is	Pfund series Balmer serie	Diameter of the objectelescope? Take wave	25.
30. What is the	ne energy of the ele		ing in thir	d orbit express		
(1)	1.51 eV	(4) 3.28 ×	(2)	3.4 eV	(3) 1×10°	
(3)	4.53 eV		(4)	4 eV		
ss axis makes	olarizer whose pa	ugh another p	assed thro	itensity Io is pa	A polarized light of in	.93
31. The relati		fe (T) and dec	cay consta	ant (λ) is	an angle of 60° with polarized light from s	
(1)	$\lambda T = 1$	(2) $I = I_0/6$	(2)	$\lambda T = \frac{1}{2}$	$_{o}I=I$ (1)	
(3)	$\lambda T = \log_e 2$	(4) I _o /4	(4)	$\lambda = \log 2T$	(3) $I = I_o/5$	
		Space For	Rough W	Vork		
					,	

32. A force between two protons is same as the force between proton and neutron. The nature of the force is

- (1) Weak nuclear force
- (2) Strong nuclear force
- (3) Electrical force
- (4) Gravitational force


(3) 6.25×10^{27}

(1) Scalar

33. In n type semiconductor, electrons are majority charge carriers but it does not show any negative charge. The reason is

- (1) electrons are stationary
 - (2) electrons neutralize with holes
 - (3) mobility of electrons is extremely small
 - (4) atom is electrically neutral

34. For the given digital circuit, write the truth table and identify the logic gate it represents:

(1) OR-Gate

(2) NOR-Gate

(3) NAND-Gate

(4) AND-Gate

35. If α -current gain of a transistor is 0.98. What is the value of β -current gain of the transistor?

(1) 0.49

(2) 49

(3) 4.9

(4) 5

36. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the of the force is amplitude modulation. The value of \sqrt{LC} is

$$(1) \quad \frac{1}{2\pi \times 10^6}$$

(1)
$$\frac{1}{2\pi \times 10^6}$$
 is not served. (2)
$$\frac{1}{2 \times 10^6}$$
 or of isomorphism (8)

(3)
$$\frac{1}{3\pi \times 10^6}$$

van words (3)
$$\frac{1}{3\pi \times 10^6}$$
 (4) $\frac{1}{4\pi \times 10^6}$ (5) show any

negative charge. The reason is

(3) 4.9

37. If a charge on the body is 1 nC, then how many electrons are present on the body?

(1)
$$1.6 \times 10^{19}$$

(2)
$$6.25 \times 10^9$$

(3)
$$6.25 \times 10^{27}$$

(2)
$$6.25 \times 10^9$$

(4) 6.25×10^{28}

38. Two equal and opposite charges of masses m₁ and m₂ are accelerated in an uniform electric field through the same distance. What is the ratio of their accelerations if their ratio of masses is $\frac{m_1}{m_2} = 0.5$?

(1)
$$\frac{a_1}{a_2} = 0.5$$
 (2) $\frac{a_1}{a_2} = 1$ (3) $\frac{a_1}{a_2} = 2$ SIND-MOM (S) (4) $\frac{a_1}{a_2} = 3$ SIND-MAM (E)

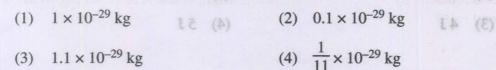
(2)
$$\frac{a_1}{a_2} = 1$$

(3)
$$\frac{a_1}{a_2} = 2$$

(4)
$$\frac{a_1}{a_2} = 3$$

39. What is the nature of Gaussian surface involved in Gauss law of electrostatic? (2) 49

(1) Scalar (2) Electrical


(3)Magnetic Vector

40.	What is th	e electric j	potential at a distance of	f 9 cm	from 3 nC?	he equivalent resistan	15. 1
	(1)	270 V	alues of resistances?	(2)	3 V V O	quivalent resistance is	
	(3)	300 V			30 V		
			(2) 8 Ω, 1 Ω			(1) 4 Ω , 6 Ω	
41.	When a direads 2 V.	What is the output	V when connected to a ab is introduced between the dielectric constant of	the ma	es for the san aterial?	ne configuration, voltm	neter
	(3)	8	ng length is found to be	(4)	10	ne cell is replaced by a f second cell?	
42.			or of radius 2 cm is uni 3 cm from the centre of			h 3 nC. What is the ele	ectric
	(1)	$3 \times 10^6 \text{ V}$	$V m^{-1}$	(2)	3 V m ⁻¹		
	dointw (3)	$3 \times 10^4 \text{ V}$	rce in the presence on h	(4)			
43.	A carbon f	ilm resisto	r has colour code Green	Black V		the value of the resistor	
75.	(1)		remembered or profit amon	Spill m		the value of the resistor	15
	(3)		netic field is parallel 10 ΩM δ agnetic field is perpend	(- /			
44.	then conn	ected to a	istances 2 Ω and 6 Ω battery of emf 2V and battery?	intern	al resistance	0.5Ω . What is the cu	rrent
	(1)		y a charged particle?	(2)	$\frac{4}{3}$ Adaq ada	nagnetic field, what is	1
	(3)	$\frac{4}{17}$ A	(2) Elliptical	(4)	1 A	(1) Circular	

							on.	
45.	The equiv	alent resistance	e of two resistors	connected in	series is	6Ω and	their parall	el
		1	$\frac{1}{3}\Omega$. What are the value of $\frac{1}{3}$			270 V 300 V	(1)	
	(1)	$4\Omega, 6\Omega$		(2) 8 Ω,	1 Ω			
			parallel plate capa en plates for the sa f the material?	oduced betwe	alab is intro	ielectric s	When a d	
46.		replaced by an	iment of a cell of eacher cell, balancing			-		
oi	is(1), e electr	≥ 1.57 V	ifonnly charged wi					100
	(3)	$\simeq 1.47 \text{ V}$	f the sphere?	$(4) \simeq 1.3$				
			(2) 3 V m ⁻¹			3×10^6		
47.		l particle exper	riences magnetic for is correct?	rce in the pres	sence of m	agnetic fi	eld. Which	of
	e (1)	The particle i	s moving and magi	netic field is p	erpendicul	lar to the	velocity.	
	(2)	The particle i	is moving and magi	netic field is p	arallel to v	velocity.	(I)	
	(3)	The particle i	is stationary and ma	ignetic field is	perpendic	cular.	(3)	
ai	noitani(4)	The particle i	is stationary and ma	ignetic field is	s parallel.	tors of re	Two resis	
nt	is the curre	e 0.5 Ω. What	internal resistance	f emf 2V and	a battery o	ected to	then conn	
48.			perpendicular and he path followed by				ing through	a
	(1)	Circular		(2) Ellipt	tical	, ,		
	(3)	Linear	(4) IA (2)	(4) Helic	al	17 A	(3)	

40 September 2	d has leasth O white Gold	tak Itis	nican Al M	OO Assessment of the control of the
				00 turns of wire. If a current of 5 A is field inside the solenoid?
(1)	$6.28 \times 10^{-4} \mathrm{T}$	(2)	(2)	$6.28 \times 10^{-3} \mathrm{T}$
(3)	$6.28 \times 10^{-7} \mathrm{T}^{-9}$	(4)	(4)	$6.28 \times 10^{-6} \mathrm{T}$ (8)

50. A gyromagnetic ratio of the electron revolving in a circular orbit of hydrogen atom is 8.8×10^{10} C kg⁻¹. What is the mass of the electron? Given charge of the electron = 1.6×10^{-19} C.

A multimeter reads a voltage of a certain A.C. source as 100 V. What is the peak value of voltage of A.C. source?

51. What is the value of shunt resistance required to convert a galvanometer of resistance 100Ω into an ammeter of range 1A?

Given: Full scale deflection of the galvanometer is 5 mA.

A series LCR circuit contains
$$\frac{5}{5}\Omega$$
 (2) $\frac{9.95}{5}\Omega$ (2) $\frac{9.95}{5}\Omega$ (3) $\frac{1}{10}\Omega$ (4) $\frac{1}{10}\Omega$ (5) $\frac{1}{10}\Omega$ (6) $\frac{1}{10}\Omega$ (7) $\frac{1}{10}\Omega$ (8) $\frac{1}{10}\Omega$ (9) $\frac{1}{10}\Omega$ (9) $\frac{1}{10}\Omega$ (10) $\frac{1}{10}\Omega$ (10)

52. A circular coil of radius 10 cm and 100 turns carries a current 1A. What is the magnetic moment of the coil?

(1) $3.142 \times 10^4 \text{ A m}^2 \times \frac{2}{\pi}$ (2) $10^4 \text{ A m}^2 \times \frac{2}{\pi}$ (8) (3) 3.142 A m^2 (4) 3 A m^2

	(1)	Diamagnetic 01 × 85.0	(2)	(2)	Paramagnetic) × 85.0 (1)
	(3)	Ferromagnetic × 82.0	(4)	(4)	Ferroelectric (E)
					A. What is the magnetic energy stored
the		he electron ? Giv Dic	mass of	the	is 8.8 × 10 ¹⁰ C kg ⁻¹ . What is
	(1)	21		(2)	1) 3 01 4 0.1 - 10 0.3 0.1
	(3)	4J gal <2-01 × 1.0	(2)	(4)	electron = 1.6×10^{-19} C. L1 (1) 1×10^{-29} kg L2
		$\frac{1}{11} \times 10^{-29} \text{kg}$			(3) 1.1 × 10 ⁻²⁹ kg
55.	voltage of	A.C. source?			arce as 100 V. What is the peak value of
ınce	t (1) resista	200 V	equired to	(2)	 What is the value of shunt voits 100 Ω into an ammeter of range 1A
					V 004 Given: Full scale deflection of the
	(0)				GIVEN: FULL SCALE DELIECTION OF THE
	(0)	9 95			Given: rull scale deflection of the
56.	A series L	CR circuit contains inducy A.C. source is varied	uctance 5 i	nH, c	apacitance 2 μ F and resistance 10 Ω . If requency at which maximum power is
	A series L a frequence dissipated	CR circuit contains indicty A.C. source is varied?	uctance 5 i	nH, c	apacitance 2 μ F and resistance 10 Ω . If

Space For Rough Work

 $(4) 3 \text{ A} \text{ m}^2$

(3) 3.142 A m²

A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer?

(1)
$$\frac{1}{20}$$
 A

(2) 20 A

(3) 100 A

(4) 2 A

58. The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit?

(2) 1

(4) $\frac{1}{\sqrt{2}}$

59. A plane electromagnetic wave of frequency 20 MHz travels through a space along x direction. If the electric field vector at a certain point in space is 6 V m⁻¹, what is the magnetic field vector at that point?

(1)
$$2 \times 10^{-8} \text{ T}$$

(2)
$$\frac{1}{2} \times 10^{-8} \text{ T}$$

(4) $\frac{1}{2} \text{ T}$

(4)
$$\frac{1}{2}$$
 T

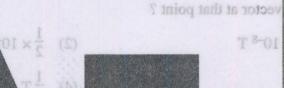
Two capacitors of 10 PF and 20 PF are connected to 200 V and 100 V sources 60. respectively. If they are connected by the wire, what is the common potential of the capacitors?

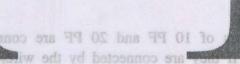
(1) 133.3 volt

(2) 150 volt

(3) 300 volt (4) 400 volt

- '57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer?
 - (1) $\frac{1}{20}$ A
 - (3) 100 A


- The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit?



(2) 1

space along x omagnetic wave of frequency 20 MHz travels what is the e electric field vector at a certain point in spa

capacitors?

direct

magne

.00

- (1) 133.3 volt
 - 300 volt