- EMBIBE

Solution

Physics

1. Dimension analysis
$I_{o}=K M a^{2}$
Now for small lamina
$I^{\prime}=K \frac{M}{4}\left(\frac{a}{2}\right)^{2}=\frac{k m a^{2}}{16}$
$I^{\prime}=\frac{I_{o}}{16}$
So moment of Inertia of remaining part
$I_{L}=I_{o}-I^{\prime}$
$=I_{o}-\frac{I_{o}}{16}$
$I_{L}=\frac{15 I_{o}}{16}$
2. Energy of radiation $=\frac{12500}{980}=12.75 \mathrm{eV}$

Energy of electron in $n^{\text {th }}$ orbit $=-\frac{13.6}{n^{2}}$
$\Rightarrow E_{n}-E_{1}=-13.6\left[\frac{1}{n^{2}}-\frac{1}{1^{2}}\right]$
$\Rightarrow 12.75=13.6\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]$
$\Rightarrow n \approx 4$
Electron will transit to $n=4$
New radius will be $16 a_{0}$
3. $\Delta \phi=\frac{2 \pi}{\lambda} \times \frac{\lambda}{8}=\frac{\pi}{4}$
$I=I_{0} \cos ^{2} \frac{\pi}{8}$
$=I_{0}\left(\frac{1+\cos \pi / 4}{2}\right)$
$=I_{0}\left(\frac{1+\frac{1}{\sqrt{2}}}{2}\right)=0.85 I_{0}$
4. $K \cdot E=\frac{1}{2} k\left(A^{2}-x^{2}\right)$
P. $E=\frac{1}{2} k x^{2}$

At $t=210 \mathrm{sec}$
$x=A \sin \frac{7 \pi}{3}$
$\frac{K \cdot E}{P . E}=\frac{A^{2}}{x^{2}}-1$
$=\frac{A^{2}}{\left(\frac{A \sqrt{3}}{2}\right)^{2}}-1$
$=\frac{4}{3}-1=\frac{1}{3}$
5.

Velocity of particle after 1 sec
$v_{x}=u \cos 60^{\circ}=5 \mathrm{~m} / \mathrm{s}$
$v_{y}=u \sin 60-a_{y} t=10 \frac{\sqrt{3}}{2}-10(1)$
$=5(\sqrt{3}-2) \mathrm{m} / \mathrm{s}$
$v=\sqrt{5^{2}+[5(\sqrt{3}-2)]^{2}} \mathrm{~m} / \mathrm{s}$
Radius of calculate $R=\frac{v^{2}}{a_{\perp}}$
$=\frac{v^{2}}{g \cos \theta}=\frac{v^{2}}{g \frac{v_{x}}{v}}=\frac{v^{3}}{g v_{x}}$
$=2.81 \mathrm{~m}$
6. Initially
$\frac{P}{Q}=\frac{R_{1}}{X} \ldots$ (i)
After interchanging P and Q
$\frac{Q}{P}=\frac{R_{2}}{X} \ldots$ (ii)
$1=\frac{R_{1} R_{2}}{X^{2}}$
$X=\sqrt{R_{1} R_{2}}$
$=\sqrt{400 \times 405}$
$=402.5 \Omega$
7. $\frac{d v}{d t}=\left(\frac{f}{f+u}\right)^{2} \frac{d u}{d t} \Rightarrow \frac{d v}{d t}=\left(\frac{0.3}{0.3-0.2}\right)^{2} \times 5$
$=1.16 \times 10^{-3} \mathrm{~m} / \mathrm{s}$ towards lens
8. $\lambda_{e}=10^{-3} \lambda_{p}$
$f_{p}=6 \times 10^{14} \mathrm{~Hz}=\frac{C}{\lambda_{p}}$
$\lambda_{p}=\frac{3 \times 10^{8}}{6 \times 10^{14}}=0.5 \times 10^{-6} \mathrm{~m}$
$\lambda_{e}=0.5 \times 10^{-9},=\frac{h}{m_{e} v_{e}}$
$v_{e}=\frac{6.63 \times 10^{-34}}{9.1 \times 10^{-31} \times 0.5 \times 10^{-9}}$
$=1.45 \times 10^{6}$
9. $R_{h}=2 \Omega$
$\varepsilon=0.5 \mathrm{~V}$
Current through wire $A B$ is $i=\frac{6}{2+4}=1 A$
$\varepsilon=\frac{4}{L} J$
When $\varepsilon=\varepsilon_{2}$
$\varepsilon_{2}=\frac{4\left(\frac{6}{4+6}\right) \mathrm{J}}{L}$
$\frac{\varepsilon}{\varepsilon_{2}}=\frac{10}{6}$
$\varepsilon_{2}=\varepsilon \times \frac{6}{10}=\frac{3}{10}=0.3 \mathrm{~V}$
10. $\tau=\vec{r}_{1} \times \vec{F}_{1}+\vec{r}_{2} \times \vec{F}_{2}$
$=(2 \hat{\imath}+3 \hat{\jmath}) \times(F \hat{k})+(6 \hat{\jmath}) \times\left(\frac{F}{2}(-\hat{\imath})+F \frac{\sqrt{3}}{2}(-\hat{\jmath})\right)$
$=2 F(-\hat{\jmath})+3 F(\hat{\imath})+3 F \hat{k}$
$=(3 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})$
11. $V(t)=10\left[1+0.3 \cos \left(2.2 \times 10^{4} t\right)\right] \sin \left(5.5 \times 10^{5} t\right)$
$=10 \sin \left(5.5 \times 10^{5} t\right)+3 \cos 2.2 \times 10^{4} t \sin 5.5 \times 10^{5} t$
$=10 \sin \left(5.5 \times 10^{5} t\right)+\frac{3}{2}\left[\sin \left(2.5 \times 10^{4} t+5.5 \times 10^{5} t\right)-\sin \left(2.5 \times 10^{4} t-5.5 \times 10^{5} t\right)\right]$
$=10 \sin \left(5.5 \times 10^{5} t\right)+\frac{3}{2} \sin \left(57.5 \times 10^{4} t\right)+\frac{3}{2} \sin \left(52.5 \times 10^{4} t\right)$
Sideband frequencies are $\frac{57.5 \times 10^{4}}{2 \pi}$ and $\frac{52.5 \times 10^{4}}{2 \pi}$
$=91 \mathrm{kHz}$ and 84 kHz
12. $U=n_{1} \frac{f_{1}}{2} R T+n_{2} \frac{f_{2}}{2} R T$
$=3\left(\frac{5}{2}\right) R T+5\left(\frac{3}{2}\right) R T$
$=15 R T$
13. Mass per unit time $=\rho A v$

Force due to momentum loss $=\frac{1}{4} \rho A v \times v$
Force due to bounce back $=\frac{1}{4} \rho A v \times 2 v$
Pressure $=\frac{\frac{\rho A v^{2}}{4}+\frac{\rho A v^{2}}{2}}{A}=\frac{3}{4} \rho v^{2}$
14. $F=\alpha \beta e^{\left(\frac{-x^{2}}{\alpha k T}\right)}$
$\frac{x^{2}}{\alpha}=M L^{2} T^{-2}$
$\alpha=M^{-1} T^{2}$
$\beta=\frac{M L T^{-2}}{M^{-1} T^{2}}=M^{2} L T^{-4}$
15.

Indiavidual Learning Pvt. Ltd. I www.embibe.com

e
 EMBIBE

Current through $R_{1}=\frac{2}{500}=\frac{1}{250}$
Current through zener diode $=\frac{1}{250}-\frac{100}{1500}-\frac{10}{1500}$
$=\frac{150-250-250}{250 \times 150}$
$=-v e$ not possible
Current through Zener diode is zero
16.

From parallel combination we can say
Charge on $6 \mu F$ is $6 \times \frac{30}{6+4}=18 \mu C$
Charge on $4 \mu F$ is $4 \times \frac{30}{6+4}=12 \mu C$
From the isolated loop,
We can say charge on $6 \mu F$ is $+18 \mu F$
17. Heat lost by water $=$ heat gained by ice
$m_{w} s_{2} \Delta T_{w}=\left(m_{i}-20\right) L_{i}+m_{i} s_{i} \Delta T_{i}$
$50 \times 4.2 \times 40=(m-20) 334+m(2.1) 20$
$m \approx 40 \mathrm{~g}$
18. Assuming lengths of perpendicular sides as ' a '
$\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{a}+\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{\sqrt{2} a}+\frac{1}{4 \pi \epsilon_{0}} \frac{q q}{a}=0$
$Q+\frac{Q}{\sqrt{2}}+q=0$
$Q\left(1+\frac{1}{\sqrt{2}}\right)+q=0$
$Q=-\frac{-q}{1+\frac{1}{\sqrt{2}}}=-\frac{\sqrt{2} q}{1+\sqrt{2}}$
19. For adiabatic process
$T V^{\gamma-1}=$ constant
$\gamma=1+\frac{2}{5}=\frac{7}{5}$ (For diatomic gas)
So $x=\gamma-1=\frac{7}{5}-1=\frac{2}{5}$
20. Mutual inductance $=\mu_{0} n_{1} n_{2} R_{1}^{2} \ell \pi$

Self inductance of inner solenoid $=\mu_{0} n_{1}^{2} R_{1}^{2} \ell \pi$
Ratio $=\frac{n_{2}}{n_{1}}$

21. Potential of a uniformly charged spherical shell
22. $|\Delta \vec{V}|=2 v \sin \frac{\theta}{2}=2 v \sin 30^{\circ}=2 \times 10 \times \frac{1}{2}=10 \mathrm{~m} / \mathrm{s}$
23. Growth and decay of current is of exponential nature

EMBIBE
$i=i_{0}\left(1-e^{-t / \tau}\right) \rightarrow$ during growth
$i=i_{\text {max }} e^{-t / \tau} \rightarrow$ during decay
Note: - In actual paper none of the options was correct.
24. In air $\frac{E_{0}}{B_{0}}=C$

In the medium of refractive index $=n$
$\frac{E}{B}=\frac{C}{n}$
It is possible if
$E=\frac{E_{0}}{\sqrt{n}}$ and $B=B_{0} \sqrt{n}$
$\therefore \frac{E_{0}}{E}=\sqrt{n} \quad \frac{B_{0}}{B}=\frac{1}{\sqrt{n}}$
25. The velocity of 1 kg block just before striking
$V=\sqrt{2 \times 10 \times 100}=20 \sqrt{5} \mathrm{~m} / \mathrm{s}$
Applying conservation of momentum, the blocks stick after collision and move with velocity v
Or $1 \times 20 \sqrt{5}=4 v$
Final velocity $v=5 \sqrt{5}$,
Using energy conservation
$K E+P E=\mathrm{const}$
$\frac{1}{2} \times 4 \times(5 \sqrt{5})^{2}+\frac{1}{2} k x_{0}^{2}+4 \times 10 \times x=\frac{1}{2} k\left(x+x_{0}\right)^{2}$
On solving $x \approx 2 \mathrm{~cm}$
26. $k=9 \mathrm{~m}^{-1}$ and $\omega=450 \mathrm{rad} / \mathrm{s}$
$\therefore v=\frac{\omega}{k}=50 \mathrm{~m} / \mathrm{s}$
$v=\sqrt{\frac{T}{\mu}}$
$\therefore T=\mu v^{2}=5 \times 10^{-3} \times 50^{2}=12.5 \mathrm{~N}$
27.

$P_{\text {generated }}=60 \mathrm{~W}$
$P=60=\frac{V^{2}}{2 R}$
$\frac{V^{2}}{R}=120 \mathrm{watt}$

$P_{\text {generated }}=\frac{2 V^{2}}{R}=2(120)=240$ watt
28.
$\delta=A(\mu-1)$ for thin prism \ldots (i)

- EMBIBE

From graph

Retractive index decreasing with λ
$\Rightarrow \delta$ should also decrease with λ from ...(i)
29. Orbital velocity, $v_{0}=\sqrt{\frac{G M}{(R+h)}}$

To escape, $v_{s}=\sqrt{\frac{2 G M}{(R+h)}}$
Change in velocity $=\sqrt{\frac{2 G M}{(R+h)}}-\sqrt{\frac{G M}{(R+h)}}$
If $h \ll R$
$\Delta v=\sqrt{\frac{2 G M}{R}}-\sqrt{\frac{G M}{R}}$
$\Delta v=\sqrt{2 g R}-\sqrt{g R}$
30. $r=\frac{\sqrt{2 m e V}}{e B}$
$=\sqrt{\frac{2 m e V_{a c}}{e^{2} B^{2}}}$
$=\sqrt{\frac{2 \times 9 \times 10^{-31} \times 500}{1.6 \times 10^{-19} \times\left(100 \times 10^{-3}\right)^{2}}}$
$=\sqrt{\frac{2 \times 9 \times 10^{-31} \times 500}{1.6 \times 10^{-19} \times 10^{-2}}}$
$=\sqrt{\frac{2 \times 9.1 \times 5 \times 10^{-31+23}}{1.6}}$
$=\sqrt{\frac{9.1}{1.6} \times 10^{-7}}$
$=\sqrt{\frac{91}{16} \times 10^{-7}}$
$=\sqrt{\frac{910}{16} \times 10^{-8}}$
$=\sqrt{56.875} \times 10^{-4}$
$=7.54 \times 10^{-4} \mathrm{~m}$

Chemistry

1. The necessary conditions for aromaticity are: molecule should be planar, cyclic, have conjugation and follow the Huckel's rule $(4 n+2) \pi e^{-}$where $n=0,1,2 \ldots$
 cyclic conjugation, planar, $4 \pi e^{-}$it is anti aromatic
 cyclic conjugation, planar, $8 \pi e^{-}$it is anti aromatic no cyclic conjugation, non-planar, it is non-aromatic
2. Nitric oxide (NO) and Nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ are emitted from the combination of fossil fuels, along with being naturally emitted from things such as volcanos and forest Fires. When exposed to ultraviolet radiations, NO_{2} goes through a complex series of reaction with hydrocarbons to produce the components of photochemical smog which is a mixture of Ozone, nitric acid, aldehydes, peroxyacylnitrates (PANS) and other secondary pollutants.
3. At $20^{\circ} \mathrm{C}$ (room temperature) and standard atmospheric pressure (sea level), the maximum amount of oxygen that can be dissolved in a fresh water is $9-10 \mathrm{ppm}$.
4. Sugar + water \rightarrow Sugar solution can be separated using crystallization process in which the solution is allowed to cool and water is evaporated, leaving behind the sugar crystals.

Toluene + water \rightarrow The two form an immiscible mixture. The components can be separated using extraction distillation or separting funnel.
Aniline + water \rightarrow Aniline (intramolecular hydrogen bonding) being more volatile than water (intermolecular hydrogen bonding) can easily be separated using steam distillation.
5.

\rightarrow OH group is an electron releasing group. It makes Benzene ring ortho-para directing towards electrophilic substitution reaction.
$\rightarrow \mathrm{SO}_{3} \mathrm{H}$ being a good leaving group, departs in presence of excess of bromine.
6.

- EMBIBE

7.

-
8.

9. Nitrogenous bases are present in nucleic acid (DNA \& RNA)

- DNA contains \rightarrow Adenine, Guanine, Cytosine \& Thymine
-RNA contains \rightarrow Adenine, Guanine, Cytosine \& Uracil
- Adenine \& Guanine are bicyclic compounds \rightarrow No option
- Option (A) is Thymine
- Option (C) is Uracil
- Option (B) \& (D) are not nitrogenous bases of nucleic acid.

10.

11.

- EMBIBE

Norethindrone is used for birth control (contraception) to prevent pregnancy. Norethindrone is also used to treat menstrual disorders, endometriosis, or abnormal vaginal bleeding caused by a hormone imbalance.
Ofloxacin medication is used to treat a variety of bacterial infections. Ofloxacin belongs to a class of drugs called quinolone antibiotics. It works by stopping the growth of bacteria. This antibiotic treats only bacterial infections.

Equanil medication is used in short-term to treat symptoms of anxiety and nervousness. It acts on certain centers of the brain to help calm our nervous system.
12. Sc has the highest tendency to adopt Noble gas configuration among all d-block elements. It has Argon (Ar) as the nearest noble gas, so by loosing $3 e^{-} s$, it attains a noble gas configuration of Ar or $3 s^{2} 3 p^{6}$. Thus, Sc shows mostly +3 oxidation state. It doesn't exhibit +1 oxidation state as $3 d$ orbitals are further inside the atom than 4 s orbitals. Thus, the 4 s orbital loses 2 electrons first followed by the lose of 3d electron giving it a +3 -oxidation state.
13. $K=A e^{-E_{a} / R T} \Rightarrow \ln K=\ln A-\frac{E_{a}}{R T}$

Comparing with $y=c+m x$
$-E a=-y$
Or $E a=y$
(Energy required to start reaction i.e. activation energy)
14. C in CCl_{4} does not have vacant d-orbital. It will undergo partial hydrolysis and form product that will be unstable. While other compounds have vacant d-orbitals, so they're able to undergo hydrolysis.
15. A gemstone is a type of colloid, in which the solid phase is dispersion medium and solid itself is dispersed phase.
16. For an FCC lattice, number of atoms per unit cell $=4$

Edge length $=200 \sqrt{2} p m=200 \sqrt{2} \times 10^{-12}$ meter
$d=\frac{Z M}{N_{A} \times a^{3}}$
$9 \times 10^{3}=\frac{4 \times \frac{M_{0}}{6 \times 10^{23}}}{\left(200 \times \sqrt{2} \times 10^{-12}\right)^{3}}$
$9 \times 10^{3}=\frac{4 \times \frac{M_{0}}{6 \times 10^{23}}}{2^{3} \times 2 \times \sqrt{2} \times 10^{-30}}$
$M_{0}=\frac{9 \times 10^{3} \times 6 \times 10^{23} \times 2^{4} \times \sqrt{2} \times 10^{-30}}{4}$

CEMBIBE

$=9 \times 6 \times 10^{-4} \times 4 \times \sqrt{2}$
$=0.0305 \mathrm{~kg} / \mathrm{mol}$
17. $2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{~N}_{2}+3 \mathrm{H}_{2} \quad K^{\prime}{ }_{p}=\frac{1}{k_{p}}$
$P_{\text {Total }}=P=P_{N_{2}}+P_{H_{2}}+P_{N H_{3}}$
$P_{N_{2}}=\frac{P}{4} ; P_{H_{2}}=\frac{3 P}{4}\left(\because P_{N H_{3}} \ll P_{T}\right.$, its contribution in total pressure can be neglected $)$
$\frac{1}{K_{p}}=\frac{\left(\frac{P}{4}\right)\left(\frac{3 P}{4}\right)^{3}}{\left(P_{N H_{3}}\right)^{2}}$
$\Rightarrow\left(P_{\left(N H_{3}\right)^{2}}\right)^{2}=\frac{p}{4} \times\left(\frac{3 p}{4}\right)^{3} \times K_{p}$
$P_{N H_{3}}=\frac{3^{\frac{3}{2}} P^{2}}{16}\left(K_{p}\right)^{1 / 2}$
18. Saline hydrides, also called ionic hydrides, are the compounds formed between hydrogen and most active metals. For example: $L i H, N a H, K H$ etc. Saline hydrides react violently with water producing H_{2} gas.
$\mathrm{NaH}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \rightarrow \mathrm{NaOH}_{(a q)}+\mathrm{H}_{2}(g)$
19. Be forms amphoteric hydroxide. The amphoteric nature of Aluminium is well known as it can react with both acids and bases to give neutralization reactions. Beryllium shares this nature with Aluminium due to its diagonal relationship.
20. $\quad T_{\mathrm{F}}=\frac{T_{1}+T_{2}}{2}$
$\Delta S_{i}=C_{p} \ln \left(\frac{T_{f}}{T_{1}}\right)$
$\Delta S_{i i}=C_{P} \ln \left(\frac{T_{f}}{T_{2}}\right)$
$\Delta S=\Delta S_{i}+\Delta$
$=C_{P} \ln \left(\frac{T_{f}^{2}}{T_{1} T_{2}}\right)=C_{P} \ln \left[\frac{\left(\frac{T_{1}+T_{2}}{2}\right)^{2}}{T_{1} T_{2}}\right]=C p \ln \left[\frac{\left(T_{1}+T_{2}\right)^{2}}{\left(4 T_{1} T_{2}\right)}\right]$
21. (i) Siderite FeCO_{3}
(ii) Kaolinite $-\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}$
(iii) Malachite $-\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$
(iv) Calamine $-\mathrm{ZnCO}_{3}$

- EMBIBE

22. Trend of atomic radius in periodic table:
\rightarrow On moving across the period $(L \rightarrow R)$: atomic radius decreases generally
\rightarrow On moving down the group $(T \rightarrow B)$: atomic radius increases generally
C being in $2^{\text {nd }}$ period is smallest, while Cs is present in period 6 and thus, the largest. S is smaller than $A l$ as it is placed to the right of $A l$ in period 3.
23. $\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$\frac{1}{\lambda}=10^{7}\left(\frac{1}{(3)^{2}}-\frac{1}{\infty}\right)$
$\lambda=9 \times 10^{-7}$
$\lambda=900 \mathrm{~nm}$
24. Freezing point of milk $=-0.5^{\circ} \mathrm{C} \quad \therefore \Delta T_{f}=0.5^{\circ} \mathrm{C}$

Freezing point of diluted milk $-0.2^{\circ} \mathrm{C} \quad \therefore \quad \Delta T_{f}=0.2^{\circ} \mathrm{C}$
$\frac{\left(\Delta T_{f}\right)_{i}}{\left(\Delta T_{f}\right)_{i i}}=\frac{0.5}{0.2}=\frac{K_{f} m}{k_{f} m}$
Both has same amount of solute. Let that be x mole.
$\frac{0.5}{0.2}=\frac{x \mathrm{~mole} \times W_{2}}{W_{1} \times x \text { mole }}$
$\frac{5}{2}=\frac{W_{2}}{W_{1}}$
$W_{2}=\frac{5}{2} W_{1}, \frac{W_{2}}{W_{1}}=\frac{5}{2}$
$\therefore 5$ cup of solution has 3 cups of water and 2 cups of pure milk.
25. $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Let mass of NaHCO_{3} be $x \mathrm{mg}$
$n=\frac{0.25}{25000}=10^{-5}$
$W=$ moles \times molecular weight $=84 \times 10^{-5} \mathrm{~g}$
$\%=\frac{84 \times 10^{-5}}{10^{-2}} \times 100=8.4 \%$
26. The half cell which has the highest reduction potential per electron will form the cell with maximum value of E°
$E^{\circ}{ }_{\text {red }} /$ electron of $\mathrm{Ag}^{+} / \mathrm{Ag}=0.8$

EMBIBE
$E^{\circ}{ }_{\text {red }} /$ electron of $A u^{3+} / A u=1.4 / 3=0.467$
$E^{\circ}{ }_{\text {red }} /$ electron of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}=0.77$
$E^{\circ}{ }_{r e d} /$ electron for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ is negative hence, can be neglected.
$\therefore E^{\circ}{ }_{\text {red }} /$ electron for $\mathrm{Ag}^{+} / \mathrm{Ag}$ is highest, its cathode will give highest $E_{\text {cell }}^{\circ}$
27. $\Delta G=0$, at equilibrium

For equilibrium, $120-\frac{3}{8} T=0$ or $T=320$
Hence for $T<320, \Delta G$ is positive and more reactants will be pressure. Hence, major component is at $T=315 \mathrm{~K}$
28.

on applying POAC
we get the formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
29.

- EMBIBE

30. All statement except 4 are correct. The calorific values of liquid hydrogen and LPG are 142 kJ and 50 kJ respectively.

Mathematics

1. $\quad{ }^{20} C_{0}{ }^{20} C_{r}+{ }^{20} C_{1}{ }^{20} C_{r-1}+{ }^{20} C_{2}{ }^{20} C_{r-2}+\ldots .+{ }^{20} C_{r}{ }^{20} C_{0}$
$=$ coefficient of x^{r} in

$$
\left({ }^{20} C_{0}+{ }^{20} C_{1} x+{ }^{20} C_{2} x^{2}+\ldots .+{ }^{20} C_{20} x^{20}\right) \times\left({ }^{20} C_{0} x^{20}+{ }^{20} C_{1} x^{19}+\ldots+{ }^{20} C_{19} x+{ }^{20} C_{20}\right)
$$

$=$ coefficient of x^{r} in $(1+x)^{20}(x+1)^{20}$
$=$ coefficient of x^{r} in $(1+x)^{40}$
$={ }^{40} C_{r}$
Which is maximum for $r=20$
2. $\left(-2-\frac{i}{3}\right)^{3}=\frac{-1}{27}(6+i)^{3}$
$=\frac{-1}{27}\left[6^{3}+i^{3}+18 i(6+i)\right]$
$=\frac{-1}{27}[216-i+108 i-18]$
$=\frac{-1}{27}[198+107 i]$
$=\frac{x+i y}{27}$
$\Rightarrow x=-198 \quad y=-107$
$\Rightarrow y-x=91$
3. $\left.\left.I=\int_{-2}^{0} \sin ^{2} \frac{x}{\pi}\right]+\frac{1}{2}\right] ~ \int_{0}^{2} \frac{\sin ^{2} x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$
$=\int_{-2}^{0}-2 \sin ^{2} x d x+\int_{0}^{2} 2 \sin ^{2} x d x$
Put $x=-t$ in first integral
$d x=-d t$
$\therefore \int_{2}^{0} 2 \sin ^{2} t d t+\int_{0}^{2} 2 \sin ^{2} x d x=-\int_{0}^{2} 2 \sin ^{2} x d x+\int_{0}^{2} 2 \sin ^{2} x d x=0$
4. $\quad f_{4}(x)-f_{6}(x)=\frac{1}{4}\left(\sin ^{4} x+\cos ^{4} x\right)-\frac{1}{6}\left(\sin ^{6} x+\cos ^{6} x\right)$
$=\frac{1}{4}\left(1-2 \sin ^{2} x \cdot \cos ^{2} x\right)-\frac{1}{6}\left(1-3 \sin ^{2} x \cos ^{2} x\right)$

e
 EMBIBE

$=\frac{1}{4}-\frac{1}{2} \sin ^{2} x \cdot \cos ^{2} x-\frac{1}{6}+\frac{1}{2} \sin ^{2} x \cdot \cos ^{2} x$
$=\frac{1}{4}-\frac{1}{6}=\frac{3-2}{12}=\frac{1}{12}$

Alternate Method:

Put $x=0$ we get,
$f_{4}(x)-f_{6}(x)=\frac{1}{4}-\frac{1}{6}=\frac{1}{12}$
5. $f(x)=\frac{x}{1+x^{2}}=y$
$x=y+y x^{2}$
$y x^{2}-x+y=0$
For $x \in R, D \geq 0$
$1-4 y^{2} \geq 0$
$y^{2} \leq \frac{1}{4}$
$y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
So the range of $f(x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
6. Let first term of $G P=a$, common ratio $=r,(r \in(-1,0) \cup(0,1)$

Given $\frac{a}{1-r}=3 \quad \ldots(i)$ and $\frac{a^{3}}{1-r^{3}}=\frac{27}{19}$
$\Rightarrow a^{3}=27(1-r)^{3}$
\therefore from (ii)
$\frac{27(1-r)^{3}}{1-r^{3}}=\frac{27}{19}$
$\Rightarrow 19(1-r)^{3}=(1-r)\left(1+r+r^{2}\right)$
$\Rightarrow 19(1-r)^{2}=1+r+r^{2}(r \neq 1)$
$\Rightarrow 19\left(1-2 r+r^{2}\right)=1+r+r^{2}$
$\Rightarrow 19-38 r+19 r^{2}=1+r+r^{2}$
$\Rightarrow 18 r^{2}-39 r+18=0$
$\Rightarrow 6 r^{2}-13 r+6=0$
$\Rightarrow 6 r^{2}-9 r-4 r+6=0$
$\Rightarrow 3 r(2 r-3)-2(2 r-3)=0$
$\Rightarrow(2 r-3)(3 r-2)=0$
$\Rightarrow r=\frac{3}{2}, \frac{2}{3}$ (but $r \neq \frac{3}{2}$)

e EMBIBE

So only possible common ratio $=\frac{2}{3}$
7. Roots are α, α^{3}
$\therefore \alpha \times \alpha^{3}=\frac{256}{81}=\left(\frac{4}{3}\right)^{4}$
$\because \alpha=\frac{4}{3}$ or $\frac{-4}{3}$
$\therefore \alpha+\alpha^{3}=-\frac{k}{81}$
$\Rightarrow \frac{4}{3}+\frac{64}{27}=\frac{-k}{81}$ or $\frac{-4}{3}-\frac{64}{27}=\frac{-k}{81}$
$\Rightarrow \frac{100}{27}=\frac{-k}{81}$ or $\frac{-100}{27}=\frac{-k}{81}$
$\Rightarrow k=300$ or -300
8. Given circles intersect at $A(0,1)$ and $B(0,-1)$, hence length of common chord $A B=$ 2. Also, this common chord bisects the line joining centres of two circles
$\Rightarrow C_{1} D=C_{2} D$

Since $\angle C_{1} A C_{2}=90^{\circ} \Rightarrow \angle C_{1} A D=45^{\circ}$
Also $A C_{1}=A C_{2} \Rightarrow \angle A C_{1} C_{2}=\angle A C_{2} C_{1}=45^{\circ}$
$\Rightarrow C_{1} D=A D=1$
$\Rightarrow C_{1} C_{2}=2$
9. Let common ratio $=r$
$\therefore \frac{a_{3}}{a_{1}}=\frac{a_{1} r^{2}}{a_{1}}=25$
$\Rightarrow r^{2}=25=5^{2}$
Now, $\frac{a_{9}}{a_{5}}=\frac{a_{1} r^{8}}{a_{1} r^{4}}=r^{4}=5^{4}$
10. In the given integral $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x$, if we put $x=\sin \theta$,
we get $\int \frac{\sqrt{1-x^{2}}}{x^{4}} d x=\int \frac{\cos \theta \cos \theta}{\sin ^{4} \theta} d \theta(d x=\cos \theta d \theta)$
Indiavidual Learning Pvt. Ltd. I www.embibe.com

-
 EMBIBE

$=\int \cot ^{2} \theta \cdot \operatorname{cosec}^{2} \theta d \theta$
Put $\cot \theta=t$, we get $-\operatorname{cosec}^{2} \theta d \theta=d t$
$=-\int t^{2} d t=\frac{-t^{3}}{3}+c$
$=-\frac{(\cot \theta)^{3}}{3} \quad\left(\sin \theta=x \Rightarrow \cot \theta=\frac{\sqrt{1-x^{2}}}{x}\right)$
$=-\frac{1}{3 x^{3}} \cdot\left(1-x^{2}\right)^{\frac{3}{2}}+\mathrm{c}$
Comparing, we get $A(x)=-\frac{1}{3 x^{3}}$ and $m=3$
$\Rightarrow(A(x))^{m}=\left(-\frac{1}{3 x^{3}}\right)^{3}=-\frac{1}{27 x^{9}}$.
11. Equation of tangent to $y^{2}=4 x$ is
$y=m x+\frac{1}{m}$
\because equation (i) is tangent to $x y=2$
$\Rightarrow x\left(m x+\frac{1}{m}\right)=2$
$\Rightarrow m x^{2}+\frac{x}{m}=2$
$\Rightarrow m^{2} x^{2}+x-2 m=0$
Now discriminant has to be zero
$\therefore D=(1)^{2}-4 m^{2} \times(-2 m)=0$
$\Rightarrow 1+8 m^{3}=0$
$\Rightarrow m^{3}=-\frac{1}{8}$
$\Rightarrow m=-\frac{1}{2}$
\therefore equation of tangent is
$y=-\frac{1}{2} x-2$
$\Rightarrow x+2 y+4=0$
12. Given ellipse $\frac{x^{2}}{2}+y^{2}=1$ Let $P(\theta)$ be $(\sqrt{2} \cos \theta, \sin \theta)$

A general tangent on the given ellipse can be written as $\frac{x}{\sqrt{2}} \cos \theta+y \sin \theta=1$

- EMBIBE

It will intersect the coordinate axes at $A=(\sqrt{2} \sec \theta, 0)$ and $B=(0, \operatorname{cosec} \theta)$
Let the midpoint of $A B$ be $M(h, k)$ then
$h=\frac{\sqrt{2} \sec \theta}{2}, k=\frac{\operatorname{cosec} \theta}{2}$
$\Rightarrow\left(\frac{1}{\sqrt{2} h}\right)^{2}+\left(\frac{1}{2 k}\right)^{2}=1\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
\Rightarrow the required locus is $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$
13. Centre of the given circle is $0(3,-4)$ and radius is $8 \sqrt{2}$

Since sides of the squares are parallel to coordinate axes, slope of diagonals will be 1 or -1 .

For vertex A and C, parametric equation of $A C$, through the point O is
$\frac{x-3}{\frac{1}{\sqrt{2}}}=\frac{y+4}{\frac{1}{\sqrt{2}}}=r$ put $r=8 \sqrt{2}$ and $-8 \sqrt{2}$
$A(-5,-12)$
$C(11,4)$
Similarly, $B(11,-12), D(-5,4)$ using $\frac{x-3}{\frac{-1}{\sqrt{2}}}=\frac{y+4}{\frac{1}{\sqrt{2}}}=8 \sqrt{2}$ or $-8 \sqrt{2}$
For minimum distance, we will consider vertex $D(-5,4)$.
Hence minimum distance $=\sqrt{25+16}=\sqrt{41}$.
14. $L H L=\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+\left\{|x|-\sin (x[x])^{2}\right\}}{x^{2}}$
$=\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+\{-x-\sin (-x)\}}{x^{2}}$
$=\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)+\sin x-x}{x^{2}}$
$=\lim _{x \rightarrow 0^{-}} \frac{\tan \left(\pi \sin ^{2} x\right)}{x^{2}\left(\pi \sin ^{2} x\right)} \times\left(\pi \sin ^{2} x\right)+\lim _{x \rightarrow 0^{-}} \frac{\sin x-x}{x^{2}}$
$=1 . \pi .1+\lim _{x \rightarrow 0^{-}} \frac{\cos x-1}{2 x}$
$=\pi+\lim _{x \rightarrow 0^{-}} \frac{-\sin x}{2}$
$=\pi+0=\pi$

-
 EMBIBE

$R H L=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+\{|x|-\sin (x[x])\}}{x^{2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+\{x-\sin (x .0)\}}{x^{2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\tan \left(\pi \sin ^{2} x\right)+x}{x^{2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{\sec ^{2}\left(\pi \sin ^{2} x\right)(\pi \sin 2 x)+1}{2 x}$
$\rightarrow \infty$
\Rightarrow Hence limit does not exist
15. Mean $\bar{x}=\frac{\sum f_{i} x_{i}}{N}$
$=\frac{10\left(\frac{1}{2}-d\right)+10\left(\frac{1}{2}\right)+10\left(\frac{1}{2}+d\right)}{30}$
$=\frac{1}{2}$
Variance of $\left(\sigma^{2}\right)=\frac{1}{N} \sum f_{i}\left(x_{i}-\bar{x}\right)^{2}$
$=\frac{1}{30}\left[10\left[\left(\frac{1}{2}-d\right)-\frac{1}{2}\right]^{2}+10\left(\frac{1}{2}-\frac{1}{2}\right)^{2}+10\left[\left(\frac{1}{2}+d\right)-\frac{1}{2}\right]^{2}\right]$
$=\frac{20}{30} d^{2}=\frac{4}{3}$ (given)
$\Rightarrow d^{2}=2 \Rightarrow|d|=\sqrt{2}$
16. The middle term in the expansion $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$
$=T_{\frac{8}{2}+1}=T_{5}={ }^{8} C_{4}\left(\frac{x^{3}}{3}\right)^{4} \cdot\left(\frac{3}{x}\right)^{4}$
$={ }^{8} C_{4} \cdot x^{8}$
$=70 x^{8}=5670$ (given)
$\Rightarrow x^{8}=\frac{5670}{70}=81$
$\Rightarrow x^{8}-81=0 \Rightarrow x^{8}=(\sqrt{3})^{8} \Rightarrow x= \pm \sqrt{3}$ (Rest all values are not real)
\Rightarrow Sum $=\sqrt{3}-\sqrt{3}$
$=0$
17. The given set $\{1,2,3, \ldots, 11\}$ has

Odd numbers $=1,3, \ldots, 11: 6$ numbers
Even numbers $=2,4,6, \ldots, 10: 5$ numbers

EMBIBE
Now for their sum to be even, both must be even or both must be odd.
$P\left(\frac{\text { both even }}{\text { sum is even }}\right)=\frac{n(\text { both even })}{n(\text { both even })+n(\text { both odd })}$
$=\frac{{ }^{5} C_{2}}{{ }^{5} C_{2}+{ }^{6} C_{2}}=\frac{10}{10+15}=\frac{10}{25}=\frac{2}{5}$
18.

Shaded portion is required Area.
$\left.\begin{array}{c}x^{2}=4 y \\ x=4 y-2\end{array}\right\} \Rightarrow x^{2}=x+2$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow x=\frac{1 \pm \sqrt{1+8}}{2}=2$ or -1
Area $=\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x$
$=\left[\frac{x^{2}}{8}+\frac{x}{2}-\frac{x^{3}}{12}\right]_{-1}^{2}$
$=\frac{(2)^{2}-(-1)^{2}}{8}+\frac{(2)-(-1)}{2}-\frac{(2)^{3}-(-1)^{3}}{12}$
$=\frac{9}{8}$
19.

Equation of circle is $(x-0)(x-1)+\left(y-\frac{1}{2}\right)(y-0)=0$
$\Rightarrow x^{2}+y^{2}-x-\frac{y}{2}=0$
Equation of tangent to circle at $(0,0)$ is $2 x+y=0$ \qquad .(i)

- EMBIBE

distance of $(1,0)$ from (i) is $\frac{2}{\sqrt{5}}$
distance of $\left(0, \frac{1}{2}\right)$ from (i) is $\frac{1}{2 \sqrt{5}}$
\Rightarrow required sum $=\frac{2}{\sqrt{5}}+\frac{1}{2 \sqrt{5}}=\frac{5}{2 \sqrt{5}}=\frac{\sqrt{5}}{2}$
20. $(p \wedge q) \leftrightarrow r$ is true

Case-I $p \wedge q$ is true and r is true
It is not possible as q is false
Case-II $p \wedge q$ is false and r is false
$\Rightarrow p=T$ or $F, q=F, r=F$
Hence, $p \vee r$, may be true or false
$p \wedge r$, is always false
$(p \wedge r) \rightarrow(p \vee r)$ is $(F) \rightarrow(T$ or $F)$ which is always true
$(p \vee r) \rightarrow(p \wedge r)$ is $(T$ or $F) \rightarrow(F)$ which may be T or F
21. Differentiate w.r.t. x
$\frac{x}{\log _{e} x} \times \frac{1}{x}+\log _{e}\left(\log _{e} x\right)-2 x+2 y y^{\prime}=0$
$\Rightarrow \frac{1}{\log _{e} x}+\log _{e}\left(\log _{e} x\right)+2 y y^{\prime}=2 x$
When $x=e$ the original curve gives $0-e^{2}+y^{2}=4$
$\Rightarrow y= \pm \sqrt{4+e^{2}}$
so (i) becomes $1+0+2 y y^{\prime}=2 e$
$y^{\prime}=\frac{2 e-1}{2 y}= \pm \frac{2 e-1}{2 \sqrt{4+e^{2}}}$
22. $\quad A A^{T}=I \Rightarrow\left[\begin{array}{ccc}0 & 2 q & r \\ p & q & -r \\ p & -q & r\end{array}\right]\left[\begin{array}{ccc}0 & p & p \\ 2 q & q & -q \\ r & -r & r\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc}4 q^{2}+r^{2} & 2 q^{2}-r^{2} & -2 q^{2}+r^{2} \\ 2 q^{2}-r^{2} & p^{2}+q^{2}+r^{2} & p^{2}-q^{2}-r^{2} \\ -2 q^{2}+r^{2} & p^{2}-q^{2}-r^{2} & p^{2}+q^{2}+r^{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=p^{2}+q^{2}+r^{2}=4 q^{2}+r^{2}=1$ and $2 q^{2}-r^{2}=0, p^{2}-q^{2}-r^{2}=0$
Now $r^{2}=2 q^{2}$ and $r^{2}+4 q^{2}=1 \Rightarrow q^{2}=\frac{1}{6}, r^{2}=\frac{1}{3}$

-
 EMB|BE

Hence $p^{2}=\frac{1}{2} \Rightarrow|p|=\frac{1}{\sqrt{2}}$
23. Let a, b, c be the three sides, given
$a+b=x, a b=y,(a+b)^{2}-c^{2}=a b$
here $\frac{a^{2}+b^{2}-c^{2}}{2 a b}=-\frac{1}{2} \Rightarrow \cos C=-\frac{1}{2}$
$\frac{c}{\sin C}=2 R \Rightarrow \frac{2 c}{\sqrt{3}}=2 R \Rightarrow R=\frac{c}{\sqrt{3}}$
24. $\frac{d y}{d x}+\left(2+\frac{1}{x}\right) y=e^{-2 x}$
I.F. $=e^{\int\left(2+\frac{1}{x}\right) d x}=e^{2 x+\ln (x)}=x e^{2 x}$

Solution is $y\left(x e^{2 x}\right)=\frac{x^{2}}{2}+C$, since $y(1)=\frac{1}{2 e^{2}}$
Hence, $\frac{1}{2 e^{2}} \times 1 \times e^{2}=\frac{1}{2}+C \Rightarrow C=0$
hence $y=\frac{x e^{-2 x}}{2}$
$\frac{d y}{d x}=\frac{e^{-2 x}}{2}+\frac{x e^{-2 x}(-2)}{2}=e^{-2 x}\left[\frac{1}{2}-x\right]<0 \Rightarrow x>\frac{1}{2}$
Hence $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
25. $y=f(x)$

$y=|f(x)|$

$y=f(|x|)$

- EMBIBE

$y=g(x)$

Hence $g(x)$ has one non - differentiable point, $x=1$
26. $\vec{a}=\hat{\imath}+2 \hat{\jmath}+4 \hat{k}$
$\vec{b}=\hat{\imath}+\lambda \hat{\jmath}+4 \hat{k}$
$\vec{c}=2 \hat{\imath}+4 \hat{\jmath}+\left(\lambda^{2}-1\right) \hat{k}$
$[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}1 & 2 & 4 \\ 1 & \lambda & 4 \\ 2 & 4 & \lambda^{2}-1\end{array}\right|=\lambda\left(\lambda^{2}-1\right)-16-2\left(\lambda^{2}-9\right)+4(4-2 \lambda)$
$=\lambda^{3}-2 \lambda^{2}-9 \lambda+18=\lambda\left(\lambda^{2}-9\right)-2\left(\lambda^{2}-9\right)$
$[\vec{a} \vec{b} \vec{c}] \Rightarrow(\lambda-3)(\lambda+3)(\lambda-2)$
for $\lambda= \pm 3, \vec{c}=2 \vec{a} \Rightarrow \vec{a} \times \vec{c}=\overrightarrow{0}$
Hence, for $\lambda=2$
$\vec{a} \times \vec{c}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 4 \\ 2 & 4 & 3\end{array}\right|=-10 \hat{\imath}+5 \hat{\jmath}$
27. Equation of line passing through $(0,-1,0) \&(0,0,1)$ is $\frac{x-0}{0}=\frac{y+1}{1}=\frac{z-0}{1}=\lambda$

Let the plane be $(z-y-1)+a x=0$
Now $\left|\frac{\bar{n}_{1} \cdot \bar{n}_{2}}{\left|n_{1}\right|\left|n_{2}\right|}\right|=\cos \frac{\pi}{4}$
$\left|\frac{-1-1}{\sqrt{2} \sqrt{a^{2}+2}}\right|=\frac{1}{\sqrt{2}}$
$2=\sqrt{a^{2}+2} \Rightarrow a^{2}+2=4 \Rightarrow a= \pm \sqrt{2}$
So direction ratios: $(\sqrt{2},-1,1)$ or $(-\sqrt{2},-1,1)$
Direction ratio $(-\sqrt{2},-1,1)$ can be written as $(\sqrt{2}, 1,-1)$

e
 EMBIBE

28. System of equations have more than one solutions
$2 x+2 y+3 z=a$
$3 x-y+5 z=b$
$x-3 y+2 z=c$
$D=D_{1}=D_{2}=D_{3}=0$
$D=\left|\begin{array}{ccc}2 & 2 & 3 \\ 3 & -1 & 5 \\ 1 & -3 & 2\end{array}\right|=26-2-24=0$
$D_{1}=\left|\begin{array}{ccc}a & 2 & 3 \\ b & -1 & 5 \\ c & -3 & 2\end{array}\right|=0 \Rightarrow a(-2+15)-b(4+9)+c(10+3)=0$
$\Rightarrow 13 a-13 b+13 c=0$
$\Rightarrow a-b+c=0$
$D_{2}=\left|\begin{array}{lll}2 & a & 3 \\ 3 & b & 5 \\ 1 & c & 2\end{array}\right|=0 \Rightarrow-a(6-5)+b(4-3)-c(10-9)=0$
$\Rightarrow-a+b-c=0$
$\Rightarrow a-b+c=0$
$D_{3}=\left|\begin{array}{ccc}2 & 2 & a \\ 3 & -1 & b \\ 1 & -3 & c\end{array}\right|=0 \Rightarrow a(-9+1)-b(-6-2)+c(-2-6)=0$
$\Rightarrow a-b+c=0$
Hence the required condition is $b-c-a=0$
29. $f(x)=3 x^{3}-18 x^{2}+27 x-40$
$x^{2}-11 x+30 \leq 0 \Rightarrow x \in[5,6]$
$f^{\prime}(x)=9 x^{2}-36 x+27=9\left(x^{2}-4 x+3\right)=9(x-1)(x-3)$
for $x \in[5,6] f(x)$ is increasing function
hence maximum value in this interval occurs at $x=6$
so $f(6)=648-648+162-40=122$
30. Direction vector of normal to the required plane is $\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 3 \\ 2 & 3 & -1\end{array}\right|=-8 \hat{\imath}+8 \hat{\jmath}+8 \hat{k}$

Hence, direction ratio of required plane is $\langle-1,1,1\rangle$
Hence, equation of plane is
$-(x-3)+(y+2)+(z-1)=0$

T:+917666597555 | www.embibe.com
$\Rightarrow x-y-z=4$
Hence, point $(2,0,-2)$ satisfy this plane.

