MODEL TEST PAPER-IV

Time: 3 hours

Maximum Marks: 100

General Instructions:

(i) All questions are compulsory.
(ii) This questions paper contains 29 questions.
(iii) Questions nos. 1-4 in section A are very short answer type questions carrying 1 mark each
(iv) Question nos. 5-12 in section B are short answer type questions carrying 2 marks each
(v) Questions non. $13-23$ in section C are long answer-l type questions carrying 4 marks each
(vi) Question 24-29 in section D are long answer -ll type questions carrying 6 marks each.

SECTION A

1. Write the domain and range of the real function $f(x)=-|x|$.
2. What is the real value of a for which
$3 i^{3}-2 a i^{2}+(1-a) i+5$
is real
3. Write the intercepts of line $2 x-3 y=7$ on coordinate axes. 4.

Write the converse of the following statements
'I go to a beach whenever it is a sunny day'.

SECTION B

5. Draw the Venn diagram to illustrate 'All the students who study Mathematics study English but some students who study English do not study Mathematics'. If E is the set of students studying English in a school, M is the set of students studying Mathematics in the same school, U is the set of all students in that school.
6. Prove that

$$
(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2}\left(\frac{x-y}{2}\right)
$$

7. If $\mathrm{x}+\mathrm{iy}=\frac{\left(a^{2}+1\right)^{2}}{2 a-i}$, what is the value of $\mathrm{x}^{2}+\mathrm{y}^{2}$?
8. Find the sum of all two digit numbers which when divided by 4, yield 1 as remainder.
9. If $|x|<1$ and $y=x+x^{2}+x^{3}+\ldots . . \infty$ show that:

$$
\mathrm{X}=\frac{y}{1+y}
$$

10. $\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x}$ when $\mathrm{a}, \mathrm{b}, \mathrm{a}+\mathrm{b} \neq 0$.
11.(i) Write the contra positive of the following conditional statements:
'If my grandmother had wheels, then she would be a bus'.
(iii) Write the negation of the following statements :
'Australia is a continent'.'
11. Find the probability of having exactly one girl in a family of three children.
12. Let $A=\{1,2,4,5\}, B=\{2,3,5,6\}, C=\{4,5,6,7\}$ Verify the identity :
$A \cap(B-C)=(A \cap B)-(A \cap C)$
13. If $2 f(x)-3 f\binom{1}{x}=\mathrm{x}^{2}, \mathrm{x} \neq 0$,, then find $\mathrm{f}(2)$.
14. If $\tan \mathrm{x}=\frac{3}{4}, \pi<x<\frac{3 \pi}{2}$, find the value of :
$\sin _{2}^{x}, \cos { }_{2}^{x}$ and $\tan \frac{x}{2}$
15. Prove the following by using the principle of mathematical induction for all $n \in N$.
$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots . .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$
16. Find the square root of $16-30 \mathrm{i}$.
17. Solve the following linear inequalities graphically :
$3 x+4 y \leq 60$
$x+3 y \leq 30$
$x \geq 0, y \geq 0$.
18. A line is such that its segment between the lines
$5 x-y+4=0$ and $3 x+4 y-4=0$
is bisected at the point $(1,5)$. Obtain its equation.

OR

Find the image of the point $(3,8)$ with respect to the line $x+3 y=$ 7 assuming the line to be a plane mirror.
20. Find the equation of the ellipse having axes along the coordinate axes and passing through the points $(4,3)$ and $(-1,4)$.
21. Determine the values of a and b so that the points $(a, b, 3)$, $(2$, $0,-1)$ and $(1,-1,-3)$ are collinear.
22. Find the derivative of $\frac{x \sin x}{1+\cos x}$ with respect to x . OR

Find the derivative of $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ with respect to x.
23. The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1 . If the probability of passing the English examination is 0.75 . What is the probability of passing Hindi examination?

SECTION C

24. Out of 100 students; 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English and Mathematics, 7 in Mathematics and Science, 4 in English and Science, 4 in all the three. Find how many passed :
(i) In English and Mathematics but not in Science?
(ii) in more than one subject only?
25. Prove that :
$\operatorname{Cos}^{3} A+\cos ^{3}\left(120^{\circ}+A\right)+\cos ^{3}\left(240^{\circ}+A\right)=\frac{3}{4} \cos 3 A$.
OR
If $x \cos \theta=y \cos \left(\theta+\frac{2 \pi}{3}\right)=z \cos \left(\theta+\frac{4 \pi}{3}\right)$ prove that :
$x y+y z+z x=0$.
26. A committee of 10 is to be formed from 8 gentlemen and 8 ladies. In how many ways this can be done if at least five ladies have to be included? In how many of these committees :
(i) The ladies are in majority?
(ii) The gentlemen are in majority?
27. The second, third and fourth terms in the binomial expansion (x $+a)^{\mathrm{n}}$ are 240, 720 and 1080 respectively. Find x , a and n .

OR

Show that the middle terms in the expansion of $\left(x^{2}+\frac{1}{x^{2}}+2\right)^{n}$ is $\frac{\text { 1.3.5. } 2 n-1)}{n!} 2^{n}$
28. If a and b are the roots of $x^{2}-3 x+p=0$ and c, d are roots of x^{2} $-12 x+q=0$ where a, b, c, d form a G.P. Prove that :
$(q+p):(q-p)=17: 15$.
OR
Let S be the sum, P the product and R the sum of reciprocals of n terms is a G.P. Prove that :

$$
\mathrm{P}=\left(\frac{S}{R}\right)^{n}
$$

29. Calculate mean deviation about median for the following data :
Class $\quad 0-10 \quad 10-20 \quad 20-30 \quad 30-40 \quad 40-50 \quad 50-60$

| Frequency | 6 | 7 | 15 | 16 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

