

QUESTION PAPER

Mathematics

- In an experiment a die is thrown at random. An event is said to be completed is two consecutive 'u' occurs. Then the probability that the event will be completed in 5th throw is
 - (A) $\frac{150}{65}$
 - (B) $\frac{175}{65}$
 - (C) $\frac{200}{65}$
 - (D) $\frac{125}{65}$
- 2. If sum of deviation of 50 observations from 30 is 50. Then mean of the observations is
 - (A) 30
 - (B) 31
 - (C) 32
 - (D) 33
- 3. The integration $\int \cos(\log_e^x) dx$ is equal to
 - (A) $\frac{x}{2} \left(\cos(\log_e^x) + \sin(\log_e^x) \right) + C$
 - (B) $\frac{x}{2} \left(\cos(\log_e^x) \sin(\log_e^x) \right) + C$
 - (C) $\frac{x}{2} \left(\sin(\log_e^x) \cos(\log_e^x) \right) + C$
 - (D) None of these

4. If $S_K = \frac{1+2+3+\cdots+K}{K}$, then the value of A if $S_1^2 + S_2^2 + \cdots + S_{10}^2 = \frac{5}{12}A$

- (A) 297
- (B) 300
- (C) 303
- (D) 306

- 5. $\lim_{x \to \frac{\pi}{4}} \frac{\cot^3 x \tan x}{\cos\left(x + \frac{\pi}{4}\right)}$ is equal to (A) $4\sqrt{2}$ (B) $8\sqrt{2}$
 - (C) 8
 - (0) 0
 - (D) 4

6. If f(x) = f(a - x) and g(x) + g(a - x) = 4, then the value of $\int_0^a f(x)g(x)dx$ is

- (A) $2 \int_{0}^{a} f(x) dx$ (B) $4 \int_{0}^{a} f(x) dx$
- (C) $-3\int_0^a f(x)dx$
- (D) $\int_0^a f(x) dx$
- 7. If the vectors $\mu \hat{i} + \hat{j} + \hat{k}$, $\hat{i} + \mu \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \mu \hat{k}$ are coplanar, then μ equals to (A) 1
 - (B) 0
 - (C) 2
 - (D) -1

8. If $R = \langle x: x > 0 \& \tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4} \rangle$ then the number of elements *R* has

- (A) Infinite elements
- (B) Two elements
- (C) Three elements
- (D) One element

9. If $x \frac{dy}{dx} + y = x \ln x (x > 1)$ and $2y(2) = \ln - 1$, then y(e) equal to (A) $\frac{e}{4}$ (B) $\frac{-e}{4}$ (C) $\frac{e^2}{2}$ (D) $-\frac{e^2}{4}$

 $\frac{17}{2}$

- 10. The area bounded by the region between curves $y = x^2 + 2$, x = 0, x = 3, y = x + 1 is
 - (A) $\frac{15}{2}$
 - (B) $\frac{15}{4}$
 - (C) 5
 - (D)
- 11. If $\left(2^{1/3} + \frac{1}{2} \cdot \frac{1}{(3)^{1/3}}\right)^{10}$ then ratio of 5th term from start to 5th term from last is (A) 4. $(36)^{\frac{1}{3}}$ (B) 2. $(16)^{\frac{4}{3}}$
 - (C) $2.2^{\frac{4}{3}}$
 - (D) $2.2^{\frac{1}{3}}$
- 12. If $f(x) = \min\{\sin x, \cos x\}$ in $x \in (-\pi, \pi)$. The point at which f(x) is non-differentiable is a set

(A)
$$\left\{-\frac{\pi}{4}, 0, \frac{\pi}{4}\right\}$$

(B) $\left\{-\frac{3\pi}{4}, \frac{-\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}\right\}$
(C) $\left\{-\frac{3\pi}{4}, \frac{\pi}{4}, \frac{-\pi}{4}, \frac{3\pi}{4}\right\}$
(D) $\left\{-\frac{3\pi}{4}, \frac{\pi}{4}\right\}$

- 13. Two circles $x^2 + y^2 2x 2y 2 = 0$ and $x^2 + y^2 6x 6y + 14 = 0$ are C_1 and C_2 respectively, then area of quadrilateral $PC_1 QC_2$ is
 - (A) 8
 - (B) 2
 - (C) 4√2
 - (D) 4

14. $((p \lor \neg q) \land (\neg p \land q)) \lor (\neg p \land \neg q)$ is logically equivalent is

(A) $p \land \neg q$ (B) $\neg p \land \neg q$ (C) $\neg p \land q$ (D) $p \land q$ C EMBIBE 15. $P = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1 \end{bmatrix}, Q - P^5 = I_3$, where I_3 is 3×3 identity matrix and $Q = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix},$ then the ratio $\frac{q_{21}+q_{31}}{q_{32}}$ equal to (A) 28 (B) 10 (C) 9

- (D) 6
- 16. If $S = \{1, 2, ..., 100\}$, then number of subsets so that the product of all elements is even, is
 - (A) 2¹⁰⁰
 - (B) $2^{50}(2^{50}-1)$
 - (C) $2^{100} 1$
 - (D) 2⁵⁰ 1
- 17. A hyperbola whose vertices are (-2, 0) and (2, 0) and focus (-3, 0) then equation of hyperbola is

(A)
$$\frac{x^2}{25} - \frac{y^2}{16} = 1$$

(B) $\frac{x^2}{16} - \frac{y^2}{25} = 1$
(C) $\frac{x^2}{4} - \frac{y^2}{5} = 1$
(D) $\frac{x^2}{5} - \frac{y^2}{5} = 1$

- 18. If $\frac{z-\alpha}{z+\alpha}$ is purely imaginary and |z| = 82 then α is $(\alpha \in R)$
 - (A) 2
 - (B) 4
 - (C) 3
 - (D) 1

19. If $f(\theta) = 3\cos\theta + 5\sin\left(\theta - \frac{\pi}{6}\right)$ then maximum value of $f(\theta)$ is

- (A) $\sqrt{19}$
- (B) $\sqrt{34}$
- (C) $\sqrt{26}$
- (D) $\frac{\sqrt{72}}{\sqrt{7}}$

- Ratio of roots of equation $3m^2x^2 + m(m-2) + 6 = 0$ is λ , then minimum value of λ + 20. $\frac{1}{\lambda}$ is equal to
 - (A) −1
 - (B) 2
 - (C) 3
 - (D) -2

If $(2x)^{2y} = 4e^{2x-2y}$, then $\frac{dy}{dx}(1 + (\ln 2x)^2)$ is equal to 21.

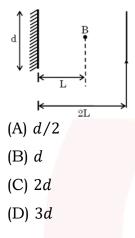
- (A) $ln 2x \frac{ln 2}{x}$ (B) $\frac{2 \ln x \ln 2}{x}$
- (C) ln 2x
- (D) None

22. Three numbers are in G.P., their product is 512. If we add 4 to first & second number, then they are in an A.P. then the sum of original 3 numbers is

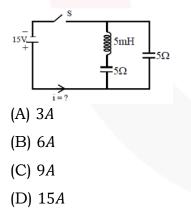
- (A) 28
- (B) 24
- (C) 32
- (D) 20
- 3 boxes 1, 2, 3 each contained 10 balls, labeled 1, 2, 10. Let n_i be label on the ball 23. drawn from box i(i = 1, 2, 3,) then number of ways $n_1 < n_2 < n_3$ is
 - (A) 120
 - (B) 130
 - (C) 122
 - (D) 136

 $(1 + \alpha)x + \beta y + z = 2, \alpha x + (1 + \beta)y + z = 3$ and $\alpha x + \beta y + 2z = 2$ has unique solution 24. (α, β) is (A) (-2, 16)

- (B) (2,−4)
- (C) (-8,6)
- (D) (-2,0)



- 25. Let $y = 12 x^2$. A rectangle in inscribed is parabola whose base lie on x- axis then maximum area of rectangle is
 - (A) 32
 - (B) 28
 - (C) 24
 - (D) 12
- 26. Let $y^2 = 4x$, point P(4, -4), Q(9, 6) & vertex O. A point X is lie between arc POQ. Then maximum area of ΔPQX . Then maximum area of ΔPQX (A) $\frac{125}{4}$
 - (--) 4
 - (B) $\frac{125}{2}$
 - (C) $\frac{135}{4}$
 - (D) $\frac{135}{2}$
- 27. If line perpendicular to line $2x 3y + \lambda = 0$ pass through (7,15) & (15, β) then β is equal to
 - (A) 3
 - (B) 2
 - (C) 1
 - (D) -3
- 28. If two circles one with centre (1,1) and radius 1 and other circle with centre (9,1) and radius 2, lies opposite side of straight line $3x + 4y = \lambda$. The set of values of λ is (A) [12, 21]
 - (B) [13,22]
 - (C) [10, 18]
 - (D) [15, 24]
- 29. A tetrahedron has vertices at O(0,0,0), A(1,2,1), B(2,1,3) and C(-1,1,2). The angle between the faces *OAB* and *ABC* is


(A)
$$\cos^{-1}\left(\frac{19}{35}\right)$$

(B) $\sin^{-1}\left(\frac{19}{35}\right)$
(C) $\cos^{-1}\left(\frac{17}{35}\right)$
(D) $\sin^{-1}\left(\frac{14}{35}\right)$

1. A point source of light *B* is placed at a distance *L* in front of the centre of a mirror of width *d* hung vertically on a wall. A man walks in front of the mirror along *a* line parallel to the mirror at a distance 2L from it as shown. The greatest distance over which he can see the image of the light source in the mirror is

2. Find the current *i* in the circuit after closing the switch for long time.

3. Three changes +q, +q + -2q are arranged on equilateral triangle of side ℓ , as shower in figure. What is the dipole moment of the system

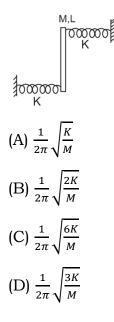
$$Y = \frac{-2q}{(A) - \sqrt{3}q\ell \hat{j}}$$

$$(A) - \sqrt{3}q\ell \hat{j}$$

$$(B) + \sqrt{3}q\ell \hat{i}$$

$$(C) - \sqrt{3}q\ell \hat{i}$$

$$(D) + \sqrt{3}q\ell \hat{j}$$


- 4. A particle of mass 0.03 kg dropped from a tower of height 100 m. Simultaneously a bullets of mass 0.02 kg is thrown up with speed 100 m/s upwards. The bullets gets embedded into the particle. Calculate the maximum height covered by the particle after the collision from top most level of building
 - (A) 40 m

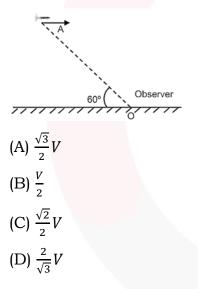
embibe

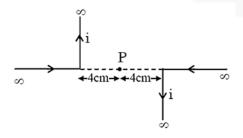
- (B) 100 m
- (C) 90 m
- (D) 60 m
- 5. A non-uniform rod of length ℓ having mass density $\lambda(x) = (A + Bx^2)$ is placed on x-axis with its ends at (a, 0) and $(a + \ell, 0)$. The force it would exert on a point mass '*m*' kept at the origin is

(A)
$$Gm\left[A\left(\frac{\ell}{a(a+\ell)}\right) + B\ell\right]$$

(B) $Gm\left[A\left(\frac{\ell}{a(a-\ell)}\right) - B\ell\right]$
(C) $Gm\left[A\left(\frac{\ell}{a(a+\ell)}\right) + B\ell\right]$
(D) $Gm\left[A\left(\frac{\ell}{a(a+\ell)}\right) - B\ell\right]$

A rod of length ℓ, mass m are connected to two springs of spring constant K each.
 Find the frequency of small oscillation



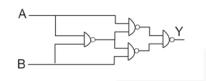

7. Two bulb A(25W, 220V) and B(100W, 220V) are connected in series. If power consumed by bulb A is P_1 and that of bulb B is P_2 then,

(A)
$$P_A: P_B$$
 is $\frac{1}{4}$
(B) $P_A: P_B$ is $\frac{9}{16}$
(C) $P_A: P_B$ is 4
(D) $P_A: P_B$ is 9

8. Aeroplane is coming from north at some height from ground when aeroplane is just above the person; person hears the second coming from north making angle 60° with horizontal. Find speed of aeroplane

9. If magnetic field at point *P* is 10^{-4} Tesla. Determine current '*i*'?

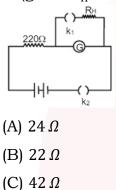
- (A) 20 Amp.
- (B) 40 Amp.
- (C) 30 Amp.
- (D) 60 Amp.

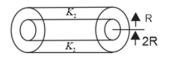

10. A proton and α particle are accelerated through same potential difference and ether in transverse magnetic field. If ratio of masses of 2 particle $\frac{m_p}{m_x} = \frac{1}{4}$ and ratio of

their charge $\frac{q_p}{q_{\alpha}} = \frac{1}{2}$. Find the ratio of radius of their circular path is magnetic field

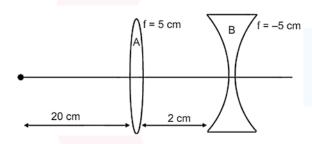
(A) $\frac{1}{\sqrt{2}}$

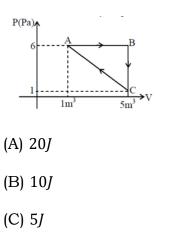
EMBIBE


- (B) √2
- $(C)\frac{1}{2}$
- (D) 2
- 11. The equation of a wave on a string is given as $y(x,t) = 10^{-3}\sin(50 + 2x)$, time is in second, x is in meter. The velocity of the wave is
 - (A) 100 m/s towards negative x axis
 - (B) 25 m/s towards. Negative x-axis
 - (C) 100 m/s towards positive x-axis
 - (D) 25 m/s towards positive x-axis
- 12. Select the correct output *Y*

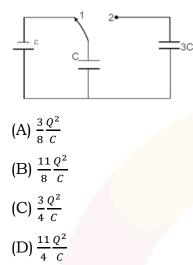

- (A) *A*.*B*
- (B) A + B
- (C) $A.\overline{B} + B.\overline{A}$
- (D) $A.B + \overline{A}.\overline{B}$
- 13. For a hydrogen-like atom the potential energy is given as $U(r) = \frac{1}{2}Kr^2$ where r is the radius of the orbit, K is a constant and E is the total energy then choose the correct option.
 - (A) *r* is proportinal to \sqrt{n} , *E* is proportinal to \sqrt{n}
 - (B) *r* is proportinal to \sqrt{n} , *E* is proportional to *n*
 - (C) *r* is proportinal *n*, *E* is proportinal to \sqrt{n}
 - (D) r is porportinal to n, E is proportinal to n

- 14. A carries wave of frequancy 100 *Khz* is modulated. Minimum & Maximum amplitude of AM signal is 40 *V* & 160 *V* then find the modulation index.
 - (A) 0.2
 - (B) 0.6
 - (C) 0.8
 - (D) 0.4
- 15. As shown in the figure initially switch k_1 is open and k_2 is closed and deflection of galvanometer is θ_0 . Now both switch are closed then the deflection in galvanometer is (given $R_H = 5\Omega$)

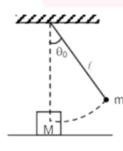

- (D) 50Ω
- 16. In a meter bridge experiment the resistance of meter bridge wire varies with ℓ such that $\frac{dR}{d\ell} \propto \frac{1}{\sqrt{\ell}}$ where ℓ is distance for left end. What will be balancing length from left end if two resistances in left and right gap are equal.
 - (A) 0.25 m
 - (B) 0.5 m
 - (C) 0.75 m
 - (D) 0.60 m
- 17. A cylinder has inner radius R and outer radius 2R. The inner part is filled with a material of conductivity k_1 and outer with k_2 . Find the equivalent thermal conductivity of the cylinder


- (A) $K_1 + K_2$
- (B) $\frac{K_1 + K_2}{2}$
- (C) $\frac{K_1 + 3K_2}{2}$
- (D) $\frac{K_1 + 2K_2}{2}$

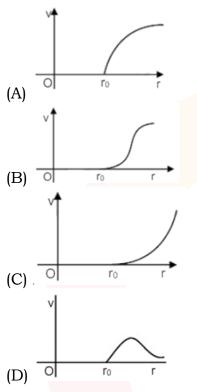
- 18. In a photoelectric effect the maximum speed of electrons is found to be $6 \times 10^5 m/s$. The wave length used is $4000A^\circ$. The work function of the metal is.
 - (A) 2.2*eV*
 - (B) 2.076*eV*
 - (C) 2.3*eV*
 - (D) 2.4*eV*
- 19. Find the posotion and nature of final image formed by the given combination of two lenses.

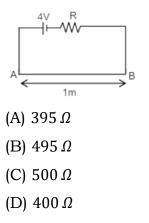

- (A) Real image, 70 cm right of B
- (B) Virtual image, 70 cm right of B
- (C) Real image, $\frac{20}{3}$ cm left of B
- (D) Real image 40, cm left of B
- 20. A cyclic process shown in figure. Find work done in cyclic process ABCA.

(D) 1*J*


21. The circuit in figure is initially in steady state. What would be the heat generated if the switch is thrown from position 1 to position 2

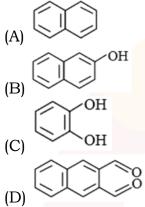
- 22. A sattelite of mass m revolving around a planet in a circulr path or radius R. Another particle of same mass m movng radially inward collides inelastically with the sate llite. The path of the combined system after the collision will be
 - (A) Circular with same radius
 - (B) Circular with smaller radius
 - (C) Elliptical path
 - (D) Escape
- 23. Two trains of length 60 m & 120 m are moving with speeds 80 km/h 30 km/h respectively. Find the ratio of time taken by trains to cross each other in two cases first if they move in same direction and second if they move in opposite direction.
 - (A) $\frac{3}{2}$ (B) $\frac{8}{3}$ (C) $\frac{11}{8}$
 - (D) $\frac{11}{5}$


- 24. For a screw gauge least count of main scale is 1 mim. Find minimum number of divisions of circular scale *s* that it can measure diameter of $5 \mu m$
 - (A) 500
 - (B) 100
 - (C) 50
 - (D) 200
- 25. An electromagnetic wave having amplitude of electric field $30 Vm^{-1}$ entres in a glss slab of refractive index 1.5. What would be the amplitude inside the salb if 4% of the incident energy is reflected.
 - (A) 24
 - (B) 29
 - (C) 18
 - (D) 40
- 26. The ball of mass 'm' is released from the position shown in the figure, θ_0 being a small angle. If it rises to an angle θ_1 after perfectly elastic collision with the block of mass *M* then value of *M* is.

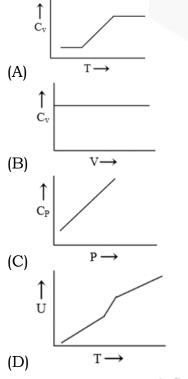

- (A) $\left(\frac{\theta_0 + \theta_1}{\theta_0 \theta_1}\right) m$
- (B) $\left(\frac{\theta_0 + \theta_1}{\theta_0 \theta_1}\right) \frac{m}{2}$
- (C) $\left(\frac{\theta_0 \theta_1}{\theta_0 + \theta_1}\right) m$
- (D) $\left(\frac{\theta_0 \theta_1}{\theta_0 + \theta_1}\right) \frac{m}{2}$

27. Charge is distributed uniformly in shape of spherical shell with centre at origion. Initial radius is r_0 . It starts expanding due to mutual repulsion between the charges. Graph between radial velocity and radius at any time t is

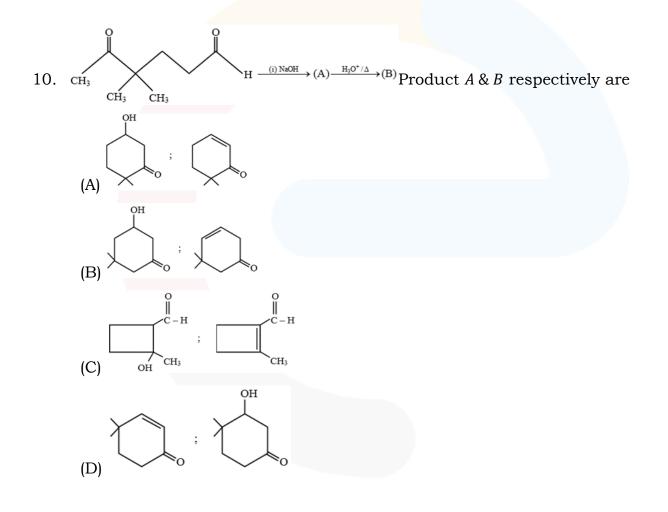
- 28. An annular cylinder has inner 10 *cm* outer radius 20 *cm* and length 30 *cm*. The radius of a hollow cylinder having the same mass and moment of inertia (about its own axis) as the annular cylinder (about the axis) is
 - (A) $5\sqrt{6} cm$
 - (B) 5\sqrt{10} cm
 - (C) $5\sqrt{2} cm$
 - (D) $5\sqrt{5} cm$
- 29. As shown in the diagram of potentiometer balancing length for 5 mV is 10 cm. Find value of unknown resistance *R* is resistance of potentiometer wire *AB* is 5Ω


- 1. A solution of 4% *X* and another solution having 12% *Y* (Both solution have same solvent). If molar mass of *X* is *A* then molecular mass of *Y* is
 - (A) 3*A*
 - (B) *A*
 - (C) $\frac{A}{2}$
 - (D) 2A
- 2. BOD of sample first is 4 ppm and BOD of second sample is 18 ppm. Which one is correct statement-
 - (A) Both are highly polluted
 - (B) Both are clean
 - (C) First is clean and second is highly polluted
 - (D) Second is clean and first is highly polluted
- 3. What is the oxidation number of I when iodine reacts with HNO_3 ?
 - (A) -1
 - (B) +1
 - (C) +3
 - (D) +5
- 4. For the following chemical reaction at T = 300 K

 $Zn_{(s)} + Cu_{(aq)}^{2+} \rightleftharpoons Zn_{(aq)}^{2+} + Cu_{(s)}$ If cell potential is 2 V and $\frac{dE}{dT} = -5 \times 10^{-4}$ find ΔH .


- F = 96500 C
- (A) 384 kJ
- (B) +96 *kJ*
- (C) -412 kJ
- (D) -380 kJ

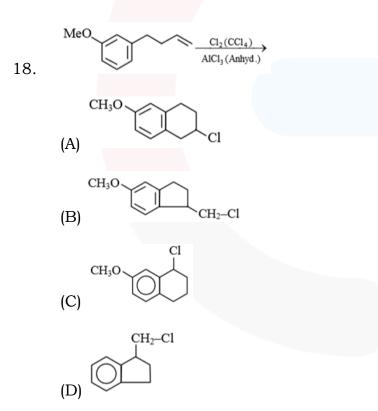
- 5. An element having atomic no. 120 (not yet discovered) is -
 - (A) Transition metal
 - (B) Inner transition metal
 - (C) Alkaline earth metal
 - (D) Alkali metal
- 6. Which of the following has lowest freezing point-



- 7. What is the correct acidic order of the following compounds
 - (a) $CH \equiv CH$ (b) $CH_3 - C \equiv CH$ (c) $CH_2 = CH_2$ (A) a < b < c(B) a > b > c(C) a = b < c(D) b > a > c
- 8. Which of the graph given below is incorrect-

- 9. Which of the molecules are used to prepare co-polymer *PHBV* (Poly $-\beta$ hydroxybutyrate *Co* β hydroxy valerate)
 - (A) 2 hydroxy butanoic acid and 2 hydroxy pentanoic acid
 - (B) 2 hydroxy butanoic acid and 3 hydroxy pentanoic acid
 - (C) 3 hydroxy butanoic acid and 2 hydroxy pentanoic acid
 - (D) 3 hydroxy butanoic acid and 3 hydroxy pentanoic acid

- 11. $A + 2B \rightleftharpoons 2C + D$ Initial concentration of *B* is 1.5 times of *A* and at equilibrium, concentration of *A* and *B* are equal then find K_c
 - (A) 8
 - (B) 4
 - (C) 2
 - (D) 6


- 12. Which of the following amino acid is basic?
 - (A) Aspargin
 - (B) Alanine
 - (C) Lysine
 - (D) Serine
- 13. Which of the following gas has low adsorption value?
 - (A) H_2
 - (B) N_2
 - (C) CO_2
 - (D) *CH*₄
- 14. A complex has the formula $[M(H_2O)_6]Cl_2$ and has $\mu = 3.9 BM$. Then, M (metal) present in the complex may be:
 - (A) V^{2+}, Fe^{2+}
 - (B) CO^{2+}, V^{2+}
 - (C) CO^{2+}, Fe^{2+}
 - (D) V^{2+} , Ni^{2+}
- 15. In Hall-Heroult process for the reduction of Aluminum, which substance is the cathode made of?
 - (A) Carbon
 - (B) Steel
 - (C) Pure aluminum
 - (D) Graphite
- 16. If $M + O_2 \rightarrow X$

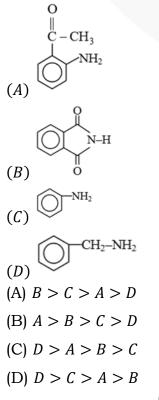
 $X + H_2 O \rightarrow Z + H_2 O_2 + O_2$. Then element M is-

- (A) *Li*
- (B) *Rb*
- (C) Na
- (D) *Mg*

- 17. If solid A(s) is dissociated in a closed container having equilibrium constant $A(s) \rightleftharpoons B(g) + C(g)$ $K_{P_1} = x$ and in the same container D(s) is also added, if $K_{P_2} = y$ is equilibrium constant for $D(s) \rightleftharpoons C(g) + E(g)$. Total pressure at equilibrium is-
 - (A) $\sqrt{x+y}$
 - (B) $2\sqrt{x+y}$
 - (C) $\sqrt{x^2 + y^2}$
 - (D) (x + y)

- 19. Which compound is minimum or not found in photochemical smog
 - (A) $CH_2 = O$
 - (B) *NO*₂
 - (C) *O*₃
 - (D) N_2

OH $CH_3 - CH_2 - CH_3 - CH_3$ 20. Ph can not be prepared by following- CH_3 H - C - H + Ph - CH - MgBr(A) Ô $\begin{array}{c} CH_3-CH_2-C-CH_3+PhMg \; X \\ \parallel \\ O \end{array}$ (B) $Ph - C - CH_3 + EtMgBr$ ö (C) $Ph-C-CH_2-CH_3+MeMgBr\\$ ö (D) $C \equiv N$ $\frac{\text{DiBAL} - \text{H}}{\text{H}_3\text{O}^{+1}} \text{ Product}$ 21. What is the product-CHO (A) $C \equiv N$ (B) Ö CHO O - H $\dot{C}H_2 - C - H$ 0 (C) 0 ∬ C−NH₂ O - H $CH_2 - OH$ (D)


- 22. If A discompose as $0.05\mu g$ per year then how many years it will require to discompose from $5\mu g$ to $2.5\mu g$
 - (A) 25
 - (B) 20
 - (C) 100
 - (D) 50
- 23. If gas A has compressibility factor 3Z and volume 2V and gas B has compressibility factor Z and volume V at same temperature and same mole, then find relationship between P_A and P_B
 - (A) $3P_A = 2P_B$ (B) $2P_A = 3P_B$ (C) $P_A = P_B$ (D) $2P_A = P_B$
- 24. What is the hardness in terms of $CaCO_3$ of water in the given sample which contain $10^{-3}M$ CaSO₄ (mol wt 136)
 - (A) 100 ppm
 - (B) 10 ppm
 - (C) 20 ppm
 - (D) 90 ppm
- 25. Aldehyde + Alcohol \rightarrow Acetal $CH_3 - C - H$ Tertiary butoxide ő H - C - HMeOH ő Which is suitable combination H-C-H, MeOH 0 (A) H-C-H, Tertiary butoxide (B) Ö $CH_3 - C - H$, MeOH 0 (C) CH3-C-H, Tertiary butoxide (D) Ö

- 26. $50 \ ml$ of $0.5 \ M$ oxalic acid neutralizes $25 \ ml$ of NaOH. Then the amount of NaOH in $50 \ ml$
 - (A) 80 g
 - (B) 4 g
 - (C) 5 g
 - (D) 40 g

27. With which *d* orbital ligand CN^{Θ} will form coordinate bond in $K_3[Co(CN)_6]$

- (A) $dx^2 y^2$, dz^2
- (B) $dx^2 y^2$, dxy
- (C) dxy, dxz
- (D) dz^2
- 28. A photons falls on the metal surface having wavelength 4000 A^o and ejected electron have velocity $6 \times 10^5 \ m/sec$. Calculate work function in $(eV)(m_e = 9.1 \times 10^{-31} kg)$
 - 10 Kg)
 - (A) 2.1 *eV*
 - (B) 3.1 *eV*
 - (C) 2.5 *eV*
 - (D) 4.1 *eV*
- 29. Reactivity order these compound with Alkyl halide-

