SOLUTION

Mathematics

1. $\left.\quad \begin{array}{c}7 B \\ 5 G\end{array}\right\} \rightarrow\binom{3 B}{2 G}$

Total number of ways of forming a team of 3 boys and 2 girls $={ }^{7} C_{3} \times{ }^{5} C_{2}=\frac{7.6 .5}{1.2 .3} \times$
$\frac{5.4}{1.2}=350$
Total number of ways of forming a term if two specific boys B_{1}, B_{2} always join the team
$={ }^{5} C_{1} \times{ }^{5} C_{2}=50$
So, the total numbers of ways of forming a team is two specific boys never come together
$=350-50=300$
2. $x^{2}+2 x+2=0<_{\beta}^{\alpha}$
$\Rightarrow \alpha, \beta=\frac{-2 \pm \sqrt{4-8}}{2}=-1 \pm i$
$\Rightarrow \alpha, \beta=\sqrt{2}\left(\frac{-1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}\right)$
$=\sqrt{2}\left(\cos \frac{3 \pi}{4} \pm i \sin \frac{3 \pi}{4}\right)$
$\Rightarrow \alpha^{15}+\beta^{15}=\left[\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]^{15}+\left[\sqrt{2}\left(\cos \frac{3 \pi}{4}-i \sin \frac{3 \pi}{4}\right)\right]^{15}$
$=2^{\frac{14}{2}}\left[\left(\cos \frac{45 \pi}{4}+i \sin \frac{45 \pi}{4}\right)+\left(\cos \frac{45 \pi}{4}-i \sin \frac{45 \pi}{4}\right)\right]$
$=2.2^{\frac{15}{2}} \cdot \cos \frac{45 \pi}{4}=2^{\frac{17}{2}} \cdot \cos \frac{5 \pi}{4}=-2^{\frac{17}{2}} \cdot \frac{1}{\sqrt{2}}$
$=-256$
3. $I=\int_{0}^{\pi}|\cos x|^{3} d x=2 \int_{0}^{\frac{\pi}{2}} \cos ^{3} x d x$
$=2 \int_{0}^{\frac{\pi}{2}}\left(1-\sin ^{2} x\right) \cos x d x$
$=2\left[\int_{0}^{\frac{\pi}{2}} \cos x d x-\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos x d x\right]$
$=2\left[\sin -\frac{\sin ^{3} x}{3}\right]_{0}^{\frac{\pi}{2}}$
$=\left[1-\frac{1}{3}-0+0\right]=\frac{4}{3}$
4. $\Rightarrow I=\int x \sqrt{\frac{2 \sin \left(x^{2}-1\right)-\sin 2\left(x^{2}-1\right)}{2 \sin \left(x^{2}-1\right)+\sin 2\left(x^{2}-1\right)}} d x$

Let $x^{2}-1=\theta, x d x=\frac{1}{2} d \theta$
$\Rightarrow I=\frac{1}{2} \int \sqrt{\frac{2 \sin \theta-\sin 2 \theta}{2 \sin \theta+\sin 2 \theta}} d \theta$
$=\frac{1}{2} \int \sqrt{\frac{2 \sin \theta-2 \sin \theta \cos \theta}{2 \sin \theta+2 \sin \theta \cos \theta}} d \theta$
$=\frac{1}{2} \int \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} d \theta$
$=\frac{1}{2} \int \tan \frac{\theta}{2} d \theta$
$=\frac{1}{2} \frac{\ln \left(\sec \frac{\theta}{2}\right)}{\left(\frac{1}{2}\right)}+c$
$=\ln \sec \left(\frac{x^{2}-1}{2}\right)+c$
5. Since $\bar{a} \cdot \bar{c}=0$
\Rightarrow Angle ' θ ' between $\bar{a} \times \bar{c}$ is $\frac{\pi}{2}$
Now $\bar{a} \times \bar{c}+\bar{b}=0$
$\Rightarrow \bar{a} \times \bar{c}=-\bar{b}$
$\Rightarrow|\bar{a} \times \bar{c}|=|-\bar{b}|$
$\Rightarrow|\bar{a}||\bar{c}| \sin \theta=|\bar{b}|$
$\Rightarrow|\bar{c}|=\frac{|\bar{b}|}{|\bar{a}| \sin \frac{\pi}{2}}=\frac{\sqrt{1+1+1}}{\sqrt{1+1.1}}=\sqrt{\frac{3}{2}}$
$\Rightarrow|\bar{c}|^{2}=\frac{3}{2}$
6. $f(x)=\left\{\begin{array}{c}5: x \leq 1 \\ a+b x: 1<x<3 \\ b+5 x: 3 \leq x<5 \\ 30: x \geq 5\end{array}\right.$

For $f(x)$ to be continuous at $x=5$
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
$\Rightarrow \lim _{x \rightarrow 5}(b+5 x)=30$
$\Rightarrow b+25=30 \Rightarrow b=5$
For $f(x)$ to be continuous at $x=1$
$\lim _{x \rightarrow 1^{+}}+f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1)$
$\Rightarrow \lim _{x \rightarrow 1}(a+5 x)=5$
$\Rightarrow \lim _{x \rightarrow 1}(a+5 x)=5$
Now at $x=3$,
$L H L=\lim _{x \rightarrow 3}(0+5 x)=15$
$R H L=\lim _{x \rightarrow 3}(5+5 x)=18$
$\Rightarrow f(x)$ is discontinuous for all $a, b \in R$
7. Let $1^{\text {st }} 5$ students are
$x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5}
$\therefore 18=E\left(x^{2}\right)-(E(x))^{2}$
$=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}}{5}-(150)^{2}$
$\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}=112590$
\therefore new variance $=\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{5}^{2}+156^{2}}{6}-(151)^{2}$
$\left[\right.$ Since new mean $\left.=\frac{150 \times 5+156}{6}-151\right]$
$=\frac{112590+24336}{6}-22801$
$=20$
8. Given a, b, c are in G.P let common ratio of
$G . P$ be r, then $b=a r, c=a r^{2}$
Given equation can be written as
$a+a r+a r^{2}=x . a . r$
$\Rightarrow x=r+\frac{1}{r}+1$
As we know $r>0$, then $r+\frac{1}{r} \geq 2 \Rightarrow x \geq 3$
$r<0$, then $r+\frac{1}{r} \leq-2 \Rightarrow x \leq-1$
$\Rightarrow x \in(-\infty,-1] \cup[3, \infty)$
9. $\quad 2^{403}=2^{3} \cdot\left(2^{4}\right)^{100}$
$=8 .(15+1)^{100}$
$=8\left[{ }^{100} C_{0} 15^{100}+{ }^{100} C_{1} 15^{99}+\ldots .+{ }^{100} C_{99} 15+{ }^{100} C_{100}\right]$
$=8 .[15 \lambda+1]$
$=8.15 \lambda+8$
$\Rightarrow \frac{2^{403}}{15}=8 \lambda+\frac{8}{15}$
$=k=8$
10. To solve this questions we need to apply the concept of rationalization two times.

Given limit is $\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^{4}}}-\sqrt{2}}{y^{4}}$
$=\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^{4}}}-\sqrt{2}}{y^{4}} \times \frac{\sqrt{1+\sqrt{1+y^{4}}}+\sqrt{2}}{\sqrt{1+\sqrt{1+y^{4}}+\sqrt{2}}}$
$=\lim _{y \rightarrow 0} \frac{\left(\sqrt{1+y^{4}}-1\right)}{y^{4}\left(\sqrt{1+\sqrt{1+y^{4}}+\sqrt{2}}\right)} \times \frac{\left(\sqrt{1+y^{4}}+1\right)}{\left(\sqrt{1+y^{4}}+1\right)}$
$=\lim _{y \rightarrow 0} \frac{y^{4}}{y^{4}\left(\sqrt{1+\sqrt{1+y^{4}}+\sqrt{2}}\right)\left(\sqrt{1+y^{4}}+1\right)}$
$=\lim _{y \rightarrow 0} \frac{1}{\left(\sqrt{1+\sqrt{1+y^{4}}+\sqrt{2}}\right)\left(\sqrt{1+y^{4}}+1\right)}$
$=\frac{1}{4 \sqrt{2}}$
11. There is an ambiguity is this question. Two possibilities are there Case1: When vertex is an RHS of y-axis

Clearly in this case vertex is $(2,0)$.
Since focus is $S(4,0) \Rightarrow a=2$.
Hence equation of parabola is $y^{2}=4.2(x-2)$

$$
\Rightarrow y^{2}=8(x-2)
$$

\Rightarrow Point $(6,8)$ does not lie on the parabola
Case 2 when vertex is on LHS of y-axis

Cleary $a=6$
Equation of parabola $y^{2}=24(x+2)$.
Since neither of the given points lies on this parabola
This parabola is not considered here
12. Given complex number is $z=\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$
$\Rightarrow Z=\frac{(3+2 i \sin \theta)(1+2 i \sin \theta)}{\left(1+4 \sin ^{2} \theta\right)}$
Since given complex number is purely imaginary
$\Rightarrow \operatorname{Re}(z)=0$
$\Rightarrow 3-4 \sin ^{2} \theta=0$
$\Rightarrow \sin \theta= \pm \frac{\sqrt{3}}{2}$
$\Rightarrow \theta=\frac{-\pi}{3}, \frac{\pi}{3}, \frac{2 \pi}{3}$

\Rightarrow sum of all possible values of $\theta=\frac{2 \pi}{3}$.
13. $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \Rightarrow|A|=\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1$

And $\operatorname{adj}(A)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$\Rightarrow A^{-2}=\left(A^{-1}\right)^{2}=\left(A^{-1}\right)\left(A^{-1}\right)$
$=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos ^{2} \theta-\sin ^{2} \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos ^{2} \theta-\sin 2 \theta\end{array}\right]$
$=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
It is visible that
$\left(A^{-1}\right)^{n}=\left[\begin{array}{cc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right]$
$\Rightarrow A^{-50}=\left(A^{-1}\right)^{50}-\left[\begin{array}{cc}\cos 50 \theta & \sin 50 \theta \\ -\sin 50 \theta & \cos 50 \theta\end{array}\right]$
Now at $\theta=\frac{\pi}{12}, \sin 50 \theta=\sin \frac{50 \pi}{12}=\sin \frac{\pi}{6}=\frac{1}{2}$
$\cos 50 \theta=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$
$\Rightarrow A^{-50}=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$
14. 1) $(A \wedge B) \wedge(\sim A \vee B)$
$\equiv(B \wedge A) \wedge(\sim A \vee B)$
$\equiv B \wedge[A \wedge(\sim A \vee B)] \quad$ (using associate property)
$\equiv B \wedge(A \wedge B)$
$\equiv A \wedge B$
2) $=(A \wedge B) \wedge(\sim A \wedge B)$
$\equiv(A \wedge \sim A) \wedge B$
$\equiv F \wedge B \equiv F$
3) $(A \vee B) \wedge(\sim A \vee B)$
$\equiv(A \wedge \sim A) \vee B$
$\Rightarrow F \vee B \equiv B$
4) $(A \vee B) \wedge(\sim A \wedge B)$
$\equiv[(A \vee B) \wedge \sim A] \times B$ (Using associate property)
$\equiv[B \wedge \sim A] \wedge B$
$\equiv \sim A \wedge B$
15. Given DE can be written as
$\frac{d y}{d x}+\frac{2 y}{x}=x$, which is a linear differential equation
If $=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$
Solution is
$y \cdot x^{2}=\int x \cdot x^{2} d x$
$\Rightarrow y \cdot x^{2}=\frac{x^{4}}{4}+c$
Since given curve passes through $(1,1)$
$\Rightarrow c=\frac{3}{4}$
Hence $y(x)=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$
So $y\left(\frac{1}{2}\right)=\frac{49}{16}$
16. Using the concept of complementary events,
$P(x=1)+P(x-2)=1-P(x=0)$
$=1-\frac{48}{52} \times \frac{48}{52}$
$=1-\frac{144}{169}=\frac{25}{169}$
17. For given hyperbola the eccentricity is given as
$e^{2}=1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=1+\tan ^{2} \theta \sec ^{2} \theta$
$\Rightarrow e=\sec \theta$
\therefore length of latus rectum $l=\frac{2 \sin ^{2} \theta}{\cos \theta}=\frac{2 \tan ^{2} \theta}{\sec \theta}$
$\Rightarrow l=\frac{2\left(e^{2}-1\right)}{e e}=2\left(e-\frac{1}{e}\right)$
$\frac{d l}{d e}=2\left(1+\frac{1}{e^{2}}\right)>0$
$\therefore l$ is an increasing function
$\therefore l_{\text {min }}=2\left(2-\frac{1}{2}\right)=3$
\therefore range of latus rectum is $(3, \infty)$
18. Given $l=3$

$\Rightarrow r^{2}+h^{2}=g$
Volume, $V=\frac{1}{3} \pi r^{2} h$
$\Rightarrow V=\frac{1}{3} \pi\left(9-h^{2}\right) h=\frac{1}{3} \pi\left(9 h-h^{3}\right)$
$\frac{d v}{d h}=\frac{1}{3} \pi\left(9-3 h^{2}\right)$
$\frac{d v}{d h}=0 \Rightarrow h=\sqrt{3}$
$\frac{d^{2} V}{d h^{2}}=\frac{1}{3} \pi(-6 h)$
\therefore at $h=\sqrt{3}$, cone has maximum volume
$\therefore V_{\text {max }}=\frac{1}{3} \pi(9 \sqrt{3}-3 \sqrt{3})=2 \sqrt{3} \pi c \mathrm{~m}^{3}$
19. $\because x>\frac{3}{4}$
$\therefore \cos ^{-1} \frac{3}{4 x}=\sin ^{-1} \frac{\sqrt{16 x^{2}-9}}{4 x}$
\therefore Given $\cos ^{-1} \frac{2}{3 x}+\cos ^{-1} \frac{3}{4 x}=\frac{\pi}{2}$
$\cos ^{-1} \frac{2}{3 x}+\cos ^{-1} \frac{3}{4 x}=\frac{\pi}{2}$
$\Rightarrow \frac{2}{3 x}+\frac{\sqrt{16 x^{2}-9}}{4 x}$
$\Rightarrow\left(\frac{8}{3}\right)^{2}=16 x^{2}-9$
$\Rightarrow 16 x^{2}=\frac{64}{9}+9=\frac{145}{9}$
$\Rightarrow x^{2}=\frac{145}{144}$
$\Rightarrow x=\frac{\sqrt{145}}{12}$
20. Given condition is $3 p+2 q+4 r=0$
$\Rightarrow \frac{3}{4} p+\frac{1}{2} q+r=0$
And given family of line is $p x+q y+r=0 \ldots$ (ii)
From (i) we can say that equation (ii) always passes through $\left(\frac{3}{4}, \frac{1}{2}\right)$.
Hence all lines are concurrent at $\left(\frac{3}{4}, \frac{1}{2}\right)$.
21. Here, $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & a^{2}-1\end{array}\right|$
$=a^{2}-3$
Hence at $|a|=\sqrt{3}, D=0$. So system has no unique solution.
At $a=4$ and $3, D \neq 0$, So, system has unique solution. Hence net inconsistent.

At $|a|=\sqrt{3}, D=0$ and $2^{\text {nd }} \& 3^{r d}$ equation are parallel. Hence no solution are possible.
Hence, system is inconsistence for $|a|=\sqrt{3}$
22. $3(\cos \theta-\sin \theta)^{4}+6(\cos \theta+\sin \theta)^{2}+4 \sin ^{6} \theta$
$=3\left((\cos \theta-\sin \theta)^{2}\right)^{2}+6(\cos \theta+\sin \theta)^{2}+4 \sin ^{6} \theta$
$=3\left(\cos ^{2} \theta+\sin ^{2} \theta-2 \sin \theta \cos \theta\right)^{2}+6\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \sin \theta \cos \theta\right)+4 \sin ^{6} \theta$
$=3(1-2 \sin \theta \cos \theta)^{2}+6(1+2 \sin \theta \cos \theta)+4 \sin ^{6} \theta$
$=3\left(1-4 \sin \theta \cos \theta+4 \sin ^{2} \theta \cos ^{2} \theta\right)+6(1+2 \sin \theta \cos \theta)+4 \sin ^{6} \theta$
$=9+12 \sin ^{2} \theta \cos ^{2} \theta+4 \sin ^{6} \theta$
$=9+12\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta+4\left(1-\cos ^{2} \theta\right)^{3}$
$=9+12 \cos ^{2} \theta-12 \cos ^{4} \theta+4\left(1-3 \cos ^{2} \theta+3 \cos ^{2} \theta-\cos ^{2} \theta\right)$
$=13-4 \cos ^{6} \theta$
23.

$A B=\sqrt{(a+b)^{2}(b-a)^{2}}=2 \sqrt{a b}$
$B C=\sqrt{(a+c)^{2}-(c-a)^{2}}=2 \sqrt{a c}$
$A C=\sqrt{(b+c)^{2}-(c-b)^{2}}=2 \sqrt{b c}$
$\because A C=A B+B C$
$\Rightarrow 2 \sqrt{b c}=2 \sqrt{a b}+2 \sqrt{a c}$
$\Rightarrow \frac{1}{\sqrt{a}}=\frac{1}{\sqrt{b}}=\frac{1}{\sqrt{c}}$
24. Given $f_{2}\left(J\left(f_{1}(x)\right)\right)=f_{3}(x)$
$\Rightarrow f_{2}\left(J\left(\frac{1}{x}\right)\right)=\frac{1}{1-x}$
$\Rightarrow 1-J\left(\frac{1}{x}\right)=\frac{1}{1-x}$
$\Rightarrow J\left(\frac{1}{x}\right)=1-\frac{1}{1-x}=-\frac{x}{1-x}$
$\Rightarrow J(x)=-\frac{\frac{1}{x}}{1-\frac{1}{x}}=-\frac{1}{x-1}=\frac{1}{1-x}$
$\therefore J(x)=f_{3}(x)$
25. A variable point on line $x+y-z=0=x+2 y-3 z+5$ is $(-t+5,2 t-5, t)$
$\therefore D R$ of variable point $\&(-4,1,3)$ is
$(-t+g, 2 t-6, t-3)$
Since line is parallel to $x+y+z=3$
$\therefore-t+g+2 t-6+t-3=0$
$\Rightarrow t=0$
$\therefore D R$ of line $s(9,-6,-3)$ or $(-3,2,1)$
\therefore Equation of line is $\frac{x+4}{-3}=\frac{y-1}{2}=\frac{z-3}{1}$
26. Intersection points of given curves are $(\pm 2,6)$ for $1^{\text {st }}$ curve $\frac{d y}{d x}=2 x$
$\therefore m_{1}=4$ or (-4)
For $2^{n d}$ curve, $\frac{d y}{d x}=-2 x$
$\therefore m_{2}=-4$ or (4)
$\therefore|\tan \theta|=\left|\frac{4-(-4)}{1+4(-4)}\right|$ or $\left|\frac{-4-4}{1+(-4) 4}\right|$
$=\frac{8}{15}($ In both cases $)$
27. Let required plane is (using concept of family of plane)
$x+y+z-1+t(2 x+3 y-z-4)=0$
$\Rightarrow(1+2 t) x+(1+3 t) y+(1-t) z-1-4 t=0$
Again $D R$, of y-axis is $(0,1,0)$
Since plane is parallel to y-axis
Hence $(1+2 t) \times 0+(1+3 t) \times 1+(1-t) \times 0=0$
$\Rightarrow t=-\frac{1}{3}$
\therefore required plane is $\frac{1}{3} x+\frac{4}{3} z+\frac{1}{3}=0$
$\Rightarrow x+4 z+1=0$
Which satisfy $(3,1,-1)$
28. Let tangent to parabola $y^{2}=4 x$ is
$y=m x+\frac{1}{m} \ldots(i)$
If equation (i) is tangent to give circle whose centre is $(3,0)$ and radius is 3 then length of perpendicular from centre of circle to equation (i) is equal to radius of circle.

Hence, $\left|\frac{3 m+\frac{1}{m}}{\sqrt{m^{2}+1}}\right|=3$
$\Rightarrow\left|3 m^{2}+1\right|=3 m \sqrt{1+m^{2}}$
$\Rightarrow 9 m^{4}+6 m^{2}+1=9 m^{2}+9 m^{4}$
$\Rightarrow m= \pm \frac{1}{\sqrt{3}}$
\therefore common tangents are $y=\frac{x}{\sqrt{3}}+\sqrt{3}$ or $y=-\frac{x}{\sqrt{3}}-\sqrt{3}$
29. $\frac{d y}{d x}=2 x$

\therefore slope of tangent at $(2,3)$
$m=4$
\therefore equation of tangent is $y-3=4(x-2)$
\therefore point $T \equiv(0,-5)$
\therefore area of $A P T M=\frac{1}{2} \times 8 \times 2=8$
Area of curve $P A M P=\int_{-1}^{3} \sqrt{y+1} d y$
$=\frac{2}{3}\left[(y+1)^{\frac{3}{2}}\right]_{1}^{3}=\frac{16}{3}$
\therefore Required shaded area $=8-\frac{16}{3}=\frac{8}{3}$

Physics

1.

Block will be at rest it
$m g \sin \theta+3 N=P+f$
$10 \times 10 \times \frac{1}{\sqrt{2}}+3=P+\mu m g \cos \theta$
(\because To get P minimum friction must be minimum)
$P_{\text {min }}=50 \sqrt{2}+3-0.6 \times 10 \times 10 \times \frac{1}{\sqrt{2}}$
$=20 \sqrt{2}+3=32 N$
2. For path $A B C$,
$\Delta Q=\Delta U+\Delta W$
$60=\Delta U+30$
$\Rightarrow \Delta U=30 J$
For path $A D C$
$\Delta Q=\Delta U+\Delta W$
As initial and find points are same, change in internal energy is same in both the cases
$\Delta Q=30+10$
$=40 \mathrm{~J}$
3. From given data
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{10}-\frac{1}{(-10)}=\frac{1}{f}$
$f=5 \mathrm{~cm}$

e embibe

When glass plate is placed
Shift $s=t\left(1-\frac{1}{\mu}\right)=1.5\left(1-\frac{2}{3}\right)$
$=0.5 \mathrm{~cm}$
Shift will be in the direction of incoming rays
$\therefore u=10-0.5=9.5$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}=\frac{1}{5}+\frac{1}{(-9.5)}$
$v=\frac{47.5}{4.5}$
Shift $=\frac{47.5}{4.5}-10=\frac{2.5}{4.5}=\frac{5}{9}$
4. Angular momentum $L=m r^{2} w$

Area of sector, $d A=\frac{1}{2} r^{2} d \theta$
Areas velocity $\frac{d a}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}$
(i) Keplers laws
5. $\vec{v}=y \hat{\imath}+x \hat{\jmath}$
$v_{x}=y=\frac{d x}{d t}$
$v_{y}=x=\frac{d y}{d t}$
$\frac{d x}{d y}=\frac{y}{x}$
$\int x d x=\int y d y$
$\frac{x^{2}}{2}=\frac{y^{2}}{2}+C$
or $y^{2}=x^{2}+$ constant
6.

When block attains maximum speed $F=K x$
Or $x=\frac{F}{K}$
From work energy theorem

C EMBIBE
$-\frac{1}{2}\left(\frac{K}{F}\right)^{2}+F\left(\frac{F}{K}\right)=\frac{1}{2} M V_{\max }^{2}$
$\frac{F^{2}}{2 K}=\frac{1}{2} M V_{\max }^{2}$
$V_{\max }=\sqrt{\frac{F}{K M}}$
7.

Magnetic field due to $A D$ and $B C$ are zero at ' O '.
Magnetic field due to $A B$
$B_{A B}=\frac{\mu_{0}}{4 \pi} \frac{10}{3 \times 10^{-2}} \frac{\pi}{4}$ (outwards)
Simplifying field due to $D C$
$B_{D C}=\frac{\mu_{0}}{4 \pi} \frac{10}{5 \times 10^{-2}} \frac{\pi}{4}$ (inwards)
Net field $B=\frac{\mu_{o}}{4 \pi} \frac{10 \pi}{4 \times 10^{-2}}\left(\frac{1}{3}-\frac{1}{5}\right)$
$=1.05 \times 10^{-5}$
$\approx 10^{-5} T$ (outwards)
8.

Electric field at a distance h from centre on axis
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q h}{\left(R^{2}+h^{2}\right)^{\frac{3}{2}}}$

e embibe

To get maximum $E, \frac{d E}{d h}=0$
$0=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q\left(R^{2}+h^{2}\right)^{\frac{3}{2}}-Q h_{2}^{3}\left(R^{2}+h^{2}\right)^{\frac{1}{2}} 2 h}{\left(R^{2}+h^{2}\right)^{3}}$
$\Rightarrow h= \pm \frac{R}{\sqrt{2}}$
9. Activity $A=\lambda N$
$10=\lambda_{A} N_{A}$
$20=\lambda_{B} N_{B}$
$\frac{1}{2}=\frac{\lambda_{A}}{\lambda_{B}} 2$
$\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{4}$
10. $B=0.4 \sin (50 \pi t), A=3.5 \times 10^{-3} \mathrm{~m}^{2}$
$\varepsilon=\frac{d \phi}{d t}$
$d Q=\frac{\varepsilon}{R} d t=\frac{1}{R} d \phi$
$t=10 \mathrm{~ms}$
$Q=\frac{1}{R} \int_{t=0}^{t=10 \mathrm{~ms}} 0.4 \times 3.5 \times 10^{-3} \sin (50 \pi t) d t$
$=140 \mu c$
11. $i=n e A v_{d}$
$1.5=8 \times 10^{28} \times 1.6 \times 10^{-19} \times 5 \times 10^{-6} \times v_{d}$
$v_{\alpha}=0.02 \mathrm{~mm} / \mathrm{s}$
12. $T_{1}-T_{2}=120^{\circ} \mathrm{C}$

We define thermal resistance
$R=\frac{L}{K A}$
Given circuit can be reduced to

Equivalent resistance $R_{e q}=\frac{8 R}{5}$
Thermal current $i=\frac{T_{1}-T_{2}}{\frac{8 R}{5}}$
$T_{A}-T_{B}=\frac{T_{1}-T_{2}}{\left(\frac{8 R}{5}\right)}\left(\frac{3 R}{5}\right)$
$=\frac{3}{8} \times 120=45$
13.

$m v=(m+m) v^{\prime}$
$(m+m) v^{\prime}=(m+m+M) v_{f}$
\therefore final velocity $v_{f}=\frac{m}{2 m+M} v$
Initial energy $=\frac{1}{2} m v^{2}$
Final energy $=\frac{1}{2}(2 m+M)\left(\frac{m v}{2 m+M}\right)^{2}$
Given that $\frac{5}{6} \frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}-\frac{1}{2}(2 m+M)\left(\frac{m v}{2 m+M}\right)^{2}$
$\frac{1}{12} m v^{2}=\frac{1}{2} \frac{m^{2} v^{2}}{(2 m+M)}$
$6 m=2 m+M$
$\frac{M}{m}=4$
14. $\frac{\left(V_{R M S}\right)_{H e}}{\left(V_{R M S}\right)_{A r}}=\sqrt{\frac{M_{A r}}{M_{H e}}}=\sqrt{\frac{40}{4}}=3.16$
15. $\lambda_{1}=340 \mathrm{~nm}, \lambda_{2}=540 \mathrm{~nm}, \frac{V_{1}}{V_{2}}=2$
$\frac{h c}{\lambda_{1}}=\phi+\frac{1}{2} m(2 V)^{2}$
$\frac{h c}{\lambda_{2}}=\phi+\frac{1}{2} m V^{2}$
$\frac{h c}{\lambda_{1}}-\frac{h c}{\lambda_{2}} 4=\phi-4 \phi$
$h c\left(\frac{4}{540 \mathrm{~nm}}-\frac{1}{340 \mathrm{~nm}}\right)=3 \phi$
$\phi=1.85 \mathrm{eV}$
16.

Apply $K C L$
$i+i_{2}+i_{1}=0$
$\frac{V}{2}+\frac{V-10}{4}+\frac{V-20}{2}=0$
$2 V+V-10+2(V-20)=0$
$5 V-50=0$
$V=10 \mathrm{~V}$
$\Rightarrow i_{1}=\frac{10}{2}=5 A$
17.

Net force on charge at O is zero
$\Rightarrow \frac{K Q^{q}}{\left(\frac{d}{2}\right)^{2}}+\frac{K Q^{2}}{d^{2}}=0$
$q=\frac{-Q}{4}$

Cembibe

18. As we know $\frac{E}{B}=C$
$E=6.3 \times 10^{27} \mathrm{~V} / \mathrm{m}$
$B=\frac{E}{C}=\frac{6.3 \times 10^{27}}{3 \times 10^{8}}$
$B=2.1 \times 10^{19} T$
19. $U=-\vec{P} \cdot \bar{B}$
$F=-\frac{\partial U}{r^{r}}=P \frac{d B}{d r}$
$F=i_{2}\left(\pi a^{2}\right) \times \frac{d}{d r}\left(\frac{\mu_{0} i_{1}}{2 \pi r}\right)$
$F=\frac{i_{1} i_{2} \pi_{0} a^{2}}{2} \frac{1}{r^{2}}$
$F \propto\left(\frac{a}{r}\right)^{2}$
As $r=d$
$F \propto \frac{a^{2}}{d^{2}}$
20. $\quad I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$
$I_{\text {min }}=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$
$\Rightarrow \frac{I_{\text {max }}}{I_{\text {min }}}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}$
$\Rightarrow \frac{16}{1}=\frac{\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}}{\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}}$
$\Rightarrow \frac{4}{1}=\frac{\sqrt{I_{1}}+\sqrt{I_{2}}}{\sqrt{I_{1}}-\sqrt{I_{2}}}$
$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{25}{9}$
21. $V=$ A.e
$O=\frac{d A}{A}+\frac{d l}{l}$
$\Rightarrow \frac{d A}{A}=-\frac{d l}{l}$
$R=\int \frac{l}{A}$
If $d R$ is change in resistance due to change in l and A, then $\frac{d R}{R}=\frac{d l}{e}-\frac{d A}{A}$
$=2 \cdot \frac{\mathrm{dl}}{\mathrm{A}}$
$\therefore \%$ charge in $R=2 \times 0.5 \%=1 \%$
22.

At equilibrium, the centre of mass will be below the point of suspension.
Taking torque about point O ,
$m g \frac{l}{2} \sin \theta+m g\left(l \sin \theta-\frac{l}{2} \cos \theta\right)=0$
$\Rightarrow \frac{3 l}{2} \sin \theta=\frac{l}{2} \cos \theta$
$\Rightarrow \tan \theta=\frac{1}{3}$
$\Rightarrow \theta=\tan ^{-1} \frac{1}{3}$
23. Since the length of the rod does not change, the increment due to increase in temperature will be balanced by the compression due to applied force.
$Y=\frac{\frac{F}{A}}{\frac{\Delta l}{l}} \Rightarrow \frac{\Delta l}{l}=\frac{F}{A \cdot Y}$
Also $\frac{\Delta l}{l}=\alpha \Delta T$
$\therefore \frac{F}{A Y}=\alpha \Delta T$
$Y=\frac{F}{A . \alpha \Delta T}$
24.

Consider a small element at a distance x . It is a two capacities in series.
$d c=\frac{d c_{1}+d c_{2}}{d c_{1}+d c_{2}}$
$d c=\frac{\varepsilon_{0} \cdot a d x}{\frac{x \tan \theta}{k}+\frac{d-x \tan \theta}{1}}$
$\therefore d c=\frac{\varepsilon_{0} K . a d x}{-x \tan \theta(k-11)+d . k}$
$\therefore C=\int_{0}^{a} \frac{\varepsilon_{0} k . a d x}{-x \tan \theta(k-1)+d . k}$
$=\frac{\varepsilon_{0} k . a}{\tan \theta(k-1)} \ln \frac{-a \tan \theta(k-1)+d . k}{d . k}$
$=\frac{\varepsilon_{0} k a^{2}}{d(k-1)} \ln k$
25. $\rho=\frac{E}{J}=\frac{E}{n e v_{d}}=\frac{1}{n e \mu}$
$\mu=$ mobility
$\rho=\frac{1}{10^{19} \times 1.6 \times 10^{-19} \times 1.6}=\frac{1}{256} \Omega-m$
$=0.4 \Omega-m$.
26. For standing car

$$
\mu=\text { Linear mass density }
$$

M

For accelerating car

$v^{\prime}=\sqrt{\frac{\sqrt{(M g)^{2}+(M a)^{2}}}{\mu}}$
$\Rightarrow \frac{60.5}{60}=\sqrt{\frac{\sqrt{(M g)^{2}+(M a)^{2}}}{M g}}$
$\Rightarrow\left(1+\frac{1}{120}\right)^{2}=\frac{\sqrt{(M g)^{2}+(M a)^{2}}}{M g}$
$\Rightarrow 1+\frac{2}{120}=\sqrt{1+\frac{a^{2}}{g^{2}}}$
$\approx 1=+\frac{1}{2} \frac{a^{2}}{g^{2}}$
$\therefore a=g \sqrt{\frac{4}{120}}=\frac{g}{\sqrt{30}}$

Chemistry

1. $\quad k_{b}$ values are a measure of basicity. Higher the k_{b} value, greater will be basicity. Also basicity implies the tendency to donate electrons Basic character $\alpha \frac{1}{\% \text { scharacter }}$ $N s p^{2}>N s p^{3}$ (\% s-character=more\%s-character more will be electro negativity) Than $N s p^{2}$ has more $\% s-$ character than $N s p^{3}$ is less basic as compare to $N s p^{3}$ So $R>p$.
In Q lone pair involved in Aromaticity it so difficult to donate as it is very less basic Thus, the correct order will be: $R>P>Q$
2. The first step is anti addition of $B r_{2}$ across the double bond.

In the second step, ${ }^{-}$OEt $n u^{-}$) gets added by $S N^{1}$ mechanism. The Br in dashed position acts as the having group as this will add to the formation of a stable benzylic carbocation, where OEt gets added.

3. Acidic character α stability of conjugate base (anion)

As stability of an $\alpha-M$ and $-I$
$-C l$ and $-F$ have ($-I>+M$ effect) in which F is more electron withdrawing due to greater electronegativity. NO_{2} and CN have both -I and -M effect with NO_{2} being more electron withdrawing.
Order of -I-effect $-\mathrm{NO}_{2}>\mathrm{CN}>-\mathrm{F}>-\mathrm{Cl}$ Hence, order of acidity (k_{a}) will be
$\mathrm{O}_{2} \mathrm{NCH}_{2} \mathrm{COOH}>\mathrm{NC} \mathrm{CH}_{2} \mathrm{COOH}>\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
(R)
(S)
(P)
(Q)
4. The concentration of the ions for drinking water are
$F e \leq 0.2 \mathrm{ppm} \quad M n \leq 0.05 \mathrm{ppm} \quad \mathrm{Cu} \leq 3.0 \mathrm{ppm} \quad \mathrm{Zn} \leq 5.0 \mathrm{ppm}$
Hence, only Mn^{+}concentration is greater than allowed limit.
5. Acidic character α stability of conjugate base (anion)

As stability of $\alpha-M$ and $-I$
Electron withdrawing groups increase acidic strength. Among the given compounds, the electron withdrawing strength of substituents is $\mathrm{CN}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$ Hence, $\mathrm{CH}(\mathrm{CN})_{3}$ will be most acidic
6.

Penicillin

Sulphapyridine

Chloroxylenol

Norethindrone

Chloroxylenol is a phenol derivative and hence can be identified with FeCl_{3} test. The primary amine of sulphapyridine can be identified with earbylamine test. The aliphatic alkyne of Nore thindrone can be identified by the Baeyer's reagent.
7.

The final product is an isocyanide as the AgCN bond has covalent nature, due to which C is unavailable for bond. Hence, N bonds with the benzylic carbon leading to formation of isocyanide.
8. In the first step, R CN gets reduced to $\mathrm{RCH}=N \mathrm{H}_{2}$ which then gets hydrolyzed to RCH $=0$

$$
R-C \equiv N \xrightarrow[\text { redichion }]{\text { DIBA-H}} R-\mathrm{CH}=\mathrm{NH} \xrightarrow{\mathrm{H}_{2} O} R-\mathrm{CH}=\mathrm{O}
$$

e EMBIBE

9.

Hence, the correct order is
Arg $>$ Lys $>$ Gly $>$ Asp
10.

11.

12. Moles of $N a^{+}=\frac{\text { Weight of } \mathrm{Na}^{+} \text {ions }}{\text { Molecular weight }}=\frac{92}{23}=4$

4, mole of Na^{+}present in 1 kg of water Hence molarity Na^{+}ions will be 4
13. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ does not have any water of crystallization. This happens because the large size of Ba leads to poor polarizing power and hence, if unit able to attract water molecules effectively.
14. According to the Freundlich adsorption isotherm, $\frac{x}{m}=K p^{\frac{1}{n}}$

Taking log on bot sides.
$\log \left(\frac{x}{m}\right)=\log K+\frac{1}{n} \log P$
Slope $=\frac{1}{n}$
Slope from graph $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2}{4}=\frac{1}{2}$
or, $\frac{1}{n}=\frac{1}{2}$
$\therefore \frac{x}{m}=K p^{\left(\frac{1}{2}\right)}$
or $\frac{x}{m} \propto p^{\left(\frac{1}{2}\right)}$
15. Iron and copper are both present in

Copper pyrite - CuFeS_{2}
Malachite $-\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$
Azurite $-2 \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
16. Millimoles of $\mathrm{H}_{2} \mathrm{SO}_{4}=20 \times 0.1=2$

Millimoles of $\mathrm{NH}_{4} \mathrm{OH}=30 \times 0.2=6$

$$
\begin{array}{lcccc}
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
t=0 & 2 & 6 & 0 & 0 \\
\text { Uponcompletion } & 0 & 2 & 2 & 4
\end{array}
$$

Hence, the solution will act as a basic buffer.
$p O H=p K_{b}+\log \frac{[\text { salt }]}{[\text { Base }]}$
$\left[\mathrm{NH}^{+}\right]=2 \times\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$
$2 \times 2=4$
$p O H=p K_{b}+\log \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}$
$=4.7+\log \frac{4}{2}$
$=4.7+0.3010=5.010$
$p H=14-p O H \sim 9$
17. According to molecular orbital theory $L i_{2}^{+}$has electrons $-\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{1}$
$L i_{2}^{-}$has 7 electrons $-\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{1}$
bond order $=\frac{\text { electron in bonding molecular orbital }- \text { Electron in Antibonding molecular orbital }}{2}$
Bond order of $L i_{2}^{+}=\frac{3-2}{2}=\frac{1}{2}$
Bond order of $L i_{2}^{-}=\frac{4-3}{2}=\frac{1}{2}$
As both have similar bond order, both $L i_{2}^{+}$and $L i_{2}^{-}$will be stable.
Note: $L i_{2}^{-}$will be relatively unstable to $L i_{2}^{+}$as it has more electrons in anti bonding orbitals, so have more energy and having more repulsion so $L i_{2}^{-}$is less stable as $L i_{2}^{+}$
18. Henry's constant increases with increase in temperature while it decrease with increase in solubility. Hence value of K_{H} increases as solubility of gas increases is a wrong statement.
19. Let Assume $\mathrm{x} \& \mathrm{y}$ are the order of reaction $\mathrm{w}, \mathrm{r}, \mathrm{t}$ of $\mathrm{A} \& \mathrm{~B}$ respectively From equation (1) \& (2)

$$
\left(\frac{.1}{.1}\right)^{x}\left(\frac{.2}{.25}\right)^{y}=\frac{6.93 \times 10^{-3}}{6.93 \times 10^{-3}} \Rightarrow y=0
$$

From equation (1) \& (3) and put the value $y=0$

$$
\begin{aligned}
& \left(\frac{.1}{.2}\right)^{x}\left(\frac{.2}{.3}\right)^{0}=\frac{6.93 \times 10^{-3}}{1.386 \times 10^{-2}} \\
& \left(\frac{1}{2}\right)^{x}=\left(\frac{1}{2}\right) \Rightarrow x=1
\end{aligned}
$$

the rate law will be $R=K[A]^{1}[B]^{0}$
Hence, the reaction is of first order.
$K=\frac{R}{[A]}=\frac{6.93 \times 10^{-3}}{0.1}=6.93 \times 10^{-2}$
$t_{\frac{1}{2}}$ for first order reaction is given by
$t_{\frac{1}{2}}=\frac{0.693}{K}$
$=\frac{0.693}{6.93 \times 10^{-2}}=10$
20. In a group decreased down and in a group increase.
(i) \rightarrow Electronegativity: Top to bottom decrease
(radii αn^{2} so generally top to bottom increases)
(ii) Electronegativity: - Top to bottom decreases

Electron affinity: - generally top to bottom decreases not increases
(iii) radii: - $r \alpha n^{2}$ top to bottom generally increases
\rightarrow Electronegativity: - top to bottom increases
(iv) Electron gain enthalpy: - top to bottom decreases

Electronegativity: - Top to bottom decreases
21. $|W|=n R T \quad \ln \frac{v_{f}}{v_{i}}$
$|W|=n R T l n v_{f}-n R T v_{i}$
Intercept will be $-v e$
22. (A) True. $\left(\Delta_{0}\right)_{A}<\left(\Delta_{0}\right)_{B}$, both complex have $C N=6$; B has strong field ligand and A has weak field ligand
so $\left(\Delta_{0}\right)_{A}<\left(\Delta_{0}\right)_{B}$
(B) True. By the crystal field splitting parameter can be measured by wavelength of complementary colours for A and B respectively
(C) True. In both complexes, Cr has 3 unpaired electrons and hence, will be paramagnetic
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
$C r^{+3}=1 S^{2} 2 S^{2} 2 p^{6} 3 S^{2} 3 p^{6} 3 d^{3} C r^{+3} m$ in strong field ligand or weak field ligand $t_{2 g}{ }^{111}, e g^{\circ}$

$L=$ ligand $=\mathrm{H}_{2} \mathrm{O} / \mathrm{NH}_{3}$
Hybridization is $d^{2} S p^{3}$ and
Having 3 top lame pairs
(D) False. The crystal field splitting cannot be measured by wavelength of yellow and violet colours for $\mathrm{A} \& \mathrm{~B}$ respectively.
23. Silicones with medium length chains behave as viscous oils, jellies and greases. They are chemically inert, i.e., resistant to oxidation, thermal decomposition or to attach by organic reagents. Since silicones are surrounded by non-polar alkyl
groups, they are hydrophobic by nature. Being biocompatible, they are used in surgical and cosmetic implants. Hence, all options are correct.
24. Change of one mole of $e^{-}=1$ faraday
$\mathrm{Pb}(\mathrm{s})+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{PbSO}_{4}+2 e^{-}$
2 mole of e^{-}involved the above reaction $=2$ faraday
2 mole of electron $=2$ faraday current pass than PbSO_{4} deposited $=303 \mathrm{gm} / \mathrm{mol}$
$\therefore 0.05 \mathrm{~F}$ faraday current pass than PbSO_{4} deposited $=\frac{303}{2} \times .05$
$=7.575$
≈ 7.6
25. Piezoelectric material are those that produce an electric current when they are placed under mechanical stress. It was first discovered in 1880 by two French Physicists, brother Pierre and Paul- Jacques curie, in crystals of quartz, tourmaline and Rochelle salt.
26. Isotopes have same atomic number and different atomic mass ie. Same number of proton \& different number of Neutron relative atomic mass
Protein $\quad 1 H^{1}=\mathrm{H} \quad 1.00782$
Deuterium $\quad 1 \mathrm{H}^{2}=\mathrm{D} \quad 2.01410$
$\begin{array}{lll}\text { Trillian } & 1 \mathrm{H}^{3}=\mathrm{T} & 3.01604\end{array}$
27. According to Rydberg's equation
$\bar{V}=R_{H} Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$=R_{H} \times 1^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{8^{2}}\right)$
$\bar{V}=\frac{R_{H}}{n_{f}^{2}}-\frac{R_{H}}{64}$
Hence, slope for $\bar{V} \&=\frac{1}{n_{f}^{2}} i s+R_{H}$
28. The sum of the first three ionization enthalpies of at considerably decreases and is therefore after to form $a t^{+3}$ ions. However down the group due to poor shielding, effective nuclear charge holds ns electron tightly (responsible for in emf pair effect) \& thereby, restricting results of this only P-orbital electrons may be involved in banding so till show $+1 \&+3$ oxidation states.
29. Maximum number of unpaired electrons for transition metals $=5$
or $n=5$
Spin only magnetic moment $=\sqrt{n(n+2)} B M$
$=\sqrt{5(5+2)}=\sqrt{35}$
$=5.92 B M$
30. According to ideal gas equation
$p V=n R T$
$200 \times 10=(0.5+x) R \times 1000$
$2=0.5 R+x R$
$x=\frac{2-0.5 R}{R}=\frac{4-R}{2 R}$

