Physics

1. Distance of the centre of mass of a solid uniform cone its vertex is z_{0}. If the radius of its base is R and its height is h then z_{0} is equal to:
(A) $\frac{5 h}{8}$
(B) $\frac{3 h^{2}}{8 R}$
(C) $\frac{h^{2}}{4 R}$
(D) $\frac{3 h}{4}$

Answer: (D)
Solution:

Consider an elementary disc of radius r and thickness dy.

If total mass of cone $=\mathrm{M}$ and density $=\rho$
Then mass of elementary disc is $\mathbf{d m}=\rho \mathbf{d v}=\rho \times \pi r^{2} d y$

In similar Δ^{\prime} s AOE and $\mathrm{AO}^{\prime} \mathrm{C}$
$\frac{y}{h}=\frac{r}{R} \Rightarrow r=\frac{y}{h} R$

Put (2) in (1)
$d m=\rho(\pi)\left(\frac{y}{\mathrm{~h}} \mathrm{R}\right)^{2} \mathrm{dy}$
$\mathrm{dm}=\rho \times \frac{\pi^{\mathrm{R}^{2}}}{\mathrm{~h}^{2}} y^{2} \mathrm{dy}$
\therefore The centre of mass of cone lying on the line AO ' at a distance $y_{c m}$ from A can be calculated as

$$
\begin{aligned}
& y_{\mathrm{cm}}=\frac{\int(\mathrm{dm}) y}{\int \mathrm{dm}}=\frac{\int \rho \pi \mathrm{R}^{2}}{\mathrm{~h}^{2}} \frac{y^{3} \mathrm{dy}}{\int \mathrm{dm}} \\
& =\frac{\rho \pi \mathrm{R}^{2}}{\mathrm{~h}^{2} \mathrm{M}} \int_{0}^{\mathrm{h}} y^{3} \mathrm{dy} \\
& \because \mathrm{M}=\rho \times \frac{1}{3} \pi \mathrm{R}^{2} \mathrm{~h} \\
& \Rightarrow y_{\mathrm{cm}}=\frac{\rho \pi \mathrm{R}^{2}}{\mathrm{~h}^{2} \rho \times \pi \mathrm{R}^{2} \mathrm{~h}} \times \frac{\mathrm{h}^{4}}{4}=\frac{3 \mathrm{~h}}{4}
\end{aligned}
$$

Topic: Centre of Mass
Difficulty: Easy (embibe predicted Low Weightage)
Ideal time: 30
2. A red LED emits light at 0.1 watt uniformly around it. The amplitude of the electric field of the light at a distance of 1 m from the diode is:
(A) $5.48 \mathrm{~V} / \mathrm{m}$
(B) $7.75 \mathrm{~V} / \mathrm{m}$
(C) $1.73 \mathrm{~V} / \mathrm{m}$
$2.45 \mathrm{~V} / \mathrm{m}$

Answer: (D)
Solution:

For a point source of power $=P$, then intensity at a point at a separation x from the source is

$$
I=\frac{\text { power }}{\text { Area }}=\frac{p}{4 \pi x^{2}}
$$

\because Average intensity of EM wave is given by

$$
\begin{aligned}
& I=\frac{1}{2} C \in_{0} E_{\sigma}^{2} \\
& \Rightarrow E_{0}=\sqrt{\frac{2 p}{4 \pi \epsilon_{0} c x^{2}}} \\
& \because \frac{1}{4 \pi \epsilon_{0} \epsilon}=9 \times 10^{9}, P=0.1 \mathrm{~W}, x=1 \mathrm{~m} \\
& C=\text { Speed of light }=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \Rightarrow E_{0}=\sqrt{\frac{2 \times 0.1 \times 9 \times 10^{9}}{3 \times 10^{8} \times 1^{2}}}=\sqrt{6}=2.45 \mathrm{v} / \mathrm{m}
\end{aligned}
$$

Topic: Optics

Difficulty: Easy (embibe predicted high weightage)
Ideal time: 120
3. A pendulum made of a uniform wire of cross sectional area A has time period T. When and additional mass M is added to its bob, the time period changes to T_{M}. If the Young's modulus of the material of the wire is Y then $\frac{1}{Y}$ is equal to:
($\mathrm{g}=$ gravitational acceleration)
(A) $\left[1-\left(\frac{T_{M}}{T}\right)^{2}\right] \frac{A}{M g}$
(B) $\left[1-\left(\frac{T}{T_{M}}\right)^{2}\right] \frac{A}{M g}$
(C) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{M g}$
(D) $\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{M g}{A}$

Answer: (C)
Solution:

Initial length $=\ell$
Time period $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$
After suspending mass M ,
Youngs modulus $\mathrm{Y}=\frac{\text { Stress }}{\text { Strain }}$
$=\frac{\mathrm{F}}{\Delta_{\ell}^{\ell}}=\frac{\mathrm{F} \mathrm{\ell}}{\Delta \ell \mathrm{~A}}$
Change in length of wire $\Delta \ell=\frac{\mathrm{F} \ell}{\mathrm{Ay}}$
Now Time period $\mathrm{T}_{\mathrm{M}}=2 \pi \sqrt{\frac{e+\Delta l}{\mathrm{~g}}}$
$\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{M}}}=\frac{2 \pi \sqrt{\frac{\mathrm{Z}}{\mathrm{E}}}}{2 \pi \sqrt{\frac{(l+\Delta l}{\mathrm{g}}}} \quad\left[\because \frac{i}{i i}\right]$
$\frac{T^{2}}{T_{M}^{2}}=\frac{\ell}{\ell+\Delta \ell}$
$\frac{\mathrm{T}^{2}}{\mathrm{~T}_{\mathrm{M}}^{2}}=\frac{\ell}{\ell+\frac{\mathrm{F} \ell}{\mathrm{AY}}} \quad$ [putting $\Delta \ell$ value]

$$
\begin{aligned}
& \left(\frac{T}{T_{M}}\right)^{2}=\frac{1}{1+{ }_{A y}^{F}} \\
& 1+\frac{F}{A y}=\left(\frac{T_{M}}{T}\right)^{2} \\
& \frac{1}{y}=\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{F} \\
& F=m g \\
& \Rightarrow \frac{1}{y}=\left[\left(\frac{T_{M}}{T}\right)^{2}-1\right] \frac{A}{M g}
\end{aligned}
$$

Topic: Simple Harmonic Motion
Difficulty: Difficult (embibe predicted high weightage)
Ideal time: 120
4. For a simple pendulum, a graph is plotted between its kinetic energy (KE) and potential energy (PE) against its displacement d. which one of the following represents these correctly?
(Graphs are schematic and not drawn to scale)
(A)

(B)

(C)

(D)

Answer: (D)
Solution:

For simple pendulum performing simple harmonic motion, displacement

$$
y=A \sin \omega t
$$

Velocity $\frac{d y}{d t}=V=\omega \mathrm{A} \cos \omega \mathrm{t}$

$$
\begin{aligned}
& =\mathrm{A} \omega \sqrt{1-\sin ^{2} \omega \mathrm{t}} \\
& =\mathrm{A} \omega \sqrt{1-\frac{y^{2}}{\mathrm{~A}^{2}}} \\
& =\omega \sqrt{\mathrm{A}^{2}-\mathrm{y}^{2}}
\end{aligned}
$$

Kinetic energy $=\frac{1}{2} \mathrm{mv}^{2}$

$$
=\frac{1}{2} \times \mathrm{m} \times \omega^{2}\left(\mathrm{~A}^{2}-\mathrm{y}^{2}\right)
$$

at

$$
\mathrm{y}=\mathrm{A} \text { (extream positions) }
$$

Kinetic energy $=\frac{1}{2} \omega^{2} \mathrm{~m}\left(\mathrm{~A}^{2}-\mathrm{A}^{2}\right)=0$

Similarly potential energy $=\frac{1}{2} m \omega^{2} y^{2}$

On plotting graphs of potential energy \& Kinetic energy

Topic: Simple Harmonic Motion
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 60
5. A train is moving on a straight track with speed $20 \mathrm{~ms}^{-1}$. It is blowing its whistle at the frequency of 1000 Hz . The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound $320 \mathrm{~ms}^{-1}$) close to:
(A) 18%
(B) 24%
(C) 6%
(D) 12%

Answer: (D)
Solution:

Before $f_{0}=1000 \mathrm{~Hz}$

$$
\begin{aligned}
& f^{\prime}=\left(\frac{v}{v-v_{s}}\right) \times f_{0} \\
& =\left(\frac{320}{320-20}\right) \times f_{0} \\
& =\left(\frac{320}{300}\right) \times f_{0} \\
& \quad=\frac{16 f_{0}}{15} \\
& f^{\prime \prime}=\left(\frac{v}{v+v_{s}}\right) \times f_{0} \\
& f^{\prime \prime}=\left(\frac{320}{320+20}\right) f_{0} \\
& =\left(\frac{320}{340}\right) f_{0} \\
& =\left(\frac{16}{17}\right) f_{0}
\end{aligned}
$$

Change in frequency
$=\left(\frac{16}{15}-\frac{16}{17}\right) f_{0}$
\therefore Percentage change in frequency
$=\frac{\left(\frac{16}{15}-\frac{16}{17}\right) f_{0}}{f_{0}} \times 100 \approx 12 \%$ nearly
Topic: Wave \& Sound
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 200
6. When 5 V potential difference is applied across a wire of length 0.1 m , the drift speed of electrons is $2.5 \times 10^{-4} \mathrm{~ms}^{-1}$. If the electron density in the wire is $8 \times 10^{28} \mathrm{~m}^{-3}$, the resistivity of the material is close to:
(A) $1.6 \times 10^{-6} \Omega \mathrm{~m}$
(B) $1.6 \times 10^{-5} \Omega \mathrm{~m}$
(C) $1.6 \times 10^{-8} \Omega \mathrm{~m}$
(D) $1.6 \times 10^{-7} \Omega \mathrm{~m}$

Answer: (B)
Solution:

Potential difference $=5 \mathrm{~V}$
length $=0.1 \mathrm{~m}=\ell$

Electron speed $=$ drift velocity $\mathbf{v}_{\mathrm{d}}=2.5 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
electron density (n) $=8 \times 10^{28} \mathrm{~m}^{-3}$
charge on each electron(e) $=1.6 \times 10^{-19} \mathrm{c}$

We know $\mathbf{i}=\mathbf{n A e} \mathbf{v}_{\mathbf{d}}$

And $v=i R$

Resistance R is also equal $\frac{\rho \ell}{A}$
$R=\frac{\rho \ell}{A}$
$\rho=\frac{\mathrm{AR}}{\ell} \quad[\rho=$ Resistivity $]$
$=\frac{\mathrm{A}}{\mathrm{e}} \times \frac{\mathrm{v}}{\mathrm{i}} \quad[$ from (ii) $]$
$=\underset{e \times n A e_{d}}{A v} \quad[f r o m(i)]$
$=\frac{v}{e \times n \times e \times v_{d}}$

$$
=\frac{5}{0.1 \times 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4}}
$$

$$
=0.16 \times 10^{-4} \Omega \mathrm{~m}=1.6 \times 10^{-5} \Omega \mathrm{~m}
$$

Topic: Electrostatics
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 120
7.

Two long current carrying thin wires, both with current I, are held by insulating threads of length L and are in equilibrium as shown in the figure, with threads making an angle ' $\boldsymbol{\theta}$ ' with the vertical. If wires have mass $\boldsymbol{\lambda}$ per unit length then the value of I is:
($\mathrm{g}=$ gravitational acceleration)
(A) $2 \sqrt{\frac{\pi g L}{\mu_{0}} \tan \theta}$
(B) $\sqrt{\frac{\pi \lambda g L}{\mu_{0}} \tan \theta}$
(C) $\sin \theta \sqrt{\frac{\pi \lambda g L}{\mu_{0} \cos \theta}}$
(D) $2 \sin \theta \sqrt{\frac{\pi \lambda g L}{\mu_{0} \cos \theta}}$

Answer: (D)
Solution:

Two wires will repel each other due to current in the same direction and due to magnetic force.
\therefore magnetic force per unit length is
$\frac{\mathrm{df}}{\mathrm{dl}}=\frac{\mu_{0} \mathrm{I}^{2}}{2 \pi(2 \mathrm{~L} \sin \theta)}=\frac{\mu_{0} \mathrm{I}^{2}}{4 \pi \mathrm{~L} \sin \theta}$
and mass per unit length of each $\operatorname{mix}=\frac{\mathrm{dm}}{\mathrm{dl}}=\lambda$
So, magnetic force on total length ℓ^{\prime} of the mix is $\mathrm{f}_{\mathrm{m}}=\frac{\mu_{0} \mathrm{I}^{2} \ell^{\prime}}{4 \pi \mathrm{~L} \sin \theta}$
and weight $=\lambda \ell^{\prime} g$

By equilibrium of mix,
$\mathrm{T} \sin \theta=\mathrm{f}_{\mathrm{m}}$ and $\mathrm{T} \cos \theta=\mathrm{mg}$
$\Rightarrow \frac{\mathrm{T} \sin \theta}{\mathrm{T} \cos \theta}=\frac{\mathrm{f}_{\mathrm{m}}}{\mathrm{mg}} \Rightarrow \mathrm{f}_{\mathrm{m}}=\mathrm{mg} \tan \theta$
$\Rightarrow \frac{\mu_{0} I^{2}}{4 \pi \mathrm{~L} \sin \theta} \ell^{\prime}=\mathrm{mg} \frac{\sin \theta}{\cos \theta}=\lambda \ell^{\prime} \mathrm{g} \frac{\sin \theta}{\cos \theta}$
$\Rightarrow \frac{\mu_{0} I^{2}}{4 \pi L \sin \theta} \ell^{\prime}=\lambda \ell^{\prime} g \frac{\sin \theta}{\cos \theta}$
$\Rightarrow \mathrm{I}^{2}=\frac{\lambda_{\mathrm{grLL}}}{\mu_{\mathrm{c}}^{\mathrm{cose}} \mathrm{e}} 4 \sin ^{2} \theta$
$\mathrm{I}=2 \sin \theta \sqrt{\frac{\lambda \pi \mathrm{gL}}{\mu_{0} \cos \theta}}$

Topic: Magnetism
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 90
8.

In the circuit shown, the current in the 1Ω resistor is:
(A) 0.13 A , from Q to P
(B) 0.13 A , from P to Q
(C) 1.3 A , from P to Q
(D) 0 A

Answer: (A)
Solution:

The distribution of current according to Kirchhoff's first law is as shown in the circuit. By Kirchoff's second law (voltage rule)

In loop APQBA using sign curve line
$6-3 I-I_{1}=0$
$\Rightarrow 3 I+I_{1}=6$
In loop QD \& PQ
$\Rightarrow-3\left(I-I_{1}\right)+9-2\left(I-I_{1}\right)+1 \times I_{1}=0$
$\Rightarrow 9-5\left(\mathrm{I}-\mathrm{I}_{1}\right)+\mathrm{I}_{1}=0$
$\Rightarrow 9+6 \mathrm{I}_{1}-5 \mathrm{I}=0$
$\Rightarrow 5 \mathrm{I}-6 \mathrm{I}_{1}=9$
(Multiplying (i) by 5) - (Multiplying (ii) by 3)
$\Rightarrow 15 \mathrm{I}+5 \mathrm{I}_{1}=30$
$15 \mathrm{I}-18 \mathrm{I}_{1}=27$
$-\quad+\quad-$
$23 \mathrm{I}_{1}=3 \Rightarrow \mathrm{I}_{1}=\frac{3}{23} \mathrm{~A}=0.13 \mathrm{~A}$
+ve sign of I_{1} shows that current 0.13 A flows from Q to P .
Topic: Electrostatics
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 90
9. Assuming human pupil to have a radius of 0.25 cm and a comfortable viewing distance of 25 cm , the minimum separation between two objects that human eye can resolve at 500 nm wavelength is:
(A) $100 \mu \mathrm{~m}$
(B) $300 \mu \mathrm{~m}$
(C) $1 \mu m$
$30 \mu m$

Answer: (D)
By fraunhofer diffraction through a circular aperture $\theta=\frac{1.22 \pi}{d}$

$$
\begin{aligned}
& D=\text { diameter of pupil }=2 \times 0.25=0.5 \mathrm{~cm} \\
& \lambda=500 \mathrm{~nm}
\end{aligned}
$$

First dark ring is formed by the light diffracted from the hole at an angle θ with the axis

Viewing distance $D=25 \mathrm{~cm}$
\therefore minimum separation between

2 objects $=D \theta$
$=\frac{25 \times 10^{-2} \times 1.22 \times 500 \times 10^{-9}}{5 \times 10^{-1}}$
$=30 \times 10^{-6} \mathrm{~m}$
$=30 \mu \mathrm{~m}$
Topic: Optics
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 120
10. An inductor $(L=0.03 H)$ and a resistor $(R=0.15 \mathrm{k} \Omega)$ are connected in series to a battery of 15 V EMF in a circuit shown below. The key K_{1} has been kept closed for a long time. Then at $t=0 . K_{1}$ is opened and key K_{2} is closed simultaneously. At $t=1 \mathrm{~ms}$, the current in the circuit will be : $\left(e^{5} \cong 150\right)$

(A) 6.7 mA
(B) 0.67 mA
(C) 100 mA
(D) 67 mA

Answer: (B)
Solution:

Case I: K_{1} is closed for long tiime

for long time, inductor acts as a conducting wire.
\Rightarrow current in the circuit $=\frac{\mathrm{V}}{\mathrm{R}}$
$=\frac{15}{150}$
$\mathrm{i}_{0}=0.1 \mathrm{~A}$

Case II: K_{1} is open and K_{2} is closed

Current in the circuit
$\mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t}} ; \tau=\frac{\mathbf{L}}{\mathrm{R}}$
After $\mathrm{t}=1 \mathrm{~ms}=10^{-3} \mathrm{~s}$
$i=i_{0} e^{-\left(\frac{10^{-3} \times 150}{3 \times 10^{-2}}\right)}$

$$
\begin{aligned}
& =0.1 \mathrm{e}^{\frac{-15}{3}} \\
& =0.1 \frac{1}{\mathrm{e}^{5}}=\frac{0.1}{150} \\
& =6.67 \times 10^{-4} \\
& =0.67 \times 10^{-3} \mathrm{~A} \\
& =0.67 \mathrm{~mA}
\end{aligned}
$$

Topic: Magnetism
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 120
11. An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q_{0} and then connected to the L and R as shown below:

If a student plots graphs of the square of maximum charge $\left(Q_{\text {Max }}^{2}\right)$ on the capacitor with time (t$)$ for two different values L_{1} and $L_{2}\left(L_{1}>L_{2}\right)$ of L then which of the following represents this graph correctly? (plots are schematic and not drawn to scale)
(A)

(B)

(C)

(D)

Answer: (C)

Solution:

Comparing to damped pendulum

We write
$\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}=-\mathbf{k x}-\mathbf{b v} ; \mathrm{bv}$ is resistive force
\Rightarrow Amplitude $\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\frac{\mathrm{bt}}{2 m \mathrm{~m}}}$

Comparing results, we can write
$\frac{\mathrm{q}}{\mathrm{c}}=+\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{iR}$
as charge decreasing

Topic: Magnetism

Difficulty: Difficult (embibe predicted high weightage)
Ideal time: 150
12. In the given circuit, charge Q_{2} on the $2 \mu F$ capacitor changes as C is varied from $1 \mu F$ to $3 \mu F$. Q_{2} as a function of ' C ' is given properly by: (figure are drawn schematically and are not to scale)

(A)

(B)

(C)

(D)

Answer: (D)
Solution:

$\because 1 \wedge 2 \mu f$ are in parallel.

\therefore Equivalent capacitance of the series combination is
$C_{e q}$ is $\frac{3 c}{C+3}$
So total charge supplied by battery is $Q=C_{e q}=\frac{3 C E}{C+3}$
\therefore Potential difference across parallel combination of $1 \mu f$ ad $2 \mu f$ is
$\Delta V=\frac{Q}{3}=\frac{C E}{C+3}$
So charge on $2 \mu f$ capacitor is
$Q_{2}=C_{2} \Delta V=\frac{2 C E}{C+3}$
$\Rightarrow \frac{Q_{2}}{2 E}=\frac{C}{C+3} \Rightarrow \frac{Q_{2}}{2 E}=\frac{C+3-3}{C+3}$
$\Rightarrow \frac{Q_{2}}{2 E}=1-\frac{3}{C+3} \Rightarrow\left(\frac{Q_{2}}{2 E}-1\right)=\frac{-3}{C+3}$
$\Rightarrow\left(Q_{2}-2 E\right)(C+3)=-6 E$
Which is of the form $(y-\alpha)(x+\beta)<0$
So the graph in hyperbola. With down ward curve line. i.e

Topic: Electrostatics
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 120
13. From a solid sphere of mass M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendicular to one of its faces is:

Answer: (A)
Solution: Let a be length of cube for cube with maximum possible volume diagonal length $=2 R$

$$
\Rightarrow \sqrt{3} a=2 R \Rightarrow a=\frac{2 R}{\sqrt{3}}
$$

As densities of sphere and cube are equal. Let M^{\prime} be mass of cube
$\frac{M}{\frac{4}{3} \pi R^{3}}=\frac{M^{\prime}}{a^{3}}$

$$
M^{\prime}=\frac{3 M a^{3}}{4 \pi R^{3}}
$$

Moment of inertial of cube about an axis passing through centre
$\frac{M^{\prime}\left(2 a^{2}\right)}{12}$

$$
\begin{gathered}
\frac{3 M a^{3}}{4 \pi R^{3}} \times \frac{2 a^{2}}{12} \\
\frac{M a^{5}}{8 \pi R^{3}} \\
a=\frac{2}{\sqrt{3}} R \\
\frac{M \times 32 R^{5}}{8 \pi \times 9 \sqrt{3} R^{3}} \\
\frac{4 M R^{2}}{9 \sqrt{3} \pi}
\end{gathered}
$$

Topic: Rotational Mechanics
Difficulty: Moderate (embibe predicted Low Weightage)
Idal time: 300
14. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{\frac{L}{g}}$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. The accuracy in the determination of g is:
(A) 1%
(B) 5%
(C) 2%
3%

Answer: (D)
Solution: $\therefore T=2 \pi \sqrt{\frac{L}{g}} \Rightarrow g=4 \pi^{2} \frac{L}{T^{2}}$
\therefore Error in g can be calculated as

$$
\frac{\Delta g}{g}=\frac{\Delta L}{L}+\frac{2 \Delta T}{T}
$$

\therefore Total time for n oscillation is $t=n T$ where $\mathrm{T}=$ time for oscillation.

$$
\begin{gathered}
\Rightarrow \frac{\Delta t}{t}=\frac{\Delta T}{T} \\
\Rightarrow \frac{\Delta g}{g}=\frac{\Delta L}{L}+\frac{2 \Delta t}{t}
\end{gathered}
$$

Given that $\Delta L \quad 1 \mathrm{~mm}=10^{-3} \mathrm{~m}, L=20 \times 10^{-2} \mathrm{~m}$

$$
\begin{gathered}
\Delta t=1 s, t=90 s \\
\text { error } \in g \\
\frac{\Delta g}{g} \times 100=\left(\frac{\Delta L}{L}+\frac{2 \Delta t}{t}\right) \times 100 \\
\frac{\Delta g}{g} \times 100=\left(\frac{\Delta L}{L}+\frac{2 \Delta t}{t}\right) \times 100 \\
\left(\frac{10^{-3}}{20 \times 10^{-2}}+\frac{2 \times 1}{90}\right) \times 100 \\
\frac{1}{2}+\frac{20}{9} \\
0.5+2.22
\end{gathered}
$$

$\cong 3$
Topic: Unit \& Dimensions
Difficulty: Easy (embibe predicted easy to score)
Ideal time: 90
15. On a hot summer night, the refractive index of air is smallest near the ground and increases with height from the ground. When a light beam is directed horizontally, the Huygens' principle leads us to conclude that as it travels, the light beam:
(A) Bends downwards
(B) Bends upwards
(C) Becomes narrower
(D) Goes horizontally without any deflection

Answer: (B)
Solution: Consider air layers with increasing refractive index.

At critical angle it will bend upwards at interface. This process continues at each layer, and light ray bends upwards continuously.

Topic: Optics

Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 60
16. A signal of 5 kHz frequency is amplitude modulated on a carrier wave of frequency 2

MHz . The frequency of the resultant signal is/are:
(A) $2005 \mathrm{kHz}, 2000 \mathrm{kHz}$ and 1995 kHz
(B) 2000 kHz and 1995 kHz
(C) 2 MHz only
(D) 2005 kHz , and 1995 kHz

Answer: (A)
Solution:
Frequency of single wave $=5 \mathrm{kHz}=\mathrm{f}$

Carrier wave frequency $=2 \mathrm{MHz}$
$=2000 \mathrm{kHz}=\mathrm{f}_{\mathrm{c}}$

Resultant signal maximum frequency
$=\mathbf{f}+\mathrm{f}_{\mathrm{c}}$
$=5+2000 \mathrm{kHz}$
$=2005 \mathrm{kHz}$

Resultant signal minimum frequency
$=\mathrm{f}_{\mathrm{c}}=\mathbf{f}$
$=2000-5 \mathrm{kHz}$
$=1995 \mathrm{kHz}$

Topic: Communication Systems
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 60
17. A solid body of constant heat capacity $1 J /{ }^{\circ} \mathrm{C}$ is being heated by keeping it in contact with reservoirs in two ways:
(i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat.
(ii) Sequentially keeping in contact with 8 reservoirs such that each reservoir supplies same amount of heat

In both the cases body is brought from initial temperature $100^{\circ} \mathrm{C}$ to final temperature $200^{\circ} \mathrm{C}$. Entropy change of the body in the two cases respectively is:
(A) $\ln 2,2 \ln 2$
(B) $2 \ln 2,8 \ln 2$
(C) $\ln 2,4 \ln 2$
(D) $\ln 2, \ln 2$

Answer: (D)
Solution:

$$
\begin{aligned}
& \text { Change in entropy } \mathrm{ds}=\frac{\mathrm{dQ}}{\mathrm{~T}} \\
& \Delta \mathrm{Q}=\text { heat supplied }=\mathrm{C} \Delta \mathrm{~T} \\
& \mathrm{dQ}=\mathrm{cdT} \\
& \mathrm{ds}=\frac{\mathrm{CdT}}{\mathrm{~T}} \\
& \text { Integrating both sides } \\
& \mathrm{S}_{f} \\
& \int_{\mathrm{i}} \mathrm{ds}=\mathrm{C} \int \frac{\mathrm{dT}}{\mathrm{~T}} \\
& \mathrm{~S}_{f}-\mathrm{S}_{i}=\Delta \mathrm{S}=\left.\mathrm{C} \cdot \ln \mathrm{~T}\right|_{100} ^{200} \\
& =\mathrm{C}[\ln 200-\ln 100] \\
& \Delta \mathrm{S}=\mathrm{C} \ln 2 \\
& \mathrm{C}=1 \mathrm{~J} /{ }^{\circ} \mathrm{C} \\
& \Rightarrow \quad \Delta \mathrm{~S}=\ln 2
\end{aligned}
$$

Entrpoy change in same for both cases as C in constant, and temperature change (i.e. from 100 to 200) in same.

Topic: Heat \&Thermodynamics
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 90
18. Consider a spherical shell of radius R at temperature T. the black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u=\frac{U}{V} \propto T^{4}$ and pressure $p=\frac{1}{3}\left(\frac{U}{V}\right)$. If the shell now undergoes an adiabatic expansion the relation between T and R is:
(A) $T \propto \frac{1}{R}$
(B) $T \propto \frac{1}{R^{3}}$
(C) $T \propto e^{-R}$
(D) $T \propto e^{-3 R}$

Answer: (A)
Solution: \because in an adiabatic process.

$$
d Q=0
$$

So by first law of thermodynamics

$$
\begin{gathered}
d Q=d U+d W \\
\Rightarrow 0=d U+d W \\
\Rightarrow d W=-d U \\
\therefore d W=P d V
\end{gathered}
$$

$\Rightarrow P d V=-d U \ldots$...(i)
Given that $\frac{U}{V} \propto T^{4} \Rightarrow U=k V T^{4}$

$$
\Rightarrow d U=k d\left(V T^{4}\right)=K\left(T^{4} d V+4 T^{3} V d T\right)
$$

Also, $P=\frac{1}{3} \frac{U}{V}=\frac{1}{3} \frac{k V T^{4}}{V}=\frac{K T^{4}}{3}$
Putting these values in equation

$$
\begin{gathered}
\Rightarrow \frac{K T^{4}}{3} d V=-k\left(T^{4} d V+4 T^{3} V d T\right) \\
\Rightarrow \frac{T d V}{3}=-T d V \quad 4 V d T \\
\Rightarrow \frac{4 T}{3} d V=-4 V d T \\
\Rightarrow \frac{\frac{1}{3} d V}{V}=\frac{-d T}{T}
\end{gathered}
$$

$$
\begin{array}{r}
\Rightarrow \frac{1}{3} \ln V=-\ln T \Rightarrow \ln V \quad-3 \\
\Rightarrow V T^{3}=\text { constant } \\
\frac{4}{3} \pi R^{3} T^{3}=\text { constan } \\
R T=\text { constant } \\
\Rightarrow T \propto \frac{1}{R}
\end{array}
$$

Topic: Heat \&Thermodynamics
Difficulty: Difficult (embibe predicted high weightage)
Ideal time: 120
19. Two stones are thrown up simultaneously from the edge of a cliff 240 m high with initial speed of $10 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$ respectively. Which of the following graph best represents the time variation of relative position of the second stone with respect to the first?
(Assume stones do not rebound after hitting the ground and neglect air resistance, take $g=10 \mathrm{~ms}^{-2}$)
(the figure are schematic and not drawn to scale)
(A)

(B)

(C)

(D)

Answer: (A)
Solution: $S_{1}=10 t-\frac{1}{2} g t^{2}$
When $S_{1}=-240$

$$
\begin{gathered}
\Rightarrow-240=10 t-5 t^{2} \\
\Rightarrow t=8 s
\end{gathered}
$$

So at $t=8$ seconds first stone will reach ground

$$
S_{2}=20 t-\frac{1}{2} g t^{2}
$$

Till $t=8$ seconds

$$
S_{2}-S_{1}=30 t
$$

But after 8 second S_{1} is constant -240
Relative to stone $t_{1}>8$ seconds displacements of stone $2 S_{2}+240$

$$
\Rightarrow S_{2}+240=20 t-\frac{1}{2} g t^{2}
$$

And at $t=12 \mathrm{~s}$ seconds stone will reach ground
The corresponding graph of relative position of second stone w.r.t. first is

Topic: Kinematics
Difficulty: Moderate (Embibe predicted high weightage)
Ideal time: 240
20. A uniformly charged solid sphere of radius R has potential V_{0} (measured with respect to $\infty)$ on its surface. For this sphere the equipotential surfaces with potential $\frac{3 V_{0}}{2}, \frac{5 V_{0}}{4}, \frac{3 V_{0}}{4}$ and $\frac{V_{0}}{4}$ have radius R_{1}, R_{2}, R_{3} and R_{4} respectively. Then
(A) $R_{1}=0$ and $R_{2}<\left(R_{4}-R_{3}\right)$
(B) $2 R<R_{4}$
(C) $R_{1}=0$ and $R_{2}>\left(R_{4}-R_{3}\right)$
(D) $R_{1} \neq 0$ and $\left(R_{2}-R_{1}\right)>R_{4}-R_{3}$

Answer: (A)
Solution:

Potential for uniformly charged solid sphere
$\mathbf{v}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{Q}}{\mathrm{r}} \quad$ outside i.e $\mathrm{r}>\mathrm{R}$
$\mathbf{v}=\frac{1}{4 \pi s_{0}} \frac{\mathbf{Q}}{\mathbf{R}}$ on the surface
$\mathbf{v}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}\left[\frac{3}{2}-\frac{1}{2} \frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right]$ inside i.e. $\mathrm{r}<\mathrm{R}$

Clearly potential in decreasing with r.
$\Rightarrow \frac{3 v_{0}}{2}, \frac{5 v_{0}}{4}$ are inside potentials $\left[\because>v_{0}\right]$
embibe
$\frac{3 v_{0}}{4}, \frac{v_{0}}{4}$ are outside potentials $\left[:<\mathbf{v}_{\mathbf{0}}\right]$
To get $\mathrm{R}_{1}: \frac{3 \mathrm{~V}_{0}}{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}\left[\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{i}^{2}}{\mathrm{R}^{2}}\right]$
$\mathrm{v}_{0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}$
$\frac{3}{2 \times 4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}=\frac{1}{4 \pi \pi_{0}} \frac{\mathrm{Q}}{\mathrm{R}}\left[\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{1}^{2}}{\mathrm{R}^{2}}\right]$
$\frac{3}{2}=\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{1}^{z}}{\mathrm{R}^{2}} \Rightarrow \mathrm{R}_{1}=0$
To get $\mathrm{R}_{2}: \frac{5}{4} \mathrm{v}_{0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}\left[\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{2}^{2}}{\mathrm{R}^{2}}\right]$
$\frac{5}{4} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}\left[\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{2}^{2}}{\mathrm{R}^{2}}\right]$
$\frac{5}{4}=\frac{3}{2}-\frac{1}{2} \frac{\mathrm{R}_{2}^{2}}{\mathrm{R}^{2}}$
$\frac{1}{2} \frac{\mathrm{R}_{2}^{2}}{\mathrm{R}^{2}}=\frac{1}{4}$
$\mathrm{R}_{2}^{2}=\frac{\mathrm{R}^{2}}{2}$
$\mathrm{R}_{2}=\frac{\mathrm{R}}{\sqrt{2}}$
To get $\mathbf{R}_{3}: \frac{3 \mathrm{v}_{0}}{4}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{Q}}{\mathrm{R}_{3}}$
$\frac{3}{4} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}_{3}}$
$\frac{3}{4 \mathrm{R}}=\frac{1}{\mathrm{R}_{3}}$
$\mathrm{R}_{3}=\frac{4}{3} \mathrm{R}$

$$
\begin{aligned}
& \frac{1}{4} \times \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}_{4}} \\
& \mathrm{R}_{4}=4 \mathrm{R} \\
& \mathbf{R}_{4}-\mathbf{R}_{3}=4 \mathrm{R}-\frac{4 \mathrm{R}}{3}=\frac{8 \mathrm{R}}{3}>\mathbf{R}_{2} \\
& \mathbf{R}_{1}=0 \text { and } \mathrm{R}_{2}<\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right)
\end{aligned}
$$

Both options are correct.

Topic: Electrostatics

Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 210
21. Monochromatic light is incident on a glass prism of angle A. If the refractive index of the material of the prism is μ, a ray, incident at an angle θ, on the face $A B$ would get transmitted through the face AC of the prism provided:

(A) $\theta>\operatorname{co}^{-1}\left[\mu \sin \left(A+\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(B) $\theta<\cos ^{-1}\left[\mu \sin \left(A+\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(C) $\theta>\sin ^{-1}\left[\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$
(D) $\theta<\sin ^{-1}\left[\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right]$

Solution:

For emergence $r_{2}<$ critical angle

$$
\begin{aligned}
& \Rightarrow r_{2}<\sin ^{-1}\left(\frac{1}{\mu}\right) \\
& A=r_{1}+r_{2} \\
& \Rightarrow A-r_{1}=r_{2} \\
& \Rightarrow A-r_{1}<\sin ^{-1}\left(\frac{1}{\mu}\right) \\
& \Rightarrow A-r_{1}<\sin ^{-1}\left(\frac{1}{\mu}\right) \\
& \Rightarrow A-\sin ^{-1}\binom{1}{\mu}<r_{1}
\end{aligned}
$$

\because By shells law
$\sin \theta=\mu \sin r_{1}$

$$
\Rightarrow r_{1}=\sin ^{-1}\left(\frac{\sin \theta}{\mu}\right)
$$

$$
\Rightarrow A-\sin ^{-1}\left(\frac{1}{\mu}\right)<\sin ^{-1}\left(\frac{\sin \theta}{\mu}\right)
$$

$$
\Rightarrow \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)<\frac{\sin \theta}{\mu}
$$

$$
\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)<\sin \theta
$$

$$
\Rightarrow \theta>\sin ^{-1}\left(\mu \sin \left(A-\sin ^{-1}\left(\frac{1}{\mu}\right)\right)\right)
$$

Topic: Optics
Difficulty: Moderate (embibe predicted high weightage)

Ideal time: 240
22. A rectangular loop of sides 10 cm and 5 cm carrying a current I of 12 A is placed in different orientations as shown in the figure below:
(a)

(b)

(c)

(d)

If there is a uniform magnetic field of 0.3 T in the positive z direction, in which orientations the loop would be in (i) stable equilibrium and (ii) unstable equilibrium?

(A) (b) and (d), respectively

(B) (b) and (c), respectively
(C) (a) and (b), respectively
(D) (a) and (c), respectively

Answer: (A)

Solution: For a magnetic dipole placed in a uniform magnetic field the torque is given by $\vec{\tau}=\vec{M} \times \vec{B}$ and potential energy U is given as

$$
U=-\vec{M} \cdot \vec{B}=-M B \cos \theta
$$

When \vec{M} is in the same direction as \vec{B} then $\vec{\tau}=0$ and U is $\min =-\mathrm{MB}$ as $\theta=0^{\circ}$
\Rightarrow Stable equilibrium is (b). and when \vec{M} then $\vec{\tau}=0$ and U is max $=+\mathrm{MB}$
As $\theta=180^{\circ}$
Unstable equilibrium in (d).

Topic: Electrostatics
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 30
23. Two coaxial solenoids of different radii carry current I in the same direction. Let $\overrightarrow{F_{1}}$ be the magnetic force on the inner solenoid due to the outer one and $\overrightarrow{F_{2}}$ be the magnetic force on the outer solenoid due to the inner one. Then:
(A) $\overrightarrow{F_{1}}$ is radially inwards and $\overrightarrow{F_{2}}=0$
(B) $\overrightarrow{F_{1}}$ is radially outwards and $\overrightarrow{F_{2}}=0$
(C) $\overrightarrow{F_{1}}=\overrightarrow{F_{2}}=0$
(D) $\overrightarrow{F_{1}}$ is radially inwards and $\overrightarrow{F_{2}}$ is radially outwards

Answer: (C)
Solution:

S_{2} is solenoid with more radius than S_{1} field because of S_{1} on S_{2} is o
\therefore force on S_{2} by $S_{1}=0$
In the uniform field of $S_{2} S_{1}$ behaves as a magnetic dipole
\therefore force on S_{1} by S_{2} is zero because force on both poles are equal in magnitude and opposite indirection.

Topic: Magnetism

Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 120
24. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass 2 m moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to:
(A) 56%
(B) 62%
(C) 44%
(D) 50%

Answer: (A)
Solution:
The initial momentum of system is $\overrightarrow{P_{l}}=m(2 V) \hat{\imath}+(2 m) v \hat{\jmath}$
According to question as

On perfectly inelastic collision the particles stick to each other so.

$$
\overrightarrow{P_{f}}=3 m \overrightarrow{V_{f}}
$$

By conservation of linear momentum principle

$$
\begin{gathered}
\overrightarrow{P_{f}}=\overrightarrow{P_{l}} \Rightarrow 3 m \overrightarrow{V_{f}}=m 2 V \hat{\imath}+2 m V \hat{\jmath} \\
\Rightarrow \overrightarrow{V_{f}}=\frac{2 V}{3}(\hat{\imath}+\hat{\jmath}) \Rightarrow V_{f}=\frac{2 \sqrt{2}}{3} V
\end{gathered}
$$

\therefore loss in KE. of system $K_{\text {initial }}-K_{\text {final }}$

$$
\begin{gathered}
\frac{1}{2} m(2 V)^{2}+\frac{1}{2}(2 m) V^{2}-\frac{1}{2}(3 m)\left(\frac{2 \sqrt{2} V}{3}\right)^{2} \\
2 m V^{2}+m V^{2}-\frac{4}{3} m V^{2}=3 m V^{2}-\frac{4 m V^{2}}{3} \\
\frac{5}{3} m V^{2}
\end{gathered}
$$

\% change in KE $100 \times \frac{\Delta K}{K_{i}}=\frac{\frac{5}{3} m v^{2}}{3 m V^{2}}=\frac{5}{9} \times 100$

$$
\frac{500}{9}=56
$$

Topic: Magnetism

Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 90
25. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V^{q}, where V is the volume of the gas. The value of q is:

$$
\left(\gamma=\frac{C_{P}}{C_{v}}\right)
$$

(A) $\frac{\gamma+1}{2}$
(B) $\frac{\gamma-1}{2}$
(C) $\frac{3 \gamma+5}{6}$
(D) $\frac{3 \gamma-5}{6}$

Answer: (A)
Average time of collision
$t=\frac{\text { mean free path }(\lambda)}{\text { average speed }(v)}$
$t \propto \frac{\lambda}{v}$
$\because \lambda \propto \frac{1}{\text { no. of molecules per unit volume }}$
$\lambda \propto \frac{1}{\left(\frac{N}{v}\right)}$
$\Rightarrow \lambda \propto V$

And $\bar{v} \propto \sqrt{T}$
$\Rightarrow \bar{v} \propto \sqrt{\mathrm{PV}}$
$\because \mathbf{P} \propto \mathbf{V}^{-\gamma}$
for adiabatic process where $\gamma=$ adiabatic coefficient

$$
\begin{aligned}
& \Rightarrow \overline{\mathbf{v}} \propto \sqrt{\mathbf{v}^{-} \gamma \mathbf{v}} \\
& \Rightarrow \overline{\mathbf{v}} \propto \mathrm{V}^{\frac{1-y}{2}}
\end{aligned}
$$

So average time

$$
\begin{aligned}
& \therefore t_{\text {avg }} \propto \frac{V}{v \frac{1-\gamma}{2}} \\
& t_{\text {avg }} \propto V^{1-\left(1-\frac{\gamma}{2}\right)} \\
& t_{\text {avg }} \propto V^{1+\gamma} \\
& \therefore q=\frac{1+\gamma}{2}
\end{aligned}
$$

Topic: Heat \&Thermodynamics
Difficulty: Difficult (embibe predicted high weightage)
Ideal time: 120
26. From a solid sphere of mass M and radius R , a spherical portion of radius $\frac{R}{2}$ is removed, as shown in the figure. Taking gravitational potential $V=0$ and $r=\infty$, the potential at the center of the cavity thus formed is:
(G = gravitational constant)

(A) $\frac{-2 G M}{3 R}$
(B) $\frac{-2 G}{R}$
(C) $\frac{-G M}{2 R}$
(D) $\frac{-G M}{R}$

Answer: (D)

Solution:

Potential due to whole sphere if cavity is not there at distance $\frac{R}{2}$ from centre

$$
\begin{align*}
& =\frac{-\mathrm{GM}}{\mathrm{R}^{3}}\left(\frac{3}{2} \mathrm{R}^{2}-0.5 \mathrm{r}^{2}\right)_{\mathrm{r}=\left(\frac{\mathrm{R}}{2}\right)} \\
& =\frac{-\mathrm{GM}}{\mathrm{R}^{3}}\left(\frac{3}{2} \mathrm{R}^{2}-\frac{\mathrm{R}^{2}}{8}\right) \\
& =\frac{-\mathrm{GM}}{\mathrm{R}^{3}}\left(\frac{12 \mathrm{R}^{2}-\mathrm{R}^{2}}{8}\right) \\
& =\frac{-11 \mathrm{GM}}{8 \mathrm{R}} \tag{1}
\end{align*}
$$

Potential due to sphere of radius $\frac{\mathrm{R}}{2}$ at its centre let M^{\prime} be mass of this sphere (equating densities)
$\frac{M}{\frac{4}{3} \pi R^{3}}=\frac{M^{1}}{\frac{1}{3} \pi\left(\frac{R}{2}\right)^{3}}$
$M^{\prime}=\frac{M}{8}$
Potential due to the sphere of $\frac{\mathrm{R}}{2}$ radius at its centre is
$=\frac{3}{2} \frac{\mathrm{GM}^{\prime}}{\frac{\pi}{2}}$
$=\frac{3}{2} \frac{\mathrm{GM} \times 2}{8 \mathrm{R}}$
$=\frac{-3}{8} \frac{\mathrm{GM}}{\mathrm{R}}$
\therefore Potential at $\mathbf{r}=\frac{\mathbf{R}}{2}$ is $=(1)-(2)$
$=\frac{-11}{8} \frac{\mathrm{GM}}{\mathrm{R}}+\frac{3}{8} \frac{\mathrm{GM}}{\mathrm{R}}=\frac{-\mathrm{GM}}{\mathrm{R}}$

Topic: Gravitation

Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 360
27.

Given in the figure are two blocks A and B of weight 20 N and 100 N , respectively. These are being pressed against a wall by a force F as shown. If the coefficient of friction between the blocks is 0.1 and between block B and the wall is 0.15 , the frictional force applied by the wall on block B is:
(B) 150 N
(C) 100 N
(D) 80 N

Answer: (A)
Solution:

For complete state equilibrium of the system. The state friction on the block B by wall will balance the total weight 120 N of the system.

Topic: Laws of Motion
Difficulty: Moderate (embibe predicted Low Weightage)
Ideal time: 60
28. A long cylindrical shell carries positive surface charge σ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in:
(Figures are schematic and not drawn to scale)
(A)

(B)

(C)

(D)

Answer: (C)

Solution:

Consider cross section of cylinders which is circle the half part of circle which has positive charge can be assume that total positive charge is at centre of mass of semicircle. In the same way we can assume that negative charge is at centre of mass of that semicircle.

Now it acts as a dipole now by the properties of dipole and lows of electric field line where two lines should not intersect the graph would be

Topic: Electrostatics
Difficulty: Moderate (embibe predicted high weightage)
Ideal time: 90
29. As an electron makes transition from an excited state to the ground state of a hydrogen like atom/ion:
(A) Kinetic energy decreases, potential energy increases but total energy remains same
(B) Kinetic energy and total energy decreases but potential energy increases
(C) Its kinetic energy increases but potential energy and total energy decrease
(D) Kinetic energy, potential energy and total energy decrease

Answer: (C)

Solution: $U=\frac{-e^{2}}{4 \pi \varepsilon_{0} r}$
$\mathrm{U}=$ potential energy

$$
k=\frac{e^{2}}{8 \pi \varepsilon_{0}} r
$$

$K=$ kinetic energy
$E=U+k=\frac{-e^{2}}{8 \pi \varepsilon_{0} r}$
$E=$ Total energy
\therefore as electron de-excites from excited state to ground state k increases, $\mathrm{U} \& \mathrm{E}$ decreases

Topic: Modern Physics
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 30
30. Match list-I (Fundamental Experiment) with List-II (its conclusion) and select the correct option from the choices given below the list:

	List-I		List-II
A	Franck-Hertz Experiment	(i)	Particle nature of light
B	Photo-electric experiment	(ii)	Discrete energy levels of atom
C	Davison-Germer Experiment	(iii)	Wave nature of electron
D		(iv)	Structure of atom

(A) $A-(i i) ; B-(i) ; C-(i i i)$
(B) $A-(i v) ; B-(i i i) ; C-(i i)$
(C) $A-(i) ; B-(i v) ; C-(i i i)$
(D) $A-(i i) ; B-(i v) ; C-(i i i)$

Answer: (A)
Solution: Frank-Hertz experiment demonstrated the existence of excited states in mercury atoms helping to confirm the quantum theory which predicted that electrons occupied only discrete quantized energy states.

Phot-electric experiment = Demonstrate that photon is the field particle of light which can transfer momentum and energy due to collision.

Davisson-Germer experment = this experiment shows the wave nature of electron.

Topic: Modern Physics
Difficulty: Easy (embibe predicted high weightage)
Ideal time: 30

Chemistry

1. Which compound would give 5-keto-2-methyl hexanal upon ozonolysis:
(A)

(B)

(C)

(D)

Solution: (D)

5-keto-2-methyl hexanal
2. Which of the vitamins given below is water soluble?
(A) Vitamin E
(B) Vitamin K
(C) Vitamin C
(D) Vitamin D

Solution: (C) B complex vitamins and vitamin C are water soluble vitamins that are not stored in the body and must be replaced each day.
3. Which one of the following alkaline earth metal sulphates has its hydration enthalpy greater than its lattice enthalpy?
(A) BaSO_{4}
(B) SrSO_{4}
(C) CaSO_{4}
(D) BeSO_{4}

Solution: (D) $\Delta H_{\text {Hydration }}>\Delta H_{\text {Lattice }}$
Salt is soluble. BeSO_{4} is soluble due to high hydration energy of small $\begin{gathered}2+ \\ \mathrm{Be}\end{gathered}$ ion. $K_{s p}$ for BeS_{4} is very high.
4. In the reaction,

The product E is:
(A)

(B)

(C)

(D)

Solution: (A)

5. Sodium metal crystallizes in a body centred cubic lattice with a unit cell edge of $4.29 \AA$. The radius of sodium atom is approximately:
(A) $5.72 \AA$
(B) $0.93 \AA$
(C) $1.86 \AA$
(D) $3.22 \AA$

Solution: (C) For B.C.C,
$4 r=\sqrt{3} a$
$r=\frac{\sqrt{3}}{4} a=\frac{1.732}{4} \times 4.29$
$1.86 \AA$
6. Which of the following compounds is not colored yellow?
(A) $\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]$
(B) BaCrO_{4}
(C) $Z n_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(D) $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$

Solution: (C) Cyanides not yellow.

$$
\begin{gathered}
\mathrm{BaCrO}_{4}- \\
\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]- \\
\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{As}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]-
\end{gathered}
$$

7. Which of the following is the energy of a possible excited state of hydrogen?
(A) -3.4 EV
(B) +6.8 eV
(C) +13.6 eV
(D) -6.8 eV

Solution: (A) $E_{n}=\frac{-13.6}{n^{2}} \mathrm{eV}$
Where $n=2 \Rightarrow E_{2}=-3.40 \mathrm{eV}$
8. Which of the following compounds is not an antacid?
(A) Phenelzine
(B) Rantidine
(C) Aluminium hydroxide
(D) Cimetidine

Solution: (A) Ranitidine, Cimetidine and metal hydroxides i.e. Aluminum hydroxide can be used as antacid but not phenelzine. Phenelzine is not an antacid. It is an antidepressant. Antacids are a type of medication that can control the acid levels in stomach. Working of antacids: Antacids counteract (neutralize) the acid in stomach that's used to aid digestion. This helps reduce the symptoms of heartburn and relieves pain.
$2-$
9. The ionic radii (\AA) of $3-, O$ and ${ }_{F}^{-}$are respectively:
N
(A) 1.71, 1.40 and 1.36
(B) $1.71,1.36$ and 1.40
(C) $1.36,1.40$ and 1.71
(D) $1.36,1.71$ and 1.40

Solution: (A) As $\frac{Z}{e} \uparrow$ ionic radius decreases for isoelectronic species.

$$
\begin{gathered}
3-\left(\frac{Z}{e}\right)=\frac{7}{10} \\
N \\
2-\left(\frac{Z}{e}\right)=\frac{8}{10} \\
O \\
-\left(\frac{Z}{e}\right)=\frac{9}{10} \\
F \\
- \\
2->F \\
3->O
\end{gathered}
$$

N
10. In the context of the Hall - Heroult process for the extraction of Al, which of the following statements is false?
(A) ${ }^{3+}$ Al is reduced at the cathode to form Al .
(B) $N a_{2} A l F_{6}$ serves as the electrolyte.
(C) CO and CO_{2} are produced in this process.
(D) $\mathrm{Al}_{2} \mathrm{O}_{3}$ is mixed with CaF_{2} which lowers the melting point of the mixture and brings conductivity.

Solution: (B) Hall-Heroult process for extraction of $\mathrm{Al} . \mathrm{Al}_{2} \mathrm{O}_{3}$ is electrolyte $N a_{3} A l F_{6}$ reduces the fusion temperature and provides good conductivity.
11. In the following sequence of reactions:

Toluene $\underset{\rightarrow}{\mathrm{KMnO}_{4}} \mathrm{ASOCl}_{2} \mathrm{~B} \underset{\rightarrow}{\mathrm{H}_{2} / \mathrm{Pd}, \mathrm{BaSO}_{4} \mathrm{C}}$
The Product C is:
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(D) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$

Solution: (B)

12. Higher order (3) reactions are rare due to:
(A) Shifting of equilibrium towards reactants due to elastic collisions.
(B) Loss of active species on collision
(C) Low probability of simultaneous collision of all the reacting species
(D) Increase in entropy and activation energy as more molecules are involved

Solution: (C) Probability of an event involving more than three molecules in a collision are remote.
13. Which of the following compounds will exhibit geometrical isomerism?
(A) 2 - Phenyl-1-butane
(B) 1,1-Diphenyl-1-propane
(C) 1-Phenyl-2-butane
(D) 3-Phenyl-1-butane

Solution: (C) 1 - Phenyl-2-butene:

14. Match the catalysts to the correct process:

	Catalyst		Process
A.	TiCl_{3}	i.	Wacker process
B.	PdCl_{2}	ii.	Ziegler - Natta polymerization
C.	CuCl_{2}	iii.	Contact process
D.	$V_{2} \mathrm{O}_{5}$	iv.	Deacon's process

(A) $A \rightarrow i i, B \rightarrow i i i, C \rightarrow i v, D \rightarrow i$
(B) $A \rightarrow i i i, B \rightarrow i, C \rightarrow i i, D \rightarrow i v$
(C) $A \rightarrow i i i, B \rightarrow i i, C \rightarrow i v, D \rightarrow i$
(D) $A \rightarrow i i, B \rightarrow i, C \rightarrow i v, D \rightarrow i i i$

Solution: (D) The Wacker process originally referred to the oxidation of ethylene to acetaldehyde by oxygen in water in the presence of tetrachloropalladate (II) as the catalyst.
In contact process, Platinum used to be the catalyst for this reaction, however as it is susceptible to reacting with arsenic impurities in the sulphur feedstock, vanadium (V) oxide ($\mathrm{V}_{2} \mathrm{O}_{5}$) is now preferred.
In Deacon's process, the reaction takes place at about 400 to $450^{\circ} \mathrm{C}$ in the presence of a variety of catalysts, including copper chloride $\left(\mathrm{CuCl}_{2}\right)$.
In Ziegler-Natta catalyst catalyst, Homogenous catalysts usually based on complexes of Ti, Zr or Hf used. They are usually used in combination with different organ aluminium co-catalyst.
15. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is:
(A) London force
(B) Hydrogen bond
(C) Ion-ion interaction
(D) Ion-dipole interaction

Solution: (B) Ion - ioninteraction $\propto \frac{1}{r^{2}}$

$$
\begin{gathered}
\text { Ion }- \text { dipoleinteraction } \propto \frac{1}{r^{4}} \\
\text { Londonforces } \propto \frac{1}{r^{6}}
\end{gathered}
$$

And Hydrogenbond $\propto \frac{1}{r^{3}}$
16. The molecular formula of a commercial resin used for exchanging ions in water softening is $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \mathrm{Na}$ (Mol. wt. 206). What would be the maximum uptake of $2+$ ions by the resin when expressed in mole per gram resin?
(A) $\frac{2}{309}$
(B) $\frac{1}{412}$
(C) $\frac{1}{103}$
(D) $\frac{1}{206}$

$$
\begin{aligned}
& + \\
& 2+\rightarrow\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3}\right)_{2} \mathrm{Ca}+2 \mathrm{Na} \\
& \text { Solution: (B) } \quad++\mathrm{Ca}_{(a q)} \\
& -\mathrm{Na} \\
& 2 \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \\
& 2+i o n \\
& 2 \text { moles }(\text { resin })=412 g \equiv 40 \mathrm{gC} \\
& 2+\text { ions } \\
& \text { 1molesofCa } \\
& \mathrm{Ca}^{2+} / \mathrm{g} \text { ofresin }=\frac{1}{412} \\
& \text { Molesof }
\end{aligned}
$$

17. Two Faraday of electricity is passed through a solution of CuSO_{4}. The mass of copper deposited at the cathode is: (Atomic mass of $\mathrm{Cu}=63.5 \mathrm{amu}$)
(A) 2 g
(B) 127 g
(C) 0 g
(D) 63.5 g

Solution: (D) $2 F \equiv 2 E q s o f C u$

$$
2 \times \frac{63.5}{2}=63.5 \mathrm{~g}
$$

18. The number of geometric isomers that can exist for square planar

$$
\underset{\left[\mathrm{Pt}(\mathrm{Cl})(\mathrm{py})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right]}{ } \text { is (py = pyridine): }
$$

(A) 4
(B) 6
(C) 2
(D) 3
$\begin{array}{ll}\text { Solution: (D) } & \text { Complexes with general formula } \\ \text { three isomers. } & + \\ {[M a b c d]}\end{array} \quad \begin{aligned} & \text { square planar complex can have }\end{aligned}$
19. In Carius method of estimation of halogens, 250 mg of an organic compound gave 141 mg of AgBr . The percentage of bromine in the compound is: (Atomic mass : $\mathrm{Ag}=$ $108, \mathrm{Br}=80$)
(A) 48
(B) 60
(C) 24
(D) 36

Solution: (C)
$R-\mathrm{BrCariusmethodAgBr}$

(e) JEE MAIN 2015 D
 embibe

250 mg organic compound is RBr
$141 \mathrm{mgAgBr} \Rightarrow 141 \times \frac{80}{188} \mathrm{mgBr}$
Br in organic compound
$141 \times \frac{80}{188} \times \frac{1}{250} \times 100=24$
20. The color of KMnO_{4} is due to:
(A) $L \rightarrow M$ charge transfer transition
(B) $\sigma-\sigma$ transition
(C) $M \rightarrow L$ charge transfer transition
(D) $d-d$ transition

Solution: (A) Charge transfer from ${ }_{O}^{2-}$ to empty d-orbitals of metal ion $\left(\mathrm{Mn}^{+7}\right)$
21. The synthesis of alkyl fluorides is best accomplished by:
(A) Finkelstein reaction
(B) Swarts reaction
(C) Free radical fluorination
(D) Sandmeyer's reaction

Solution: (B) Alkyl fluroides is best accomplished by swarts reaction i.e. heating an alkyl chloride/bromide in the presence of metallic fluoride such as $\mathrm{AgF}, \mathrm{Hg}_{2} \mathrm{~F}_{2}, \mathrm{CoF}_{2}, \mathrm{Sb}{ }_{3}$.

$$
\mathrm{CH}_{3} \mathrm{Br}+\mathrm{AgF} \rightarrow \mathrm{CH}_{3}-\mathrm{F}+\mathrm{Ag}
$$

The reaction of chlorinated hydrocarbons with metallic fluorides to form chlorofluoro hydrocarbons, such as $C C{ }_{2} F_{2}$ is known as swarts reaction.
22.3 g of activated charcoal was added to 50 mL of acetic acid solution (0.06N) in a flask. After an hour it was filtered and the strength of the filtrate was found to be 0.042 N . The amount of acetic acid adsorbed (per gram of charcoal) is:
(A) 42 mg
(B) 54 mg
(C) 18 mg
(D) 36 mg

Solution: (C)
Meqs of $\mathrm{CH}_{3} \mathrm{COOH}$ (initial) $50 \times 0.06=3$ Meqs
Meqs $\mathrm{CH}_{3} \mathrm{COOH}$ (final) $50 \times 0.042=2.1$ Meqs

$$
\mathrm{CH}_{3} \mathrm{COOHadsorbed} \quad 3-2.1=0.9 \mathrm{Meqs}
$$

$9 \times 10^{-1} \times 60 \mathrm{~g} / E q \times 10^{-3} \mathrm{~g}$

$$
540 \times 10^{-4}=0.054 g
$$

Pergram $=\frac{54}{3}=18 \mathrm{mg} / \mathrm{g}$ of Charcoal
23. The vapour pressure of acetone at $20^{\circ} \mathrm{C}$ is 185 torr. When 1.2 g of a non-volatile substance was dissolved in 100 g of acetone at $20^{\circ} \mathrm{C}$, its vapour pressure was 183 torr . The molar mass $\left(\mathrm{gmol}^{-1}\right)$ of the substance is :
(A) 128
(B) 488
(C) 32
(D) 64

Solution: (D)

$$
\begin{aligned}
& \Delta P=185-183=2 \text { torr } \\
& \frac{\Delta P}{P^{o}}=\frac{2}{185}=X_{B}=\frac{\frac{1.2}{M}}{\left(\frac{1.2}{M}\right)+\frac{100}{58}} \\
& M_{\left(C H_{3}\right)_{2} \mathrm{CO}}= \\
& 15 \times 2+16+12=58 \mathrm{~g} / \mathrm{mol} \\
& \\
& \frac{1.2}{M} \ll \frac{100}{58} \\
& \Rightarrow \\
& =\frac{2}{185}=\frac{1.2}{M} \times \frac{58}{100} \\
& M=\frac{58 \times 1.2}{100} \times \frac{185}{2} \\
& 64.38 \approx 64 \mathrm{~g} / \mathrm{mole}
\end{aligned}
$$

24. Which among the following is the most reactive?
(A) I_{2}
(B) $I C I$
(C) Cl_{2}
(D) Br_{2}

Solution: (B) I-Cl bond strength is weaker than $I_{2}, B r_{2}$ and $C l_{2}$ (Homonuclear covalent).
25. The standard Gibbs energy change at 300 K for the reaction $2 A \rightleftharpoons B+C$ is 2494.2 J . At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the: $K-m o l, e=2.718$

$$
R=8.314 \mathrm{~J} /
$$

(A) Forward direction because $Q<K_{C}$
(B) Reverse direction because $Q<K_{C}$
(C) Forward direction because $Q>K_{C}$
(D) Reverse direction because $Q>K_{C}$

Solution: (D)

$$
\Delta G^{o}=-R T \in K_{C}
$$

$$
\begin{aligned}
& 2494.2=-8.314 \times 300 \in K_{C} \\
& 2494.2=-8.314 \times 300 \times 2.303 \log K_{C} \\
& \frac{-2494.2}{2.303 \times 300 \times 8.314}=-0.44=\log K_{C} \\
& \log K_{C}=-0.44=1.56 \\
& K_{C}=0.36 \\
& Q_{C}=\frac{2 \times \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}=4 \\
& Q_{C}>K_{C} \text { reverse direction }
\end{aligned}
$$

26. Assertion: Nitrogen and Oxygen are the main components in the atmosphere but these do not react to form oxides of nitrogen. Reason: The reaction between nitrogen and oxygen requires high temperature.
(A) The Assertion is incorrect but the Reason is correct.
(B) Both the Assertion and Reason are incorrect.
(C) Both Assertion and Reason are correct and the Reason is the correct explanation for the Assertion.
(D) Both Assertion and Reason are correct, but the Reason is not the correct explanation for the Assertion.

Solution: (C) $N_{2(g)} \& O_{2(g)}$ react under electric arc at $2000^{\circ} \mathrm{C}$ to form $N O_{(g)}$. Both assertion and reason are correct and reason is correct explanation.
27. Which one has the highest boiling point?
(A) Kr
(B) Xe
(C) He
(D) Ne

Solution: (B) Due to higher Vander Waal's forces. Xe has the highest boiling point.
28. Which polymer is used in the manufacture of paints and lacquers?
(A) Polypropene
(B) Poly vinyl chloride
(C) Bakelite
(D) Glyptal

Solution: (D) Glyptal is polymer of glycerol and phthalic anhydride.

29. The following reaction is performed at 298 K .

$$
2 \mathrm{NO}_{(g)}+O_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

The standard free energy of formation of $\mathrm{NO}_{(\mathrm{g})}$ is $86.6 \mathrm{~kJ} / \mathrm{mol}$ at 298 K . What is the standard free energy of formation of $\mathrm{NO}_{2(\mathrm{~g})}$ at 298 K ? $\left(K_{P}=1.6 \times 10^{12}\right)$
(A) $86,600-\frac{\ln \left(1.6 \times 10^{12}\right)}{R(298)}$
$\left(1.6 \times 10^{12}\right)$
(B) $2 \times 86,600-R(298) l n$
0.5
(C) $R(298) \ln \left(1.6 \times 10^{12}\right)=86,600$
(D) $86,600+R(298) \ln \left(1.6 \times 10^{12}\right)$

$$
\begin{aligned}
& \text { Solution: (B) } \quad \Delta G_{r e a c}^{o}=-2.303 R T \log K_{P} \\
& -R T \ln K_{P} \\
& -R(298) \ln \left(1.6 \times 10^{12}\right) \\
& \Delta G_{r e a c}^{o}=2 \Delta G_{f_{\left(N O_{2}\right)}^{o}}^{o}-2 \Delta G_{f_{(N O) g}^{o}}^{o} \\
& 2 \Delta G_{f_{\left(N O_{2}\right)}^{o}}^{o}-2 \times 86.6 \times 10^{3} \\
& 2 \Delta G_{f_{\left(N O_{2}\right)}^{o}}^{o}=-R(298) \ln \left(1.6 \times 10^{12}\right)+2 \times 86,600 \\
& \Delta G_{f_{\left(N O_{2}\right)}^{o}}^{o}=86,600-\frac{R(298)}{2} \ln \left(1.6 \times 10^{12}\right) \\
& 0.5\left[2 \times 86,600-R(298) \ln \left(1.6 \times 10^{12}\right)\right]
\end{aligned}
$$

(A) It has to be stored in plastic or wax lined glass bottles in dark.
(B) It has to be kept away from dust
(C) It can act only as an oxidizing agent
(D) It decomposes on exposure to light

Solution: (C) It can act both as oxidizing agent and reducing agent.

Mathematics

1. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}||\vec{a}|$. If θ is the angle between vectors $\vec{b} \wedge \vec{c}$, then a value of $\sin \theta$ is:
(A) $\frac{2}{3}$
(B) $\frac{-2 \sqrt{3}}{3}$
(C) $\frac{2 \sqrt{2}}{3}$
(D) $\frac{-\sqrt{2}}{3}$

Answer: (C)

Solution:

$$
\begin{gathered}
(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a} \\
(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a} \\
\Rightarrow \vec{a} \cdot \vec{c}=0 \wedge \vec{b} \cdot \vec{c}=\frac{-1}{3}|\vec{b}||\vec{c}| \\
|\vec{b}||\vec{c}| \cos \theta \quad \frac{-1}{3}|\vec{b}||\vec{c}| \\
\cos \theta=\frac{-1}{3} \\
\sin \theta=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\frac{2 \sqrt{2}}{3}
\end{gathered}
$$

2. Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. If the point P divides the line segment OQ internally in the ratio $1: 3$, then the locus of P is:
(A) $y^{2}=2 x$
(B) $x^{2}=2 y$
(C) $x^{2}=y$
(D) $y^{2}=x$

Answer: (B)
Solution:

General point on $x^{2}=8 y$ is $Q\left(4 t, 2 t^{2}\right)$
Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ divide OQ in ratio 1:3
$(h, k)=\left(\frac{1(4 t)+3(0)}{1+3}, \frac{1\left(2 t^{2}\right)+3(0)}{1+3}\right)$
(h, k) $\left(t, \frac{2 t^{2}}{4}\right)$
$\mathrm{h}=\mathrm{t}$ and $k=\frac{t^{2}}{2}$

$$
\begin{aligned}
& k=\frac{h^{2}}{2} \\
& \Rightarrow x^{2}=2 y \text { is required locus. }
\end{aligned}
$$

3. If the angles of elevation of the top of a tower from three collinear points A, B and C, on a line leading to the foot of the tower, are $30^{\circ}, 45^{\circ} \wedge 60^{\circ}$ respectively, then the ratio, $A B: B C$, is:
(A) $1: \sqrt{3}$
(B) $2: 3$
(C) $\sqrt{3}: 1$
(D) $\sqrt{3}: \sqrt{2}$

Answer: (C)
Solution:

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{h}{x+y+z}, \tan 45^{\circ}=\frac{h}{y+z}, \tan 60^{\circ}=\frac{h}{z} \\
& \Rightarrow x+y+z=\sqrt{3} h \\
& y+z=h \\
& z=\frac{h}{\sqrt{3}} \\
& y=h\left(1-\frac{1}{\sqrt{3}}\right) \\
& x=(\sqrt{3}-1) h \\
& x=\frac{(\sqrt{3}-1) h}{y\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)} \\
& y
\end{aligned}
$$

4. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$, is:
(A) 820
(B) 780
(C) 901
(D) 861

Answer: (B)
Solution:

$P\left(x_{1}, y_{1}\right)$ lies inside the triangle $\Rightarrow x_{1}, y_{1} \in N$

$$
\begin{gathered}
x_{1}+y_{1}<41 \\
\therefore 2 \leq x_{1}+y_{1} \leq 40
\end{gathered}
$$

Number of points inside $=$ Number of solutions of the equation

$$
\begin{gathered}
x_{1}+y_{1}=n \\
2 \leq n \leq 40 \\
x_{1} \geq 1, y_{1} \geq 1 \\
\left(x_{1}-1\right)+\left(y_{1}-1\right)=(n-2)
\end{gathered}
$$

Numberofnon - negativeintegralsolutionsof ${ }_{1}+x_{2}+\cdots .+x_{n}=$ ris $^{n+r-1} C$
Number of solutions $\quad{ }^{2+(n-2)-1} C_{n-2}$

$$
{ }^{n-1} C_{n-2}
$$

$$
n-1
$$

We have

$$
2 \leq n \leq 40
$$

\therefore Number of solutions $=1+2+\ldots .+39$

$$
\begin{aligned}
& \frac{39 \times 40}{2} \\
& 780
\end{aligned}
$$

5. The equation of the plane containing the line $2 x-5 y+z=3 ; x+y+4 z=5$, and parallel to the plane, $x+3 y+6 z=1$, is:
(A) $x+3 y+6 z=7$
(B) $2 x+6 y+12 z=-13$
(C) $2 x+6 y+12 z=13$
(D) $x+3 y+6 z=-7$

Answer: (A)
Solution:

Any plane containing the line of intersection of $2 x-5 y+z=3, x+y+4 z=5$ will be of the form

$$
\begin{gathered}
(2 x-5 y+z-3)+\lambda(x+y+4 z-5)=0 \\
(2+\lambda) x-(5-\lambda) y+(1+4 \lambda) z-(3+5 \lambda)=0 \\
(2+\lambda) x-(5-\lambda) y+(1+4 \lambda) z-(3+5 \lambda)=0
\end{gathered}
$$

It is parallel to plane $x+3 y+6 z=1$

$$
\begin{aligned}
\Rightarrow \frac{2+\lambda}{1}=\frac{\lambda-5}{3} & =\frac{1+4 \lambda}{6} \neq \frac{-(3+5 \lambda)}{11} \\
\frac{2+\lambda}{1}=\frac{\lambda-5}{3} & \Rightarrow 6+3 \lambda=\lambda-5 \\
2 \lambda & =-11 \\
\lambda & =\frac{-11}{2}
\end{aligned}
$$

\therefore Required plane is

$$
\begin{gathered}
(2 x-5 y+z-3) \frac{-11}{2}(x+y+4 z-5)=0 \\
2(2 x-5 y+z-3)-11(x+y+4 z-5)=0 \\
4 x-10 y+2 z-6-11 x-11 y-44 z+55=0 \\
-7 x-21 y-42 z+49=0
\end{gathered}
$$

$\Rightarrow x+3 y+6 z-7=0$
6. Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $A \times B$, each having at least three elements is:
(A) 510
(B) 219
(C) 256
(D) 275

Answer: (C)

Solution:

$$
\begin{aligned}
& n(A)=4 \\
& n(B)=2
\end{aligned}
$$

Number of elements in $A \times B=2 \cdot 4=8$

Number of subsets having at least 3 elements

$$
\begin{gathered}
-{ }^{8} C_{0}-{ }_{2}^{8} C_{1}-{ }^{8} C_{2} \\
256-1-8-28
\end{gathered}
$$

7. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \in$ R, is a :
(A) Circle of radius $\sqrt{2}$
(B) Circle of radius $\sqrt{3}$
(C) Straight line parallel to x-axis.
(D) Straight line parallel to y-axis.

Answer: (A)
Solution:
Given, family of lines $L_{1}+L_{2}=0$
Let us take the lines to be

$$
\begin{gathered}
L_{2}+\lambda\left(L_{1}-L_{2}\right)=0 \\
(x-2 y+3)+\lambda(x-y+1)=0 \\
(1+\lambda) x-(2+\lambda) y+(3+\lambda)=0
\end{gathered}
$$

Let, Image of $(2,3)$ be (h, k)

$$
\begin{equation*}
\frac{h-2}{1+\lambda}=\frac{k-3}{-(2+\lambda)}=\frac{-2(2+2 \lambda-6-3 \lambda+3+\lambda)}{(1+\lambda)^{2}+(2+\lambda)^{2}} \tag{1}
\end{equation*}
$$

$\frac{h-2}{\lambda+1}=\frac{k-3}{-(\lambda+2)}=\frac{-2(-1)}{(1+\lambda)^{2}+(2+\lambda)^{2}}$

$$
\begin{align*}
& \frac{h-2}{\lambda+1}=\frac{k-3}{-(\lambda+2)} \Rightarrow \frac{\lambda+2}{\lambda+1}=\frac{3-k}{h-2} \\
& 1+\frac{1}{\lambda+1}=\frac{3-k}{h-2} \\
& \frac{1}{\lambda+1}=\frac{5-h-k}{h-2} \tag{2}
\end{align*}
$$

From (1): $(h-2)^{2}+(k-3)^{2}=\frac{4}{(\lambda+1)^{2}+(\lambda+2)^{2}}$

From (1) and (3):

$$
\begin{gathered}
\frac{h-2}{\lambda+1}=\frac{2}{(\lambda+1)^{2}+(\lambda+2)^{2}} \\
5-h-k=\frac{1}{2}\left[(h-2)^{2}+(k-3)^{2}\right] \\
10-2 h-2 k=h^{2}+k^{2}-4 h-6 k+13 \\
x^{2}+y^{2}-2 x-4 y+3=0
\end{gathered}
$$

Radius $\sqrt{1+4-3}$
$\sqrt{2}$.
8. $\lim \quad x \rightarrow 0 \frac{(1-\cos)(3+\cos x)}{x \tan 4 x}$ is equal to:
(A) 2
(B) $\frac{1}{2}$
(C) 4
(D) 3

Answer: (D)

Solutions:

$$
\begin{gathered}
2 x \\
x \\
3+\cos \\
1-\cos \\
\lim _{x \rightarrow 0} \\
\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x \cdot(3+\cos x)}{x \cdot \tan 4 x} \\
3+\cos \\
2 \cdot\left(\frac{\sin x}{x}\right)^{2} \\
\lim _{x \rightarrow 0}
\end{gathered}
$$

$$
\frac{2 \cdot(1)^{2} \cdot(3+1)}{1 \cdot 4}
$$

2.
3. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$, is
(A) $3 \sqrt{21}$
(B) 13
(C) $2 \sqrt{14}$
(D) 8

Answer: (B)

Solution:
$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-1}{12}=t($ say $)$
\Rightarrow General point is $(2+3 t,-1+4 t, 2+12 t)$

It lies on the plane $x-y+z=16$
$\Rightarrow 2+3 t+1-4 t+2+12 t=16$
$\Rightarrow 11 t=11$
$\Rightarrow t=1$
\therefore The point of intersection will be

$$
\begin{equation*}
(2+3(1),-1+4(1), 2+12(1)) \tag{5,3,14}
\end{equation*}
$$

Distance from $(1,0,2)=\sqrt{(5-1)^{2}+(3-0)^{2}+(14-2)^{2}}$

$$
\sqrt{4^{2}+3^{2}+12^{2}}
$$

10. The sum of coefficients of integral powers of x in the binomial expansion of $(1-2 \sqrt{x})^{50}$ is:
(A) $\frac{1}{2}\left(3^{50}-1\right)$
(B) $\frac{1}{2}\left(2^{50}+1\right)$

3
(C) $\left(\begin{array}{c}\mid 50+1) \\ \frac{1}{2}\end{array}\right.$
(D) $\frac{1}{2}\left(3^{50}\right)$

Answer: (C)
Solution:
Integral powers \Rightarrow odd terms

$$
\begin{gathered}
\text { oddterms }=\frac{(1-2 \sqrt{x})^{50}+(1+2 \sqrt{x})^{50}}{2} \\
\sum \text { of coefficients }=\frac{(1-2)^{50}+(1+2)^{50}}{2} \\
\frac{1+3^{50}}{2}
\end{gathered}
$$

11. The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots$ is:
(A) 142
(B) 192
(C) 71
(D) 96

Answer: (D)
Solution:

$$
\begin{aligned}
& T_{n}= \frac{1^{3}+2^{3}+\cdots+n^{3}}{1+3+\cdots+(2 n-1)}= \\
& \text { Sum of } 9 \text { terms }=\sum_{n=1}^{9} \frac{\frac{n^{2}(n+1)^{2}}{4}}{n^{2}}=\frac{(n+1)^{2}}{4} \\
& \frac{1}{4} \times\left[2^{2}+3^{2}+\cdots+10^{2}\right] \\
& \frac{1}{4}\left[\left(1^{2}+2^{2}+\cdots+10^{2}\right)-12\right]
\end{aligned}
$$

12. The area (in sq. units) of the region described by $\left[(x, y): y^{2} \leq 2 x \wedge y \geq 4 x-1\right]$ is:
(A) $\frac{15}{64}$
(B) $\frac{9}{32}$
(C) $\frac{7}{32}$
(D) $\frac{5}{64}$

Answer: (B)
Solution:
Let us find the points intersections of $y^{2}=2 x$ and $y=4 x-1$

$$
\begin{gathered}
(4 x-1)^{2}=2 x \\
16 x^{2}-10 x+1=0 \\
(8 x-1)(2 x-1)=0 \\
x=\frac{1}{2}, \frac{1}{8}
\end{gathered}
$$

$x=\frac{1}{2} \Rightarrow y=4\left(\frac{1}{2}\right)-1=1$
$x=\frac{1}{8} \Rightarrow y=4\left(\frac{1}{8}\right)-1=\frac{-1}{2}$

$$
\int_{\frac{-1}{2}}^{1}\left[\frac{y^{2}}{2}-\left(\frac{y+1}{4}\right)\right] d y
$$ $\frac{1}{6} \times\left[y^{3}\right\rfloor_{\frac{-1}{2}}^{1}-\frac{1}{8}\left\lfloor y^{2}\right\rfloor_{\frac{-1}{2}}^{1}-\frac{1}{4}\lfloor y]_{\frac{-1}{2}}^{1}$

$$
\begin{gathered}
\frac{1}{6}\left[1+\frac{1}{8}\right]-\frac{1}{8}\left[1-\frac{1}{4}\right]-\frac{1}{4}\left[1+\frac{1}{2}\right] \\
\frac{1}{6} \times \frac{9}{8}-\frac{1}{8} \times \frac{3}{4}-\frac{1}{4} \times \frac{3}{2} \\
\frac{3}{16}-\frac{3}{32}-\frac{3}{8}
\end{gathered}
$$

$$
\frac{6-3-12}{32}=\frac{-9}{32} \text { sq. units }
$$

13. The set of all values of λ for which the system of linear equations:

$$
\begin{aligned}
& 2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1} \\
& 2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2} \\
& -x_{1}+2 x_{2}=\lambda x_{3} \text { has a non-trivial solution, }
\end{aligned}
$$

(A) Contains two elements.
(B) Contains more than two elements.
(C) Is an empty set.
(D) Is a singleton.

Answer: (A)

Solution:

$$
\begin{aligned}
& (2-\lambda) x_{1}=2 x_{2}+x_{3}=0 \\
& 2 x_{1}-(\lambda+3) x_{2}+2 x_{3}=0
\end{aligned}
$$

$$
-x_{1}+2 x_{2}-\lambda x_{3}=0
$$

The systems of linear equations will have a non-trivial solution

$$
\begin{gathered}
\Rightarrow\left|\begin{array}{ccc}
2-\lambda & -2 & 1 \\
2 & -\lambda-3 & 2 \\
-1 & 2 & -\lambda
\end{array}\right|=0 \\
\Rightarrow(2-\lambda)\left[\lambda^{2}+3 \lambda-4\right]+2[-2 \lambda+2]+14-\lambda-3=0 \\
2 \lambda^{2}+6 \lambda-8-\lambda^{3}-3 \lambda^{2}+4 \lambda-4 \lambda+4+1-\lambda=0 \\
-\lambda^{3}-\lambda^{2}+5 \lambda-3=0 \\
\lambda^{3}+\lambda^{2}-5 \lambda+3=0 \\
(\lambda-1)\left(\lambda^{2}+2 \lambda-3\right)=0 \\
(\lambda-1)(\lambda+3)(\lambda-1)=0
\end{gathered}
$$

$\Rightarrow \lambda=3,-1,-1$
14. A complex number z is said to be unimodular if $|z|=1$. suppose $z_{1} \wedge z_{2}$ are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} \dot{z}_{2}}$ is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a:
(A) Circle of radius 2
(B) Circle of radius $\sqrt{2}$
(C) Straight line parallel to x-axis.
(D) Straight line parallel to y-axis.

Answer: (A)
Solution:
Given, $\frac{z_{1-2 z_{2}}}{2-z_{1} z_{2}}$ is unimodular

$$
\begin{aligned}
& \Rightarrow\left|\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}\right|=1 \\
& \left|z_{1-2 z_{2}}\right|=\left|2-z_{1} \dot{z}_{2}\right|
\end{aligned}
$$

Squaring on both sides.

$$
\begin{aligned}
& \left|z_{1-2 z_{2}}\right|^{2}=\left|2-z_{1} \dot{z}_{2}\right|^{2} \\
& \left(z_{1-2 z_{2}}\right)\left(\dot{z}_{1}-2 \dot{z}_{2}\right)=\left(2-z_{1} \dot{z}_{2}\right)\left(2-\dot{z}_{1}^{\prime} z_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\because|z|^{2}=z \bar{z}\right) \\
& z_{1} \bar{z}_{1}-2 z_{1} \bar{z}_{2}-2 \bar{z}_{1} z_{2}+4 z_{2} \bar{z}_{2} \\
& =4-2 \bar{z}_{1} z_{2}-2 z_{1} \bar{z}_{2}+z_{1} \bar{z}_{1} z_{2} \bar{z}_{2} \\
& \left|z_{1}\right|^{2}+4\left|z_{2}\right|^{2}=4+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2} \\
& \left|z_{1}\right|^{2}-4+4\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=0 \\
& \left(\left|z_{1}\right|^{2}-4\right)\left(1-\left|z_{2}\right|^{2}\right)=0 \\
& \Rightarrow \quad\left|z_{1}\right|=2 \text { or }\left|z_{2}\right|^{2}=1 \text { Given, } z_{2} \text { is not unimodular } \\
& \therefore\left|z_{1}\right|=2
\end{aligned}
$$

\therefore Point z_{1} lies on a circle of radius 2
15. The number of common tangents to the circles $x^{2}+y^{2}-4 x-6 y-12=0$ and $x^{2}+y^{2}+6 x+18 y+26=0$, is :
(A) 3
(B) 4
(C) 1
(D) 2

Answer: (A)
Solution:

$$
\begin{gathered}
x^{2}+y^{2}-4 x-6 y-12=0 \\
C_{1}(2,3), r_{1}=\sqrt{2^{2}+3^{2}+12}=\sqrt{25}=5 \\
x^{2}+y^{2}+6 x+18 y+26=0 \\
C_{2}(-3,-9), r_{2}=\sqrt{3^{2}+9^{2}-26}
\end{gathered}
$$

$$
\sqrt{90-26}=8
$$

$$
\begin{gathered}
C_{1} C_{2}=\sqrt{5^{2}+12^{2}}=13 \\
C_{1} C_{2}=r_{1}+r_{2}
\end{gathered}
$$

\Rightarrow Externally touching circles
$\Rightarrow 3$ common tangents.
16. The number of integers greater than 6,000 that can be formed, using the digits $3,5,6,7$ and 8 , without repetition, is:
(A) 120
(B) 72
(C) 216
(D) 192

Answer: (D)
Solution:
4 digit and 5 digit numbers are possible

4 digit numbers:
$\underset{\uparrow}{6 / 7 / 8} \uparrow \uparrow 343_{2}^{\uparrow} \quad$ Totalnumberspossible $=3 \cdot 4 \cdot 3 \cdot 2=72$
5 digit numbers:
$\begin{array}{lllll}\uparrow & \uparrow & \uparrow \uparrow & \uparrow \\ 5 & 4 & 32 & 1\end{array} \quad$ Totalnumberspossible $=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
\therefore Totalnumbers $=72+120=192$.
17. Let $y(x)$ be the solution of the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$.

Then $y(e)$ is equal to:
(A) 2
(B) 2 e
(C) e
(D) 0

Answer: (A)

Solution:
$\frac{d y}{d x}+\left(\frac{1}{x \log x}\right) y=2$
Integrating factor $=e^{\int P d x}$

$$
\begin{aligned}
& e^{\int \frac{1}{x \log x} d x} \\
& x \\
& \log \\
& \log \\
& e \\
& \log x
\end{aligned}
$$

The solution will be

$$
\begin{gathered}
y \cdot e^{\int P d x}=\int Q \cdot e^{\int P d x}+c \\
y \cdot \log x \quad 2 \cdot \log x+c \\
x-x \\
x \log +c \\
x=2 \\
y \cdot \log
\end{gathered}
$$

Let $P\left(1, y_{1}\right)$ be any point on the curve

$$
\begin{gathered}
y_{1}(0)=2(0-1)+c \\
c=2
\end{gathered}
$$

 \(e\)
 \(e-e\)
 When ${ }^{e l} 2$
$\log =2$
$x=e, y$
$y=2$
18. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying the equation $A A^{T}=9 I$, where Iis 3×3 identity matrix, then the ordered pairs (a, b) is equal to:
(A) $(2,1)$
(B) $(-2,-1)$
(C) $(2,-1)$
(D) $(-2,1)$

Answer: (B)
Solution:

$$
\begin{aligned}
A A^{T}= & 9 I \\
& {\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & a \\
2 & 1 & 2 \\
2 & -2 & b
\end{array}\right]=\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right] } \\
& \begin{array}{llllll}
1(1) & +2(2)+2(2) 1(2) & +2(1)+2(-2) & 2(2) & +2(b) \\
& 2(1) & +1(2)-2(2) 2(2) & +1(1)-2(-2) 1(a) & +2(a) & +a(a) \\
& a(1) & +2(2)+b(2) a(2) & +2(1)+b(-2) & -2(b) \\
& 2(2) & +b(b)
\end{array}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
9 & 0 & a+2 b+4 \\
0 & 9 & 2 a-2 b+2 \\
a+2 b+4 & 2 a-2 b+2 & a^{2}+b^{2}+4
\end{array}\right]=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

Comparingthecorrespondingelement

$$
\begin{gathered}
\begin{array}{c}
a+2 b \\
2 a-2 b
\end{array}+4=0 \\
\hline 3 a+6=0 \\
a=-2 \Rightarrow-2+2 b+4=0 \\
b=-1
\end{gathered} \quad \text { and } a^{2}+b^{2}+4=9
$$

The third equation is useful to verify whether this multiplication is possible.
19. If m is the A.M. of two distinct real numbers $l \wedge n(l, n>1) \wedge G_{1}, G_{2} \wedge G_{3}$ are three geometric means between $l \wedge n$, then $G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}$ equals.
(A) $4 l m^{2}$
(B) $4 l^{2} m^{2} n^{2}$
(C) $4 l^{2} m n$
(D) $4 l m^{2} n$

Answer: (D)
Solution:
m is the A.M. of l, n

$$
\begin{align*}
& \Rightarrow m=\frac{l+n}{2} \quad \ldots .(1) \tag{1}\\
& G_{1}, G_{2}, G_{3} \text { are G.M. of between } I \text { and } \mathrm{n} \\
& \Rightarrow l, G_{1}, G_{2}, G_{3}, n \text { are in G.P. }
\end{align*}
$$

$n=l(r)^{4} \quad \Rightarrow r^{4}=\frac{n}{l}$

$$
\begin{array}{cc}
G_{1}=l r, & G_{2}=l r^{2}, \\
G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}=l^{4} r^{4}+2 \times l^{4} r^{8}+l^{4} \times r^{12} \\
l^{4} r^{4}\left[1+2 r^{4}+r^{8}\right] \\
l^{4} \times \frac{n}{l}\left[1+r^{4}\right]^{2}=l^{3} n \times\left[1+\frac{n}{l}\right]^{2} \\
l^{3} \times n \times \frac{(l+n)^{2}}{l^{2}} \\
l n \times(2 m)^{2} & \because \\
4 l m^{2} n
\end{array}
$$

20. The negation of $s \vee(r \wedge s)$ is equivalent to:
(A) $s \vee(r \vee \sim s)$
(B) $s \wedge r$
(C) $s \wedge \sim r$
(D) $s \wedge(r \wedge \sim s)$

Answer: (B)
Solution:

$$
\begin{aligned}
((s) \vee & (\sim r \wedge s))=s \wedge[\sim((\sim r) \wedge s)] & & {[\because(p \wedge q)=(\sim p) \vee(\sim q)] } \\
& s \wedge(r \vee(\sim s)) & & {[\sim(p \vee q)=(\sim p) \wedge(\sim q)] } \\
& (s \wedge r) \vee(s \wedge(\sim s)) & &
\end{aligned}
$$

21. The integral $\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$ equals:
(A) $-\left(x^{4}+1\right)^{\frac{1}{4}}+c$
(B) $-\left(\frac{x^{4}+1}{x^{4}}\right)^{\frac{1}{4}}+c$
(C) $\left(\frac{x^{4}+1}{x^{4}}\right)^{\frac{1}{4}}+c$
(D) $\left(x^{4}+1\right)^{\frac{1}{4}}+c$

Answer: (B)
Solution:

$$
\begin{aligned}
& I=\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}} \\
& \int \frac{d x}{x^{2} \times x^{3}\left(1+\frac{1}{x^{4}}\right)^{\frac{3}{4}}} \\
& \quad \text { Put } 1+\frac{1}{x^{4}}=t \\
& \quad \Rightarrow \frac{-4}{x^{5}} d x=d t
\end{aligned}
$$

$$
\begin{aligned}
& \therefore I=\int \frac{\frac{-d t}{4}}{t^{\frac{3}{4}}} \\
& -\frac{1}{4} \times \int t^{\frac{-3}{4}} d t \\
& \frac{-1}{4} \times\left(\frac{t^{\frac{1}{4}}}{\frac{1}{4}}\right)+c \\
& -\left(1+\frac{1}{x^{4}}\right)^{\frac{1}{4}}+c
\end{aligned}
$$

22. The normal to the curve, $x^{2}+2 x y-3 y^{2}=0$, at (1, 1):
(A) Meets the curve again in the third quadrant.
(B) Meets the curve again in the fourth quadrant.
(C) Does not meet the curve again.
(D) Meets the curve again in the second quadrant.

Answer: (B)
Solution:

$$
\begin{aligned}
& x^{2}+2 x y-3 y^{2}=0 \\
& \quad(x+3 y)(x-y)=0 \\
& \quad \text { Pair of straight lines passing through origin. } \\
& x+3 y=0 \quad \text { or } \quad x-y=0 \\
& \text { Normal exists at }(1,1) \text {, which is on } x-y=0 \\
& \Rightarrow \text { Slope of normal at }(1,1)=-1 \\
& \therefore \text { Equation of normal will be } \\
& \quad y-1=-1(x-1) \\
& \quad x+y=2
\end{aligned}
$$

Now, find the point of intersection with $x+3 y=0$

$$
\begin{aligned}
& x+y=2 \\
& x+3 y=0
\end{aligned}
$$

$$
-2 y=2 \Rightarrow y=-1, x=3
$$

$(3,1)$ lies in fourth quadrant.
23. Let $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, where $|x|<\frac{1}{\sqrt{3}}$, Then a value of y is:
(A) $\frac{3 x-x^{2}}{1+3 x^{2}}$
(B) $\frac{3 x+x^{3}}{1+3 x^{2}}$
(C) $\frac{3 x-x^{3}}{1-3 x^{2}}$
(D) $\frac{3 x+x^{3}}{1-3 x^{2}}$

Answer: (C)
Solution:

$$
\begin{gathered}
\tan ^{-1} y \tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),|x|<\frac{1}{\sqrt{3}} \\
\tan ^{-1} x+2 \tan ^{-1} x \\
3 \tan ^{-1} x
\end{gathered}
$$

$\tan ^{-1} y \tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)$
$\Rightarrow y=\frac{3 x-x^{3}}{1-3 x^{2}}$
24. If the function. $g(x)=\left\{\begin{array}{ll}k \sqrt{x+1}, & 0 \leq x \leq 3 \\ m x+2, & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $\mathrm{k}+\mathrm{m}$ is :
(A) $\frac{10}{3}$
(B) 4
(C) 2
(D) $\frac{16}{5}$

Answer: (B)

Solution:
$g(x)$ is differentiable at $\mathrm{x}=3$
$\Rightarrow g(x)$ is continuous at $\mathrm{x}=3$
$\therefore \mathrm{LHL}=\mathrm{RHL} g(3)$

$$
\begin{gather*}
x \rightarrow 3^{+} g(x)=g(3) \\
x \rightarrow 3^{-} g(x)=\lim \\
\lim \\
k \sqrt{3+1}=m(3)+2 \\
2 k=3 m+2 \tag{1}
\end{gather*}
$$

$k=\frac{3}{2} m+1$
$g(x)$ is differentiable

$$
\begin{gathered}
\Rightarrow L H D=R H D \\
g^{\prime}(x)=\left\{\begin{array}{c}
k \\
2 \sqrt{x+1} \\
g^{\prime}(x)=x<x<5 \\
m \lim _{x \rightarrow 3^{+} g^{\prime}}(x) \\
x \rightarrow 3^{-} \\
\lim ^{\prime} \\
\frac{k}{2 \sqrt{3+1}}=m \\
k=4 m
\end{array}\right.
\end{gathered}
$$

From (1), $4 m=\frac{3}{2} m+1$

$$
\begin{gathered}
\frac{5 m}{2}=1 \\
\Rightarrow m=\frac{2}{5}, k=\frac{8}{5}
\end{gathered}
$$

$k+m=\frac{2}{5}+\frac{8}{5}=2$.
25. The mean of the data set comprising of 16 observations is 16 . If one of the observation valued 16 is deleted and three new observations valued 3,4 and 5 are added to the data, then the mean of the resultant data, is :
(A) 15.8
(B) 14.0
(C) 16.8
(D) 16.0

Answer: (B)
Solution:

Given, $\frac{\sum_{i=1}^{15} x i+16}{16}=16$

$$
\begin{gathered}
\Rightarrow \sum_{i=1}^{15} x i+16=256 \\
\sum_{i=1}^{15} x i=240
\end{gathered}
$$

Required mean $=\frac{\sum_{i=1}^{15} x i+3+4+5}{18}=\frac{240+3+4+5}{18}$

$$
\frac{252}{18}=14
$$

26. The integral $\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log \left(36-12 x+x^{2}\right)} d x$ is equal to :
(A) 1
(B) 6
(C) 2
(D) 4

Answer: (A)

Solution:

$$
\begin{gathered}
I=\int_{2}^{4} \frac{\log x^{2}}{\log x^{2}+\log (6-x)^{2}} d x \\
I=\int_{2}^{4} \frac{\log (6-x)^{2}}{\log (6-x)^{2}+\log x^{2}} d x \\
{\left[\because \int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\right]} \\
2 I=\int_{2}^{4} \frac{\log x^{2}+\operatorname{lo}(6-x)^{2}}{\log (6-x)^{2}+\log x^{2}} d x \\
2 I=\int_{2}^{4} \frac{\log x^{2}+\log (6-x)^{2}}{\log (6-x)^{2}+\log x^{2}} d x \\
2 I=\int_{2}^{4} 1 d x \\
2 I=[x]_{2}^{4}
\end{gathered}
$$

$$
2 I=4-2
$$

$I=1$.
27. Let $\alpha \wedge \beta$ be the roots of equation $x^{2}-6 x-2=0$. If $a_{n}=\alpha^{n}-\beta^{n}$, for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to :
(A) 3
(B) -3
(C) 6
(D) -6

Answer: (A)

Solution:

Given, α, β are roots of $x^{2}-6 x-2=0$
$\Rightarrow \alpha^{2}-6 \alpha-2=0$ and $\beta^{2}-6 \beta-2=0$
$\Rightarrow \alpha^{2}-6=6 \alpha$ and $\beta^{2}-2=6 \beta \quad$.....(1)

$$
\begin{array}{ll}
& \frac{a_{10}-2 a_{8}}{2 a_{9}}=\frac{\left(\alpha^{10}-\beta^{10}\right)-2\left(\alpha^{8}-\beta^{8}\right)}{2\left(\alpha^{9}-\beta^{9}\right)} \\
\frac{\left(\alpha^{10}-2 \alpha^{8}\right)-\left(\beta^{10}-2 \beta^{8}\right)}{2\left(\alpha^{9}-\beta^{9}\right)} & \\
\frac{\alpha^{8}\left(\alpha^{2}-2\right)-\beta^{8}\left(\beta^{2}-2\right)}{2\left(\alpha^{9}-\beta^{9}\right)} & \because \\
\frac{\alpha^{8}(6 \alpha)-\beta^{8}(6 \beta)}{2\left(\alpha^{9}-\beta^{9}\right)} & {[\quad \mid(1)]} \\
\frac{6 \alpha^{-}-6 \beta^{9}}{2\left(\alpha^{9}-\beta^{9}\right)}=3 &
\end{array}
$$

28. Let $f(x)$ be a polynomial of degree four having extreme values at $x=1 \wedge x=2$. If
$\lim \quad x \rightarrow 0\left[1+\frac{f(x)}{x^{2}}\right]=3, \operatorname{thenf}(2)$ is equal to:
(A) 0
(B) 4
(C) -8
(D) -4

Answer: (A)

Solution:
Let $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
lim

$$
x \rightarrow 0\left[1+\frac{f(x)}{x^{2}}\right]=3
$$

$\lim \quad \rightarrow 0\left[1+a x^{2}+b x+c \quad \frac{d}{x}+\frac{e}{x^{2}}\right]=3$
This limit exists when $d=e=0$

So, $\lim \quad x \rightarrow 0\left[1+a x^{2}+b x+c\right]=3$

$$
\begin{aligned}
& \Rightarrow c+1=3 \\
& c=2
\end{aligned}
$$

It is given, $x=1 \wedge x=2$ are solutions of $f^{\prime}(x)=0$
$f^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 c x$
$x\left(4 a x^{2}+3 b x+2 c\right)=0$

1,2 are roots of quadratic equation

$$
\begin{aligned}
& \Rightarrow \sum \text { of rooots } \quad \frac{-3 b}{4 a}=1+2=3 \\
& \Rightarrow b=-4 a \\
& \text { Product of roots }=\frac{2 c}{4 a}=1.2=2 \\
& \Rightarrow a=\frac{c}{4} \\
& \qquad a=\frac{1}{2}, b=-2 \\
& \therefore f(x)=\frac{1}{2} x^{4}-2 x^{3}+2 x^{2} \\
& f(2)=8-16+8
\end{aligned}
$$

29. The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, is :
(A) $\frac{27}{2}$
(B) 27
(C) $\frac{27}{4}$
(D) 18

Solution: (B)

$$
\begin{gathered}
\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \\
e=\sqrt{1-\frac{5}{9}}=\frac{2}{3} \\
a^{2}=9, b^{2}=5
\end{gathered}
$$

Focii $=(\pm a e, 0)=(\pm 2,0)$
Ends of latus recta $\left(\pm a e, \pm \frac{b^{2}}{a}\right)$

$$
\left(\pm 2, \pm \frac{5}{3}\right)
$$

Tangent at ' L ' is $\mathrm{T}=0$

$$
\frac{2 \cdot x}{9}+\frac{5}{3} \cdot \frac{y}{5}=1
$$

It cut coordinates axes at $P\left(\frac{9}{2}, 0\right) \wedge Q(0,3)$
Area of quadrilateral $P Q R S=4($ Area of triangle $O P Q)$

$$
4\left(\frac{1}{2} \cdot \frac{9}{2} \cdot 3\right)=27 \text { squareunits. }
$$

30. If 22 identical balls are to be placed in 3 identical boxes, then the probability that one of the boxes contains exactly 3 balls is:
(A) $220\left(\frac{1}{3}\right)^{12}$
(B) $22\left(\frac{1}{3}\right)^{11}$
(C) $\frac{55}{3}\left(\frac{2}{3}\right)^{11}$
(D) $55\left(\frac{2}{3}\right)^{10}$

Answer: (C)
Solution:
$\begin{array}{lll}B_{1} & B_{2} & B_{3}\end{array}$

1200
$11 \quad 1 \quad 0$

1011

1020

930
$9 \quad 2 \quad 1$

840

The mistake is "we can't use ${ }^{n} C_{r}$ for identical objects".

